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The electronic and magnetic structures of Mn3CuN are investigated theoretically from first principles using the 

fully relativistic Dirac LMTO band structure method. Mn3CuN possesses a magnetic phase transition at TC = 143 K 

from a high temperature paramagnetic phase to a low temperature ferromagnetic one with a noncollinear magnetic 

structure. The transition is accompanied by a structural change from the cubic to the tetragonal lattice. In low tem-

perature phase two Cu moments and two Mn moments (Mn2 and Mn3) ferromagnetically align along the c axis 

while other four Mn1 magnetic moments are canted from the c axis to [111] direction by angle = 76.2. The x-ray 

absorption spectra and x-ray magnetic circular dichroism (XMCD) spectra of Mn3CuN are investigated theoretical-

ly from first principles. The origin of the XMCD spectra in the Mn3CuN compound is examined. The calculated re-

sults are compared with the experimental data. 

PACS: 75.50.Cc Other ferromagnetic metals and alloys; 

71.20.Lp Intermetallic compounds; 

71.15.Rf Relativistic effects. 
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1. Introduction 

Ternary manganese compounds with a formula Mn3MX 

(M = Ga, Sn, Zn, Cu and X = C and N) and the cubic crystal 

structure of a perovskite type have attracted much interest 

due to the peculiar relationship between lattice and mag-

netism which leads to a large variety of magnetic orderings 

and structural transformations [1–9]. The control of mag-

netostructural correlations in a magnetic metal is extremely 

important in various advanced industrial applications. By 

tuning the magnetostructural correlations, various useful 

functions, such as ferromagnetic shape memory effect 

[10,11], negative thermal expansion [12], and magneto-

caloric effects [13,14], have been developed. In particular, 

magnetostruction [15], one of the most important properties 

of a magnetic metal, has a high potential for practical appli-

cations, such as in actuators and magnetic switching devices. 

One of the most attractive materials exhibiting 

magnetostructural correlations are antiperovskite manga-

nese nitrides Mn3MN (M: transitional metal or semicon-

ducting element) [8]. The antiperovskites possess so called 

magnetovolume effect (MVE), such as negative thermal 

expansion (NTE) [16–20]. A large volume expansion in 

antiperovskite manganese nitrides is triggered by magnetic 

transition from high-temperature (high-T) paramagnetic 

(PM) phase to low-temperature (low-T) antiferromagnetic 

(AF) or ferromagnetic (FM) ordered phases. Another type 

of the peculiar relationship between the lattice and mag-

netism is the shape deformation by external magnetic field 

or magnetostriction. Magnetostriction often occurs without 

the volume change and it provides information comple-

mentary to that obtained from the volume effect. From a 

technological viewpoint, shape control by external field is 

one of the most important functions of metallic ferro-

magnets and has high potential in the design of actuating 

devices and sensors [15]. Shibayama and Takenaka [21] 

explored the magnetostriction in Mn3CuN. It is exception-

ally ferromagnetic among antiperovskite manganese ni-

trides Mn3MN (M: Zn, Ga, Ag, etc.) most of which are 

antiferromagnetic. They found that Mn3CuN exhibits large 

magnetostriction up to 0.2% even in a polycrystalline. This 

magnetostriction can be reasonably explained in terms of 

the rearrangement of thermoelastic martensite variants by 

the magnetic field; that is, Mn3CuN can be classified as a 

FM shape memory alloy. Generally, magnetostriction orig-

inates from anisotropy in the wave function of the elec-

trons that induce a magnetic moment. The anisotropy of 

the electron cloud produces magnetocrystalline anisotropy, 
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that is, a tendency for a magnetic moment to align along a 

certain crystallographic direction, which is a dominant 

factor for magnetostriction in an FM shape memory alloy. 

In the case of Mn3CuN, however, large magnetocrystalline 

anisotropy is not expected because the 3d orbitals of Mn 

are almost half-filled, resulting in an almost isotropic elec-

tron cloud, and because the crystallographic anisotropy of 

Mn3CuN is much smaller than that of typical FM shape 

memory alloys. 

