Теория Лифшица–Косевича и кулоновское взаимодействие в графене

Л.А. Фальковский

Институт теоретической физики им. Л.Д. Ландау РАН, г. Москва, 119334, Россия E-mail: falk@itp.ac.ru

Институт физики высоких давлений им. Л.Ф. Верещагина РАН, г. Троицк, 142190, Россия

Статья поступила в редакцию 19 августа 2013 г.

Рассмотрено влияние кулоновского взаимодействия на магнитную восприимчивость, химический потенциал и теплоемкость в графене.

Розглянуто вплив кулонівської взаємодії на магнітну сприйнятливість, хімічний потенціал та теплоємність в графені.

РАСS: 65.80.Ск Термические свойства графена;

68.65.Рq Графеновые пленки;

75.20.-д Диамагнетизм, парамагнетизм и суперпарамагнетизм;

75.75.-с Магнитные свойства наноструктур.

Ключевые слова: графен, магнитная восприимчивость, химический потенциал, теплоемкость.

1. Введение

Как известно [1], обширная экспериментальная информация о графене хорошо укладывается в картину так называемых «безмассовых дираковских фермионов», описываемых в окрестности точек K и K' зоны Бриллюэна энергетическим спектром

$$\varepsilon_s(p) = \mp v p \tag{1}$$

с постоянным параметром $v = 1,05 \cdot 10^8$ см/с, где s = 1,2— индекс, нумерующий зоны — валентную и проводимости.

В идеальном графене ферми-уровень должен совпадать с дираковской точкой $\varepsilon = 0$. Однако идеального графена в природе не существует, а в эксперименте концентрацию носителей можно менять путем допинга или с помощью напряжения на «затворе». Недавно были проведены измерения [2] шубниковских осцилляций в широкой области концентраций носителей заряда. Формула Лифшица–Косевича позволяет измерять одновременно период осцилляций, т.е. площадь, ограниченную траекторией электрона в импульсном пространстве, и циклотронную массу на этой траектории. Оказалось, что параметр v вовсе не является постоянным, а возрастает в три раза при уменьшении концентрации носителей от $n_0 = 10^{12}$ до 10^9 см⁻². Авторы работы [2] связывают это изменение скорости с

кулоновским взаимодействием носителей. Подчеркнем, что ни щели в спектре, ни какого-либо фазового перехода даже при самых низких концентрациях носителей обнаружено не было.

От трехмерных металлов графен отличается тем, что в нем соотношение между потенциальной и кинетической энергией, как легко видеть, не зависит от концентрации, и вопрос о переходе металл–диэлектрик не может быть решен с помощью качественных оценок. Устойчивость конического спектра относительно кулоновского взаимодействия в трехмерном случае впервые рассматривали Абрикосов и Бенеславский [3], которые обнаружили логарифмическую перенормировку скорости v. Для двумерного графена эта задача изучалась в работах [4–7].

Выяснилось, что перенормированный кулоновским взаимодействием электронный спектр можно записать в виде

$$\varepsilon_s(p) = \mp v p [1 + g \ln (p_0 / p)], \qquad (2)$$

где $g = e^2 / 8\pi \hbar v \varepsilon$ — безразмерная константа взаимодействия и $\varepsilon \simeq 2, 5-8$ — диэлектрическая постоянная, учитывающая взаимодействие с подложкой, а также эффект самоэкранировки в графене, $p_0 \simeq 0,5\cdot 10^8$ см⁻¹ константа обрезания на больших импульсах, порядка размеров зоны Бриллюэна; оценка всех параметров взята из работы [2]. Если перенормировку спектра принимать во внимание, то для лучшего согласия с экспериментом надо брать несколько меньшее значение параметра $v = 0.85 \cdot 10^8$ см/с.

Уравнение (2) записано в линейном приближении по $g \ln (p_0/p) < 1$. Поскольку при обычных концентрациях носителей логарифм является большим, $p_0 \gg p$, можно предполагать, что условие $g \ln (p_0/p) < 1$ выполнено благодаря $g \ll 1$, что в работе [2] обеспечивалось большим значением диэлектрической константы ε . Условие $g \ll 1$ сильно упрощает все вычисления, и его мы будем предполагать выполненным. В настоящей работе приведен вывод формулы Лифшица–Косевича применительно к двумерному случаю, а затем обсуждено температурное поведение химического потенциала и теплоемкости в графене.

