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Vortex charges in copper oxide high-temperature superconductors with hole underdoping are investigated 
by Bogoliubov–de Gennes equations based on a model Hamiltonian with competing antiferromagnetic order 
and d-wave superconducting order (DSC) with variation of temperature. For the DSC, spin density wave 
(SDW) and charge density wave (CDW), the transition from stripe to checkerboard pattern and to 2D struc-
ture may occur with variation of temperature. Moreover, both spatial profile of the electron density distribu-
tion and intensity of the differential conductance are strongly affected by the SDW order around the vortex 
cores. The transitions from one-dimensional to isotropic two-dimensional structures of the vortex charge and 
spin-density wave orders may occur by tuning the temperature. 

PACS: 74.78.Bz High-Tc films; 
74.72.Bk Y-based cuprates; 
74.25.Qt Vortex lattices, flux pinning, flux creep. 
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1. Introduction 

The vortex states in high-temperature superconductors 
(HTS) have received greater attention in recent years [1–9]. 
Since the parent compounds are antiferromagnetic (AFM) 
Mott insulators, novel physical properties of HTS includ-
ing those in the vortex states would be expected due to the 
competition between more than one type of order parame-
ter [10–20]. Theoretical formalism describing this effect 
is the Bogoliubov–de Gennes (BdG) approach, which can 
be viewed as real-space extension of the Bardeen–Cooper–
Schrieffer (BCS) theory. This method allows one to reveal 
effects of imperfections in superconductors including im-
purities, surfaces and field-induced vortices. In the recent 
years there are numerous studies on the superconducting 
vortex lattice states using the discrete BdG equations and 
consequent diagonalization of the BdG mean-field Hamil-
tonian on a two-dimensional tight-binding lattice [5]. SDW 
orders with two-dimensional (2D) [15,16] or stripe [17,18] 
modulations are theoretically proposed to explain the ob-
served checkerboard patterns. A negative vortex charge 
was predicted by Chen et al. for the slightly overdoped 
sample [11], which is consistent with the NMR measure-
ments [10], but for the underdoped sample the theory is 
inconsistent with the NMR data: the experiment [10] indi-

cates a positively charged core, whereas the theory [11] 
yields the “electron-rich” one. In a view of this discrepan-
cy, Zhou et al. [19,20] investigated the effect of the long-
range Coulomb repulsion on the AFM order and on the 
vortex charge. Their results show that a sign change from 
negative to positive might occur by tuning the long-range 
Coulomb repulsion strength or the doping parameter. 
Though above results may be relevant to some extent to 
the recent experimental observation, the influence of tem-
perature on vortex charge was neglected and these results 
were obtained at zero temperature or at fixed temperature. 
Here we obtained experimental data for a certain range 
of temperature. In this work, we introduce the next-near-
est-neighboring (NNN) hopping in the effective model 
Hamiltonian with competing d-wave superconducting (DSC) 
order and SDW orders, and investigate the effect of tem-
perature on the AFM order and charged vortices for the 
holes underdoped HTS. Moreover, the differential con-
ductance for HTS in confined geometry with the variance 
of temperature was also calculated. Our results show that 
the transition from strip structure to checkerboard pattern 
and the sign change in the vortex charge from negative 
to positive for underdoped case may occur with variation 
of temperature. 
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2. Methods 

We start with an effective model Hamiltonian in a two-
dimensional lattice, in which both the DSC and SDW or-
ders are taken into account: 
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where the ijt  and ijt′  are the nearest-neighboring (NN) and 

NNN hopping integral, respectively, †( )i ic cσ σ  are destruc-

tion (creation) operators for electron of spin σ, †
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is the number operator, and µ is the chemical potential de-
termining the averaged electron density, ,
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( x yN N N= ×  is the linear dimension of the unite cell of 
the vortex lattice). ij〈 〉  denotes the summation over the NN 
sites and the site j is the nearest neighbor to the site i, and the 

ij〈〈 〉〉  denotes the summation over the NNN sites and the 
site j is the next nearest neighbor to the site i, whereas the 
pairing attraction involves only the NN ones. The SDW and 
DSC orders have the following definitions, respectively:
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where U and V represent, respectively, the on-site repulsion 
and the interaction strength for two orders. In the presence 
of magnetic field B, the hopping integral can be expressed as 
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r r  In the presence of a strong 

magnetic field, we assume the applied magnetic field to be 

uniform and choose a Landau gauge ( , ,0).
2
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restrict the NNN hopping integral to | | 0.5 | | .ij ijt t′ <  Re-