Mn3CuN undergoes the first-order transition from a 

high-T PM to a low-T FM phase at the Curie temperature 

TC = 143 K [22]. At TC, the structural deformation simul-

taneously occurs from a high-T cubic unit cell (Pm3m) 

to a low-T tetragonal one with shorter c axis, 

1 ( / <1, 4/ ),T c a P mmm  but the volume is conservative. The 

lattice parameters a and c are 3.9075 Å and 3.8502 Å at 

100 K, respectively, and the tetragonality c/a is estimated to 

be 0.9853 [23]. In Mn3CuN the results of neutron diffraction 

show that the magnetic moments of Mn atoms are much 

smaller than the 4–5 B observed in other ordered manganese 

alloys [8]. This result indicates a strong itinerant character of 

3d electrons of Mn atoms in Mn3CuN. 

The energy band structure of the Mn3MX (M=Ga, Sn, 

Zn, Cu and X=C and N) systems has been calculated by 

various methods [24–28]. In the present study, we focus 

our attention on the theoretical investigation of the x-ray 

magnetic circular dichroism (XMCD) in the low tempera-

ture non-collinear phase of Mn3CuN. Takenaka et al. [29] 

explored the magnetic states of Mn and Cu in Mn3CuN 

using the x-ray magnetic circular dichroism. They evaluat-

ed the spin and orbital magnetic moments, sm  and ,lm  

respectively, not only for Mn but also for Cu. The theoreti-

cal investigations of the origin of the XMCD spectra at the 

K edges of Mn in the ferromagnetic cubic phases of 

Mn3GaC and Mn3ZnC were carried out in Ref. 27 using 

the LSDA approximation. The electronic and magnetic 

structure as well as the XMCD spectra in the low tempera-

ture noncollinear Mn3ZnC perovskite were studied in 

Ref 30. 

This paper is organized as follows. Section 2 presents a 

description of the perovskite Mn3CuN crystal and magnet-

ic structures as well as the computational details. Section 3 

is devoted to the electronic structure and XMCD spectra of 

the Mn3CuN compound calculated in the fully relativistic 

Dirac LMTO band structure method. The calculated results 

are compared with the available experimental data. Finally, 

the results are summarized in Sec. 4. 

2. Crystal structure and computational details 

General properties of spin density waves. The magnetic 

configuration of an incommensurate spin spiral shows the 

magnetic moments of certain atomic planes varying in di-

rection. The variation has a well-defined period determined 

by a wave vector q. When the magnetic moment is con-

fined to the lattice sites the magnetization M varies as [31] 
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where the polar coordinates are used and nm  is the mag-

netic moment of atom n  with a phase n  at the position 

rn. Here we consider only planar spirals, that is, = /2n  

which also give the minimum of the total energy. The 

magnetization of Eq. (1) is not translationally invariant but 

transforms as 

 ( )= ( ) ( ),DM r R qr M r  (2) 

where R is a lattice translation and D  is a rotation around 

the z  axis. A spin spiral with a magnetization in a general 

point r in space can be defined as a magnetic configuration 

which transforms according to Eq. (2). Since the spin spiral 

describes a spatially rotating magnetization, it can be cor-

related with a frozen magnon. 

Because the spin spiral breaks translational symmetry, 

the Bloch theorem is no longer valid. Computationally, one 

should use large super-cells to obtain total-energy of the 

spin spirals. However, when the spin-orbit interaction is 

neglected spins are decoupled from the lattice and only the 

relative orientation of the magnetic moments is important. 

Then, one can define generalized translations which con-

tain translations in the real space and rotations in the spin 

space [32]. These generalized translations leave the mag-

netic structure invariant and lead to a generalized Bloch 

theorem. Therefore the Bloch spinors can still be character-

ized by a k vector in the Brillouin zone, and can be written 

as 
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The functions ( )ku r  and ( )kd r  are invariant with re-

spect to lattice translations having the same role as for 

normal Bloch functions. Due to this generalized Bloch 

theorem the spin spirals can be studied within the chemical 

unit cell and no large super-cells are needed. Although the 

chemical unit cell can be used, the presence of the spin 

spiral lowers the symmetry of the system. Only the space-

group operations that leave invariant the wave vector of the 

spiral remain. When considering the general spin space 

groups, i.e., taking the spin rotations into account, the 

space-group operations which reverse the spiral vector 

together with a spin rotation of  around the x  axis are 

symmetry operations [32]. 