2. Магнитная восприимчивость

Чтобы получить осцилляции магнитного момента, нужно записать электронный спектр в магнитном поле для квазиклассической области, $n \gg 1$, где n — числа Ландау. Поскольку циклотронная масса в графене гораздо меньше массы свободного электрона, можно пренебречь спиновым расщеплением по сравнению с циклотронным. Тогда условие квантования Бора–Зоммерфельда принимает вид

$$\frac{c}{e\hbar B}A(\varepsilon) = 2\pi n.$$
(3)

Площадь $A(\varepsilon)$, ограниченная электронной траекторией и вычисленная с учетом кулоновской перенормировки, равна (2):

$$A(\varepsilon) = \pi p^2 = \pi \left(\frac{\varepsilon}{v}\right)^2 [1 - 2g \ln (p_0 v / \varepsilon)], \qquad (4)$$

где использовано условие $2g \ln (p_0 / p) < 1$. Здесь надо отметить, что квантование Бора–Зоммерфельда в кулоновском поле не является достаточно строгим, как это имеет место для случая без кулоновской перенормировки [8]. Некоторым утешением является то, что в пренебрежении экранировкой правая часть уравнения (3), как показывает строгий анализ, возникает для графена именно в таком виде, т.е. без поправочных членов к *n*, как это происходит для графенового бислоя в электрическом поле [9].

Магнитный момент графенового образца с площадью поверхности *S* определяется термодинамическим потенциалом

$$\Omega(B) = -\frac{2eBTS}{\pi\hbar c} \sum_{n,s} \ln\left(1 + e^{\frac{\mu - \varepsilon_{sn}}{T}}\right),$$

который вычисляется с помощью формулы суммирования Пуассона

$$\Omega(B) = -\frac{2eBTS}{\pi\hbar c} \times \sum_{k\neq 0} \int_{0}^{\infty} \left\{ \ln\left(1 + e^{\frac{\mu - \varepsilon_n}{T}}\right) + \ln\left(1 + e^{\frac{\mu + \varepsilon_n}{T}}\right) \right\} e^{2\pi i k n} dn,$$

где вклады двух зон выписаны явно. Интегрирование по частям дает

$$\Omega(B) = -\frac{eBTS}{\pi^2 \hbar c} \sum_{k \neq 0} \int_{0}^{\infty} \frac{d\varepsilon}{ik} [f(\varepsilon - \mu) - f(-\varepsilon - \mu)] e^{2\pi i k n(\varepsilon)}$$
(5)

с переменной интегрирования є.

При низких температурах главный вклад в интеграл дает окрестность точки $\varepsilon = \mu(T)$ в первом слагаемом при положительных μ (электроны) или во втором — при отрицательных μ (дырки). Разлагая показатель экспоненты в окрестности этих точек и интегрируя, получаем

$$\Omega(B) = \frac{2eBTS}{\pi\hbar c} \sum_{k\neq 0} \frac{1}{k} \frac{\sin[kcA(\mu) / e\hbar B]}{\sinh(2\pi^2 kc \mid m(\mu) \mid T / e\hbar B)}$$

здесь $m(\varepsilon) = (1/2\pi)(dA(\varepsilon)/d\varepsilon)$ — циклотронная масса. При вычислении магнитного момента нужно дифференцировать по *B* лишь быстро меняющийся аргумент синуса:

$$\tilde{M}(B) = \frac{2\pi N^{(2)}T}{B} \sum_{k \neq 0} \frac{\cos[kcA(\mu) / e\hbar B]}{\sinh[2\pi^2 kc \mid m(\mu) \mid T / e\hbar B]},$$
(6)

где введено полное число носителей в двумерном графене $N^{(2)} = SA(\mu) / (\pi\hbar)^2$; здесь учтено, что осцилляции наблюдаются при низких температурах $T \ll |\mu|$. Отметим, что по форме осцилляций нельзя определить характер носителей (дырочный или электронный), поскольку в формулу (6) входит модуль циклотронной массы. Кулоновская перенормировка явно в формулу (6) не входит и сказывается только посредством связи энергии Ферми с концентрацией носителей:

$$n_0 = \frac{p_F^2}{\pi \hbar^2} = \frac{1}{\pi} \left(\frac{\mu}{\hbar v}\right)^2 [1 - 2g \ln (p_0 v / |\mu|)], \qquad (7)$$