sults for | | 0.5 | |ij ijt t′ >  would be unrealistic as the NNN 
element becomes comparable to the NN hopping. The mean-
field Hamiltonian (1) can be diagonalized by solving 
the resulting BdG equations self-consistently: 
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where /( ) 1/(e 1)BE k Tf E = +  is the Fermi distribution 
function. We then compute the DSC order parameter at the 
i-th site given by the expression 
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unit vector along the ( , )x y  direction. In order to be able to 
discuss the results of STM experiments performed in the 
presence of vortex lines, we need a model of the tunneling 
current between the microscope tip and the surface of the 
sample. This current is related to the one-particle spectral 
functions in the tip of the microscope and in the supercon-
ductor. The latter can be expressed in terms of the quasi-
particle amplitudes [22]: 

 2 2
, ,( , ) 2 [| | ( ) | | ( )]n n

S n ni i
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A i E u E E v E E
↑ ↓

= π δ − + δ −∑ . 

  (8) 

We assume here that the presence of the surface does not 
affect the quasi-particle amplitudes of the superconductor, 
so we can use the solutions of Eq. (2). We also assume the 
spectral function of the tip to be that of a simple metal: 

 ( , ) 2 ( )N k
k

A i E E E= π δ −∑ . (9) 

If the tip is small compared to flux core dimensions, and 
is centered at position r, the tunneling current due to 
an applied voltage V is 
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Using the Bogoliubov transformation, its derivative is ex-
pressed in terms of the u  and v  amplitudes: 
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In our calculation, the average electron density is fixed 
at 0.873n ≈  by adjusting the chemical potential, i.e., the 
hole doping 1 0.127nδ = − = . The distance is measured in 
units of the lattice constant a, and we take 1Bk a t= = =  
for simplicity. In order to emphasize the significance of 
AFM competing with DSC order, we choose a large 

( 2.4)U =  and a intermediate ( 1).V =  The NNN hopping 
integral parameter | | 0.2 | |,ij ijt t′ =  which has been chosen 
to fit the band structure of most cuprate superconductors. 
The linear dimension of the unit cell of the vortex lattice is 
Nx × Ny = 48 × 24. This choice corresponds to the magnet-
ic field 24B   T. The amplitude of the magnetic field is 
determined by the condition that each magnetic unit cell 
contains two superconducting flux quanta, i.e., 

2
02 /( ).x yB N N a= Φ  The main procedure of self con-

sistency calculation is summarized as follows. For a given 
initial set of parameters in σ  and ,ij∆  the Hamiltonian is 
numerically diagonalized and the electron wave functions 

obtained are used to calculate the new parameters for the 
next iteration step. The calculation is repeated until the 
relative difference of order parameter between two consec-
utive iteration steps is less than 10−4. 

3. Results and discussions 

Figure 1 plots the spatial profiles of the superconductivi-
ty order parameter [(a), (d), (g) and (j)], staggered magneti-
zation [(b), (e), (h) and (k)], and the relative charge density 
[(c), (f), (i) and (l)] near the vortex cores in a 48×24 lattice. 
Here, the staggered magnetization of the induced AFM or 
SDW order is defined as , ,( 1) .s i

i i iM n n↑ ↓= − 〈 − 〉  The vor-
tex centers are situated at site (12, 12) and (12, 24), respec-
tively. Around the core centers the AFM orders are gener-
ated and the DSC orders are partially suppressed. The 
first panels [Figs. 1(a)–(c)] are for T = 0.025, the second 
panels [Figs. 1(d)–(f)] are for T = 0.05, the third panels 
[Figs. 1(g)–(i)] are for T = 0.075, and the fourth panels 

