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Phase-space description of quantum systems is espe-

cially advantageous for the purpose of investigation of 
quantum-classical transition regime and in quantum optics, 
due to the quasiprobability properties of the Wigner func-
tion and to its natural representation in the basis of cohe-
rent states [1,2]. It also provided a convenient tool for res-
toring a full quantum state from a finite set of 
measurements (quantum tomography), both in quantum 
optics and in quantum computing [3,4], in particular in 
application to superconducting qubits [5,6]. Generaliza-
tions of the Wigner function were proposed to describe 
discrete degrees of freedom (see, e.g., [7,8]). 

Here we apply the Wigner-function based approach to a 
simple model: a two level system coupled to a linear oscilla-
tor. This system quite accurately describes such objects as 
qubits coupled to control circuits [9], and therefore has im-
portant applications. Our goal is to derive equations for the 
Wigner function of the system, which could serve as a con-
venient starting point for both numerical and analytical 

treatment and to provide a straightforward method of finding 
correlators and spectral densities of relevant observables. 

We limit our consideration of nonlinear qubit-oscillator 
coupling to the quadratic terms. Thus, the Hamiltonian is 
given by  

 0= ;IH H H+  (1) 

 †
0

1= ;
2 zH a aΩσ + ω  (2) 

 † † † 2
1 2 3= ( ) ( ) ( ) .I x z zH g a a g a a g a aσ + + σ + + σ +  (3) 

The Liouville-von Neumann equation of motion for the 
density matrix, 

 [ ]0= , ,Ii H H
t
∂
ρ + ρ

∂
 (4) 

yields the equations for the components: 

_____________________________________________________ 
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 † † † † † †
22 22 22 1 12 1 21 2 22 2 22= ( ) ( ) ( ) ( )i a a a a g a a g a a g a a g a a

t
∂
ρ ω ρ − ωρ + + ρ − ρ + − + ρ + ρ + −

∂
  

 2 † † †2 2 † † †2
3 22 3 22( ) ( ).g a aa a a a g a aa a a a− + + + ρ + ρ + + +  (7) 

Each of the components ijρ  is an infinitely dimensional matrix in the Fock space of the oscillator. The transformation to 
the phase space variables *,α α  produces a set of differential equations for the components *( , )ijW α α  according to the 
rule [1] 

 † †* *
* *

1 1 1 1= ; = ; = ; = .
2 2 2 2

a W a W a W a W∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ρ α − ρ α + ρ α + ρ α −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂α ∂α⎝ ⎠ ⎝ ⎠∂α ∂α⎝ ⎠ ⎝ ⎠
 (8) 

This yields  
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i W W g W
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_________________________________________________ 

The Wigner function representation (9)–(12) has the 
obvious advantage of simplifying the tracing out of the 
oscillator degrees of freedom: 

 * * *, † symtr [ ] = ( , ) ( , ).a a O d d O Wα α α α α α∫  (13) 

Here “sym” indicates that in the expansion of the opera-
tor O  in powers of creation/annihilation operators the 
symmetrized operator ordering is used [1]. The diagonal 
terms of the density matrix in energy representation (i.e., 
occupation probabilities of energy levels), and therefore so 
called “energy entropy”, can be also directly obtained from 
the Wigner function [10]. 

Let us introduce the combinations 

 11 22 11 22= ; =
2 2

W W W W
W Z

+ −
,  

 12 21 12 21= ; = ,
2 2

W W W W
X Y

i
+ −

 (14) 

which allow to expand the Wigner matrix ijW  in Pauli 
matrices. One can directly express the average values of 
any qubit operator through these “quadratures”: 

* *= ( , )z d d Z〈σ 〉 α α α α∫  etc. They satisfy the equations 

(where *= , = )x iy x iyα + α −  
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 1 2 3= ( 4 ) ;W x y W g X g g x Z
t y x y y

⎛ ⎞∂ ∂ ∂ ∂ ∂
ω − + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

  

  (15) 

 1 2 3= 4 ( 4 ) ;Z x y Z g xY g g x W
t y x y

⎛ ⎞∂ ∂ ∂ ∂
ω − − + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

  

  (16) 

 1=X x y X g W
t y x y

⎛ ⎞∂ ∂ ∂ ∂
ω − + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

  

 
2

2
2 3 3 2
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2

g x g x Y g Y Y
y
∂

+ + − + Ω
∂
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 1= 4Y x y Y g xZ
t y x

⎛ ⎞∂ ∂ ∂
ω − + −⎜ ⎟∂ ∂ ∂⎝ ⎠

  

 
2

2
2 3 3 2

1(4 8 ) .
2

g x g x X g X X
y
∂

− + + − Ω
∂

 (18) 

In Eqs. (15)–(17) the first term (of zeroth order in qubit-
oscillator couplings) describes the anticlockwise rotation 
of the Wigner function with the oscillator frequency ω . It 
can be removed by switching to a rotating frame, 

= cos ( ) sin ( ); = sin ( ) cos ( ).x x t y t y x t y t′ ′ω − ω ω + ω  (19) 