Выражение (6) отличается от стандартной формулы Лифшица–Косевича в двух пунктах: во-первых, площадь $A(\mu)$ и циклотронная масса $m(\mu)$ вычисляются с учетом кулоновского взаимодействия и, во-вторых, множитель перед знаком суммы не содержит дополнительного фактора $|\omega_c / \mu|^{1/2}$ с циклотронной частотой $\omega_c = eH / m(\mu)c$, который появляется в трехмерном случае в результате интегрирования по p_z . Для наблюдения осцилляций аргумент sinh должен быть меньше единицы. В этом случае амплитуда осцилляций в расчете на одну частицу имеет порядок

$$\frac{\tilde{M}^{(2)}}{N^{(2)}} \sim \frac{e\hbar}{c \mid m(\mu) \mid}, \quad 2\pi^2 c \mid m(\mu) \mid T \ll e\hbar B,$$

Low Temperature Physics/Физика низких температур, 2014, т. 40, № 4

где индекс 2 введен для указания на двумерный характер системы. В трехмерном случае эта же величина имеет порядок

$$\frac{\tilde{M}^{(3)}}{N^{(3)}} \sim \frac{e\hbar}{cm(\mu)} \left(\frac{\hbar\omega_c}{\mu}\right)^{1/2}, \quad N^{(3)} = \frac{V p_F^3}{3\pi^2 \hbar^3}.$$

Интересно сравнить плавные значения восприимчивости в двумерном и трехмерном случаях. Для этого достаточно рассмотреть предельное значение термодинамического потенциала в слабых магнитных полях $\omega_c \ll T, \mu$, которое дается внеинтегральным слагаемым в формуле Эйлера–Маклорена

$$\sum_{0}^{\infty} F(n) = \int_{0}^{\infty} F(n) dn + \frac{1}{2} F(0) - \frac{1}{12} F'(0).$$

Вычисляя производную, находим зависящую от магнитного поля часть термодинамического потенциала

$$\Omega(H) = \frac{-S}{6\pi} \left(\frac{eB}{c}\right)^2 \sum_{s} \frac{f(\varepsilon_s - \mu)}{m(\varepsilon_s)} |_{n \to 0},$$
(8)

Сумма по зонам должна здесь вычисляться при $\varepsilon_s \rightarrow 0$:

$$\lim_{\varepsilon_{s} \to 0} \sum_{s} \frac{f(\varepsilon_{s} - \mu)}{m(\varepsilon_{s})} =$$
$$= v^{2} \lim_{\varepsilon \to 0} \left[(e^{\frac{\varepsilon - \mu}{T}} + 1)^{-1} - (e^{\frac{-\varepsilon - \mu}{T}} + 1)^{-1} \right] / \varepsilon =$$
$$= \frac{-v^{2}}{2T \cosh^{2}(\mu / 2T)},$$

где мы пренебрегли перенормировкой.

Таким образом находим монотонную часть магнитного момента [10–12]

$$\overline{M}^{(2)} = \frac{-S}{6\pi} \left(\frac{ev}{c}\right)^2 \frac{B}{T\cosh^2\left(\mu/2T\right)}$$

или в пересчете на одну частицу

$$\frac{\overline{M}^{(2)}}{N^{(2)}} \sim -\left(\frac{e\hbar}{cm(\mu)}\right)^2 \frac{B}{T\cosh^2\left(\mu/2T\right)}.$$

Трехмерный случай отличается от двумерного дополнительным интегрированием по p_z в формуле (8). Кроме того, нужно учесть отличие в спектре. Воспользуемся простейшей изотропной моделью [13–15] для узкощелевых полупроводников и полуметаллов, у которых щель в спектре ε_g мала по сравнению с типичными электронными энергиями ε_0 :

$$\varepsilon_s = \mp \sqrt{\varepsilon_g^2 / 4 + (vp)^2},$$

где *р* — модуль трехмерного вектора. В условии Бора-Зоммерфельфельда (3) площадь теперь равна

$$A(\varepsilon) = \pi(\varepsilon^2 - \varepsilon_g^2 / 4 - v^2 p_z^2) / v^2.$$

Low Temperature Physics/Физика низких температур, 2014, т. 40, № 4

В этом случае

$$\lim_{a\to 0} \varepsilon_s = \mp \sqrt{\varepsilon_g^2 / 4 + (v p_z)^2}, \quad m(\varepsilon_s) = \varepsilon_s / v^2.$$