Fig. 1. (Color online) Spatial variations of the DSC order parameter [(a), (d), (g) and (j)], staggered magnetization [(b), (e), (h) and 
(k)], and the charge density [(c), (f), (i) and (l)] near the vortex core in a 48×24 lattice. The first panels [(a)–(c)], second panels [(d)–(f)], 
third panels [(g)–(i)], and fourth panels [(j)–(l)] are for T = 0.025, 0.05, 0.075, and 0.1 K, respectively. The other parameter values are  
= 0.873, U = 2.4, V = 1, t′ = – 0.2. 
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[Figs. 1(j)–(l)] are for T = 0.1. As can be seen at the first 
panels of Figs. 1(a)–(c) (T = 0.025), the DSC orders show 
a y-axis-oriented stripe-like structure. We notice that 
the striped SDW order oscillates with a period of 12a 
[see Fig. 1(a)], while the charge orders exhibit an oscillation 
with a period of 6a [see Fig. 1(c)], half of that of the SDW, 
along the x direction. The results are in qualitative agree-
ment with the observations [23]. We should mention that the 
periods of SDW and charge orders obtained from the experi-
ments [13,24] are 8a and 4a for an optimally doped sample, 
which could be reproducible by tuning U and the NNN hop-
ping strength [5]. With further increasing of the T (T = 0.05), 
we found a transition from stripe-like structure to checker-
board-like structure. The results are in qualitative agreement 
with the experimental [25] and theoretical [13] results, as 
shown in the second panels of Figs. 1(d)–(f). At the third 
panels of Figs. 1(g)–(i) (T = 0.075), the checkerboard-like 
structures vanish and the isotropic two-dimensional beha-
viors are formed. These results indicate that the transition 
from the stripe structure to the checkerboard pattern and the 
isotropic two-dimensional behavior for the spatial profile 
of the electron density distribution, could be predicted when 
the SDW order around the vortex cores decrease. The fourth 
panels in Figs. 1(j)–(l) are for T = 0.1, where the AFM 
orders are extremely weak 3(| | 10 )s

iM −<  and the vortex 
charges are positive (hole-like). This indicates that the AFM 
order is decreased remarkably around the vortex cores, ex-
pelling the electrons from the vortex cores into the bulk 
of the superconductor and the vortex charge become posi-
tive. In this case, HTS may be regarded as a system with two 
types of electronic subsystems. One type is superconducting 
and the other with the core size in the order of coherence 
length remains normal. The chemical-potential differences 
are present between these subsystems, which drive the elec-
trons outside from the core, resulting in positively charged 
cores. Hence, the vortex core will be negatively charged 
for hole underdoped HTS at the lower temperature T where 
the AFM and DSC orders coexist [26], whereas positive 
core charges are expected for relatively high temperature 
where AFM order is vanishing and larger ferromagnetic 
(FM) islands accommodate the holes [27]. So we believe 
that the experimental results for the underdoped sample [10] 
where positively charged vortex cores are reported may be 
understood based on our calculation when the appropriate T 
and the NNN hoping strength are included. In addition, 
compared to hole overdoped sample [28], the positive 
charge decrease one order of magnitude for underdoped 
sample. This could be attributed to relatively large SDW 
order with the increase of electron concentration [29], which 
reduces the number of holes in the vortex cores. 

We plotted the differential conductance according to 
Eq. (12) in Fig. 2. Figure 2 shows the energy dependence 
of the differential conductance /I V∂ ∂  at the vortex core 
center (12, 12) and the mid-point (12, 24) between two 
nearest-neighbor vortices along the x direction for the va-

riance of T. As can be seen from Fig. 2(a), the presence 
of the AFM order provides a mechanism for splitting of 
the zero-bias conductance peak into local peaks at the core 
center (12, 12) and the mid-point (12, 24). We note that 
the intensity of the peak located at the negative energy 
is much larger than that of the peak located at the positive 
energy at the vortex core center (12, 12), and the same 
is true for the mid-point (12, 24) (see Fig. 2(b)). The inten-
sity of differential conductance peaks is strongly affected 
by the AFM order around vortex cores. The AFM order 
around vortex cores decreases and vanish rapidly when the 
temperature increases and the larger ferromagnetic islands 
are forming [27], leading to increase of the resistance 
(see the inset in Fig. 2). 

4. Conclusion 

In conclusion, we use BdG equations to investigate vor-
tex charges in hole underdoped HTS with variation of tem-
perature T. The spatial variations of the DSC, the SDW 
and the CDW indicate the transition from stripe to checker-
board pattern and to 2D structure with increase of tempera-
ture. The vortex cores will be negatively charged for hole 

Fig. 2. (Color online) The differential conductance as a function 
of energy with various T, K: 0.025 (), 0.05 (), 0.075 (), 
0.10 (); (a) — at the core center (12, 12) and (b) — at the mid-
point (12, 24). Inset: region expanded at T = 0.10. 
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underdoped HTS at the lower temperature T where the 
AFM and DSC orders coexist, whereas positive core 
charges are expected for relatively higher temperature 
where AFM order vanishes. The SDW orders around vor-
tex cores decrease rapidly when the temperature increases, 
while the intensity of differential conductance declines and 
vanishes with increase of T. These results could provide 
some good understanding for the novel phenomena in ex-
perimental observation. 
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