 
____________________________________________________ 

The resulting equations are as follows: 

 1 2= sin ( ) cos ( ) sin ( ) cos ( )W g t t X g t t Z
t x y x y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
− ω + ω + − ω + ω +⎜ ⎟ ⎜ ⎟′ ′ ′ ′∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

  

 ( )34 cos ( ) sin ( ) sin ( ) cos ( ) ;g x t y t t t Z
x y

⎛ ⎞∂ ∂′ ′+ ω + ω − ω + ω⎜ ⎟′ ′∂ ∂⎝ ⎠
 (20) 

 ( )1 2= 4 cos( ) sin( ) sin ( ) cos ( )Z g x t y t Y g t t W
t x y

⎛ ⎞∂ ∂ ∂′ ′− ω + ω + − ω + ω +⎜ ⎟′ ′∂ ∂ ∂⎝ ⎠
  

 ( )34 cos ( ) sin ( ) sin ( ) cos ( ) ;g x t y t t t W
x y

⎛ ⎞∂ ∂′ ′+ ω + ω − ω + ω⎜ ⎟′ ′∂ ∂⎝ ⎠
 (21) 

 ( )1 2= sin ( ) cos ( ) 4 cos ( ) sin ( )X Y g t t W g x t y t Y
t x y

⎛ ⎞∂ ∂ ∂ ′ ′Ω + − ω + ω + ω + ω +⎜ ⎟′ ′∂ ∂ ∂⎝ ⎠
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2 2

2 22 2 2 2
3 3 2 2

18 ( ) ( ) 2 cos ( )sin ( ) ( ) ( ) ;cos sin sin cos
2

g x t y t x y t t Y g t t Y
x y

⎛ ⎞∂ ∂′ ′ ′ ′+ ω + ω + ω ω − ω + ω⎜ ⎟⎜ ⎟′ ′∂ ∂⎝ ⎠
 (22) 

 ( ) ( )1 2= 4 cos( ) sin( ) 4 cos ( ) sin ( )Y X g x t y t Z g x t y t X
t
∂ ′ ′ ′ ′− Ω + ω + ω − ω + ω −
∂

  

 ( )
2 2

2 22 2 2 2
3 3 2 2

18 ( ) ( ) 2 cos ( )sin ( ) ( ) ( ) .cos sin sin cos
2

g x t y t x y t t X g t t X
x y

⎛ ⎞∂ ∂′ ′ ′ ′− ω + ω + ω ω + ω + ω⎜ ⎟⎜ ⎟′ ′∂ ∂⎝ ⎠
 (23) 

_______________________________________________

These equations provide a convenient basis for numerical 
calculations. Note that, unlike in standard Jaynes–Cummings 
model ([11], Ch. 8), these equations contain counterrotating 
terms. Of course, a significant simplification is achieved if 
average over the oscillator period, 2 / :π ω  

 
3

3

= 2 ;

= 2 ;

W g y x Z
t x y

Z g y x W
t x y

⎛ ⎞∂ ∂ ∂′ ′− +⎜ ⎟′ ′∂ ∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂′ ′− +⎜ ⎟′ ′∂ ∂ ∂⎝ ⎠

  

2 2
2 2 3

3 2 2

2 2
2 2 3

3 2 2

= 4 ( ) ;
4

= 4 ( ) . (24)
4

g
X Y g x y Y Y

t x y

g
Y X g x y X X

t x y

⎛ ⎞∂ ∂ ∂′ ′Ω + + − +⎜ ⎟⎜ ⎟∂ ′ ′∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂′ ′− Ω − + + +⎜ ⎟⎜ ⎟∂ ′ ′∂ ∂⎝ ⎠

  

In this “adiabatic approximation” the diagonal and off-
diagonal terms of the Wigner matrix decouple. Moreover, 
in the absence of nonlinear coupling, 3 = 0,g  according to 
Eqs. (25), the averaged diagonal terms ,W Z  are constant, 
while the off-diagonal ones, X  and ,Y  undergo harmonic 
oscillations with the qubit frequency .Ω  A quadratic non-
linearity causes a spread of the off-diagonal terms, while 
its effect on the diagonal ones reduces to a rotation of 

,W Z  (i.e., oscillations of the occupation number of the 
qubit's excited state) with frequency 32 / .g  

To illustrate the results, we numerically calculate the 
time evolution of the diagonal components of the Wigner 
matrix in different regimes. The initial quantum state of the 
system is taken as 
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 0 oscillator
qubit

| || = | ,
2

↓〉+ ↑〉
Ψ 〉 ⊗ β〉  (25) 

where |β〉  is a coherent state with 16 photons. 
First, consider the case of linear coupling in exact re-

sonance 3( = 0, = )g Ω ω  (Fig. 1). The periodic splitting 
of the initial state into two distinct states (“cat state”) and 

its subsequent recombination is the well known pheno-
menon of collapse and revival, which is usually investi-
gated using the approximate Jaynes–Cummings Hamilto-
nian ([11], Eq. 8.4). The results hold for a wide variety of 
parameters, including strong coupling 2( , ),g Ω ω∼  as 
expected, since we do not use the rotating wave approxi-
mation (Fig. 2). 