Интегрируя по *p_z* формулу (8), получаем большой логарифм:

$$\int dp_z \lim_{n \to 0} \sum_s \frac{f(\varepsilon_s - \mu)}{m(\varepsilon_s)} = -v \ln\left(\frac{\varepsilon_0}{\max\left\{\varepsilon_g, |\mu|, T\right\}}\right),$$

что дает для плавного магнитного момента на одну частицу

$$\frac{\overline{M}^{(3)}}{N^{(3)}} \sim -\left(\frac{e\hbar}{cm(\mu)}\right)^2 \frac{B}{\mu} \ln\left(\frac{\varepsilon_0}{\max\left\{\varepsilon_g, |\mu|, T\right\}}\right)$$

Заметим, что диамагнитный характер плавной части магнитного момента во всех рассмотренных случаях определяется преимущественным вкладом близкой дырочной зоны.

В предыдущие формулы входит химический потенциал µ, который при малых концентрациях носителей в графене существенно зависит от температуры. Ниже выясним эту зависимость.

3. Температурная зависимость химического потенциала

В чистом графене химический потенциал совпадает со значением зарядовой нейтральности $\varepsilon = 0$. Он может принимать ненулевое значение из-за допинга или при напряжении на «затворе». Его значение определяется общим числом носителей — разность чисел электронов в зоне проводимости и дырок в валентной зоне. Эта разность остается фиксированной при изменении температуры

$$N = 4S \int |f(\varepsilon - \mu) - f(\varepsilon + \mu)| \frac{d^2 \mathbf{p}}{(2\pi\hbar)^2}, \qquad (9)$$

где множитель 4 учитывает вырождение по спину и числу долин в зоне Бриллюэна. Здесь интегрирование с учетом кулоновской экранировки (4) выполняется по положительным $\varepsilon > 0$; при нуле температур электроны имеются при положительном $\mu > 0$, а дырки — при $\mu < 0$. Зависимость химического потенциала $\mu(T)$, определяемая условием (9) для различных концентраций носителей, показана на рис. 1 и 2.

Предельные формулы для низких ($T \ll \mu$) и высоких температур ($T \gg \mu$) с учетом кулоновской перенормировки можно получить в явном виде.

При низких температурах удобно дифференцировать уравнение (9) по температуре, используя

$$\frac{df\left(\varepsilon-\mu(T)\right)}{dT} = \left[\frac{\varepsilon-\mu}{T} + \frac{d\mu}{dT}\right] \left[-\frac{\partial f\left(\varepsilon-\mu\right)}{\partial\varepsilon}\right].$$

441

Рис. 1. Температурные зависимости химического потенциала для концентрации 10^{10} см⁻² с учетом кулоновской перенормировки (сплошная кривая, показаны также низко- и высокотемпературная асимптотики, даваемые формулами (10) и (11)) и без учета (штриховая кривая); параметр обрезания $p_0 = 0,5 \cdot 10^8$ см⁻¹, диэлектрическая постоянная $\varepsilon = 2,5$, константа g = 0,0367.

Здесь присутствует острая функция от (ε – µ). Поэтому под интегралом достаточно разложить импульс

$$p = \varepsilon \left[1 - g \ln \left(p_0 v / \varepsilon \right) \right] / v$$

в окрестности $\varepsilon = \mu$ по отклонению ($\varepsilon - \mu$), степени которого при интегрировании с $\partial f / \partial \varepsilon$ дают факторы, пропорциональные *T*. Например, в случае электронного допинга имеем

$$0 = \int_{-\infty}^{\infty} \left[-\frac{\partial f(\varepsilon - \mu)}{\partial \varepsilon} \right] \left[\mu \frac{d\mu}{dT} + \frac{(\varepsilon - \mu)^2}{T} \right] \left[1 - 2g \ln \left(p_0 v / \mu \right) \right] d\varepsilon,$$

где мы не дифференцировали логарифм, благодаря условию $g \ll 1$. Интегрируя, находим

$$\frac{d\mu}{dT} = -\frac{\pi^2}{3\varepsilon_F}T, \quad \mu = \varepsilon_F - \frac{\pi^2}{6\varepsilon_F}T^2, \quad (10)$$

где введено обозначение энергии Ферми $\varepsilon_F \equiv \mu(T = 0)$, положительной для электронного допинга и отрицательной для дырочного. Заметим, что мы пришли к обычному квадратичному поведению химпотенциала в вырожденных ферми-системах при низких температурах. Подчеркнем, что перенормировка присутствует здесь неявно вследствие условия (7), связывающего энергию Ферми с концентрацией носителей.

Рис. 2. То же, что и на рис. 1, но для концентрации 10^9 см⁻².

При высоких температурах можно разложить по μ подынтегральное выражение в (9). Вводя новую переменную $x = \epsilon / 2T$, получаем интеграл

$$N = \frac{4 |\mu| ST}{\pi (\hbar v)^2} \int_{0}^{\infty} \frac{1 - 2g \ln (p_0 v / 2Tx)}{\cosh^2 x} x dx$$

который дает для химического потенциала

$$\mu \models \frac{\pi}{4\ln 2} \frac{n_0 (\hbar v)^2}{T} [1 + 2g \ln (p_0 v / 2T)].$$
(11)

Таким образом, получена обратная температурная зависимость как результат коллективного взаимодействия электронов и дырок в близких зонах. Кулоновская перенормировка представлена здесь явной логарифмической поправкой — она особенно заметна на рисунках при низких температурах и малых концентрациях носителей.

4. Вклад носителей в теплоемкость

Здесь рассмотрен электронный вклад в теплоемкость. Энергия носителей

$$E = 4S \int_{0}^{\infty} \varepsilon |f(\varepsilon - \mu) - f(\varepsilon + \mu)| \frac{d^{2}\mathbf{p}}{(2\pi\hbar)^{2}}$$
(12)

отличается от выражения для концентрации носителей (9) только дополнительным множителем є под интегралом. Поэтому можно действовать тем же способом.

При низких температурах, $T \ll \varepsilon_F$, теплоемкость в случае электронного допинга записывается в виде

$$C_{S}^{(e)} = \frac{2S}{\pi(\hbar v)^{2}} \int_{-\infty}^{\infty} \left[\mu^{2} \frac{d\mu}{dT} + 2\mu \frac{(\varepsilon - \mu)^{2}}{T} \right] \times \\ \times \left[-\frac{\partial f(\varepsilon - \mu)}{\partial \varepsilon} \right] [1 - 2g \ln (p_{0}v/\mu)] d\varepsilon = \\ = \frac{2S}{\pi(\hbar v)^{2}} \left[\mu^{2} \frac{d\mu}{dT} + \frac{2\pi^{2}}{3} \mu T \right] [1 - 2g \ln (p_{0}v/\mu)].$$

С помощью выражения (10) получаем

$$C_{S}^{(e)} = \frac{2\pi S |\varepsilon_{F}|}{3(\hbar v)^{2}} T[1 - 2g \ln (p_{0}v/|\varepsilon_{F}|)]$$

как для электронного, так и дырочного допинга.

При высоких температурах, $T \gg \mu$, можно ограничиться в разложении энергии (12) первым порядком по μ :

$$E = \frac{4S |\mu|}{\pi(\hbar v)^2} \int_0^\infty \varepsilon^2 \left(-\frac{\partial f(\varepsilon)}{\partial \varepsilon} \right) [1 - 2g \ln (p_0 v / \varepsilon)] d\varepsilon =$$
$$= \frac{2\pi S |\mu|}{3(\hbar v)^2} T^2 [1 - 2g \ln (p_0 v / 2T)].$$

Сюда надо подставить выражение (11) для µ. Находим

$$E = \frac{\pi^2}{6 \ln 2} NT$$
 и $C_S^{(e)} = \frac{\pi^2}{6 \ln 2} N.$

Видим, что при высоких температурах теплоемкость принимает постоянное значение, как это происходит в больцмановском газе.

Таким образом, получаем асимптотики теплоемкости

$$C_{S}^{(e)} = \frac{\pi^{2}}{3} N \begin{cases} 2T / |\varepsilon_{F}|, & T \ll |\mu|, \\ 1/2 \ln 2, & T \gg |\mu|. \end{cases}$$
(13)

Эти формулы показывают, что перенормировке подвергается значение теплоемкости при низкой температуре. При высоких температурах перенормировка не сказывается по крайней мере в линейном приближении по $g \ln (p_0 / p)$.