–0.3 0 0.3

t = 0 t = 150 t = 350 t = 500 t = 1000

Fig. 1. (Color online) Collapse and revival of a coherent state in an oscillator linearly coupled to a qubit. The Wigner function ( , , )W x y t  is
plotted as a function of time. The model parameters in the Hamiltonian Eq. (1) are = = 0.48;Ω ω 1 2 3= 0.05; = = 0.g g g  The qubit is in-
itially in a symmetric superposition of up and down states; the initial coherent state of the oscillator contains † = 16a a〈 〉  photons (Eq. (25)).

Fig. 2. (Color online) Collapse and revival for varying linear coupling strength. The initial state is the same as in Fig. 1. The Wigner 
function ( , , )W x y t  is plotted for 2 3= = 0g g  and (a) 1= = 1, = 0.1;gΩ ω  (b) 1= = 0.5, = 0.5;gΩ ω  (c) 1= = 0.1, = 0.2.gΩ ω  

(a)

(b)

c)(

–0.3 0.30

t = 0 t = 100 t = 200 t = 260

t = 0 t = 5 t = 11 t = 12

t = 0 t = 27 t = 53 t = 62
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Introducing the non-linear (quadratic) coupling, 3g , in-
to the numerical simulations has a drastic effect on their 
behaviour. Figures 3(a) and 3(b) shows the Wigner func-
tions ( , , )W x y t  and ( , , )Z x y t  in the case of weak coupl-
ing for all three coupling terms ( 1 2 3( , , ).g g g  Here, the 
Wigner function behaves similar to when no non-linear 
terms are included (Fig. 2). The collapse and revival orbits 
are shown with the centre at origin. However, the increase 
of linear coupling strength in the presence of nonlinearity 
causes the cat state components to move in “epicycles” as 
they orbit the origin (Fig. 3(c)). This causes them to miss 
each other, so that the revival is only partial (see Fig. 3(c) 
at = 58t ). This agrees with our Eqs. (20)–(23), which 
show that the nonlinear term would introduce the diffusive 
spreading of the off-diagonal components of the Wigner 
function, which would then couple to the diagonal terms 
through the linear coupling 1.g  

Numerical calculations based on the Wigner function 
approach are most convenient in case of large photon 
numbers. Nevertheless they are robust enough to be ap-
plied to small photon numbers, as illustrated in Fig. 4. Here 
the initial state of the qubit is still a symmetric superposi-
tion of up and down states, and the oscillator is initially in 

the Fock state | 2〉 . We consider its evolution in the pres-
ence of strong linear and weak quadratic coupling 

1 2 3( = = 0.1, = = 0.1, = 0.01).g g gΩ ω  
In conclusion, we have derived Bloch type equations 

for the motion of the Wigner function of a qubit linearly 
and quadratically coupled to a linear oscillator. We have 
done this without the use of the rotating wave approxima-
tion. We have demonstrated, using numerical simulations, 
the collapse and revival cycles expected for a qubit 
coupled to an oscillator. Our simulations appear stable over 
the period of one collapse and revival cycle (and longer 
depending upon the system parameters and the initial con-
ditions). We have observed two clear regimes of behavior 
which depend on the ratio between the frequencies ( , )ω Ω  
and the coupling parameters. Further work could include 
modelling the effect dissipation and relaxation has on our 
system through the use of Lindblad terms in the Bloch type 
equations (Eqs. (20)–(23)). This will provide us with a 
direct and physically transparent approach to calculating 
the expectation values and correlations of observables in 
this experimentally relevant model. 

We are grateful to Drs M. Everitt, S. Saveliev and R. 
Wilson for stimulating discussions. 

Fig. 3. (Color online) Effect of quadratic coupling on collapse and revivals of the initial state Eq. (25). In case of weak coupling

1 2 3( = = 1; = = = 0.1)g g gΩ ω  collapse and revival of diagonal components, W  (a) and Z  (b) are almost identical with the linear case

3( = 0,g Fig. 2). A relatively strong linear coupling 1 2( = = 0.1; = = 0.1;g gΩ ω  3 = 0.01)g  changes the trajectories of the cat state compo-
nents and disrupts revivals (c). 
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–0.3 0.30

t = 46

t = 0 t = 14 t = 34t = 34 t = 64

t = 0 t = 5 t = 14 t = 34 t = 64

t = 0 t = 5 t = 14 t = 34 t = 64

Fig. 4. (Color online) Evolution of the initial oscillator Fock state | 2〉  in the presence of strong linear and weak quadratic qubit-
oscillator coupling 1 2 3( = = 0.1; = = 0.1; = 0.01).g g gΩ ω  The qubit is initially in a symmetric superposition of states. The components

,W X  and Z  are shown in panels (a), (b), and (c), respectively. 