5. Заключение

Отметим, что кулоновское взаимодействие по-разному влияет на транспортные и термодинамические свойства электронов в графене. Электронная проводимость не зависит от параметра v и по этой причине мало чувствительна к перенормировке. Термодинамические свойства обнаруживают перенормировку, как это видно из формул (6), (11) и (13), особенно при низких температурах и малых концентрациях носителей, $n_0 < 10^{10}$ см⁻² (см. рис. 1, 2). Любопытно, что температурная зависимость химического потенциала $|\mu| \sim T^{-1}$ при высоких температурах является просто следствием взаимного влияния носителей в близких зонах бесщелевого спектра, и кулоновское взаимодействие оказывает здесь относительно слабое влияние. Электронный вклад в теплоемкость мал из-за малого количества носителей, но он, по-видимому, может наблюдаться благодаря различной температурной зависимости электронного и решеточного вкладов, пропорциональных T и T^2 соответственно.

Автор благодарен Андрею Варламову за полезные дискуссии. Работа была поддержена Российским фондом фундаментальных исследований (грант № 13-02-00244А) и программой SIMTECH, New Centure of Superconductivity: Ideas, Materials and Technologies (grant No. 246937).

- A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, *Rev. Mod. Phys.* 81, 109 (2009).
- D.C. Elias, R.V. Gorbachev, A.S. Mayorov, S.V. Morozov, A.A. Zhukov, P. Blake, L.A. Ponomarenko, I.V. Grigorieva, K.S. Novoselov, F. Guinea, and A.K. Geim, *Nat. Phys.* 7, 701 (2011); G.L. Yu, R. Jalil, B. Belle, A.S. Mayorov, P. Blake, F. Schedin, S.V. Morozov, L.A. Ponomarenko, F. Chiappini, S. Wiedmann, U. Zeitler, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, and D.C. Elias, *Proc. Natl. Acad. Sci.* 110, 3282 (2013).
- A.A. Abrikosov and S.D. Beneslavsky, Sov. Phys. JETP 32, 699 (1971).
- J. Gonzalez, F. Guinea, and M.A.H. Vozmediano, *Nucl. Phys. B* 424, 595 (1994); J. Gonzalez, F. Guinea, and M.A.H. Vozmediano, *Phys. Rev. B* 59, 2474 (1999).
- 5. E.G. Mishchenko, Phys. Rev. Lett. 98, 216801 (2007).
- Y. Barlas, T. Pereg-Barnea, M. Polini, R. Asgari, and A.H. MacDonald, *Phys. Rev. Lett.* 98, 236601 (2007).
- V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, and A.H. Castro Neto, *Rev. Mod. Phys.* 84, 1067 (2012).
- Л.А. Фальковский, ЖЭТФ 49, 609 (1965) [Sov. Phys. JETP 22, 423 (1966)].
- A.Yu. Ozerin and L.A. Falkovsky, *Phys. Rev. B* 85, 205143 (2012).
- 10. J.W. McClure, Phys. Rev. 104, 666 (1956).
- 11. S.A. Safran and F.J. DiSalvo, Phys. Rev. B 20, 4889 (1979).
- 12. Y. Ominato and M. Koshino, Phys. Rev. B 87, 115433 (2013).
- 13. S.D. Beneslavsky and L.A. Falkovsky, *Sov. Phys. JETP* **42**, 541 (1976).
- 14. N.B. Brandt, M.V. Semenov, and L.A. Falkovsky, J. Low Temp. Phys. 27, 75 (1977).
- L.A. Falkovsky, A.V. Brodovoi, and G.V. Lashkarev, *Sov. Phys. JETP* 53, 170 (1981).

The Lifshitz–Kosevich theory and Coulomb interaction in graphene

L.A. Falkovsky

The influence of Coulomb interactions on the magnetic susceptibility, chemical potential and heat capacity in graphene is considered.

PACS: 65.80.Ck Thermal properties of graphene; 68.65.Pq Graphene films; **75.20.-g** Diamagnetism, paramagnetism, and superparamagnetism; **75.75.-c** Magnetic properties of nanostructures.

Keywords: graphene, magnetic susceptibility, chemical potential, heat capacity.