Although the original formulation of the local-spin-

density approximation of the density-functional theory 

allowed noncollinear magnetic order, first-principles cal-

culations for this aspect have begun only recently (for a 

review, see Ref. 33). One application has been the study 

of noncollinear ground states, for example, in -Fe 

(Refs. 34–36) or in frustrated antiferromagnets [37,38]. In 
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addition, the noncollinear formulation enables studies of 

finite-temperature properties of magnetic materials. Since 

the dominant magnetic excitations at low temperatures 

are spin waves which are noncollinear by nature, it is 

possible to determine the magnon spectra and ultimately 

the Curie temperature from first principles [39–43]. Re-

cently, the noncollinear magnetic configurations were 

investigated in the Heusler alloys Ni2MnGa, Ni2MnAl 

[31] and IrMnAl [44]. The total energies for different 

spin spirals were calculated and the ground-state magnet-

ic structures were identified. 

Magnetocrystalline anisotropy. Magnetic anisotropy is 

an important parameter, since in many instances their use-

fulness is determined by the magnetic anisotropy, i.e., by 

the extent to which the magnetization retains its orientation 

in response to magnetic field. As the most important mag-

netic anisotropy, the magnetocrystalline anisotropy is re-

lated to the crystal symmetry of a material. The mag-

netocrystalline anisotropy energy (MAE) describes the 

tendency of the magnetization to align along specific spa-

tial directions rather than to randomly fluctuate over time. 

The MAE determines the stability of the magnetization in 

bulk as well as nanoparticle systems. Extensive studies of 

ferromagnetic bulk materials and thin films have highlight-

ed the MAE dependence on crystal symmetry and atomic 

composition. Whereas the exchange interaction among 

electron spins is purely isotropic, the orbital magnetization, 

via the spin-orbit interaction, connects the spin magnetiza-

tion to the atomic structure of a magnetic material, hence 

giving rise to magnetic anisotropy [45]. 

The calculation of the magnetocrystalline anisotropy en-

ergy has been a long-standing problem. A first theory of the 

MAE in Fe and Ni was formulated by Brooks [46] and 

Fletcher [47], who emphasized that an energy band picture, 

in which the effect of spin-orbit (SO) coupling is taken into 

account in a perturbative way, could provide a coupling of 

the magnetization orientation to the crystallographic axes of 

approximately the right order of magnitude. In this pioneer-

ing work the band structure was oversimplified to three em-

pirical bands [46,47]. Recent investigations [48–52] elabo-

rated the MAE problem using ab initio calculated energy 

bands obtained within the local-spin density approximation 

to the density functional theory. Although it is beyond doubt 

that LSDA energy bands are superior to empirical bands, it 

turned out that calculating the MAE from first principles 

poses a great computational challenge. The prime obstacle is 

the smallness of the MAE of only a few meV/atom, a value 

which ought to result as the difference of two total energies 

for different magnetization directions, which are both of the 

order of 4 10
4
 eV/atom. Owing to this numerical problem, it 

remained at first unclear if the LSDA could at all describe 

the MAE correctly, since the wrong easy axis was obtained 

for hcp Co and fcc Ni [48]. Recent contributions aimed con-

sequently at improving the numerical techniques [50,53], 

and the correct easy axis was obtained for hcp Co, but not 

for fcc Ni [50]. Halilov et al. [51] reported an ab initio in-

vestigation of the magnetocrystalline anisotropy energy in 

bcc Fe and fcc Co and Ni. They introduce the spin-orbit 

scaling technique, which yields the correct easy axis for Fe 

and Co, but a vanishing MAE for Ni. 

The internal energy of ferromagnetic materials depends 

on the direction of spontaneous magnetization. We consid-

er here one part of this energy, the MAE, which possesses 

the crystal symmetry of the material. For the material ex-

hibiting uniaxial anisotropy, such as a hexagonal or tetrag-

onal crystals, the MAE can be expressed as [48] 

 2 4 6
1 2 3( ) = sin sin sinE K K K   

 2
3sin cos[6( )] ...K  (4) 

where iK  is the anisotropy constant of the ith order,  

and  are the polar angles of the Cartesian coordinate 

system where the c  axis coincides with the z  axis (the 

Cartesian coordinate system was chosen such that the x  

axis is rotated through 90  from the hexagonal axis) and 

 is a phase angle. 

Both the dipolar interaction and the spin-orbit coupling 

give rise to the MAE, the former contributing only to the 

first-order constant K1. Hear, we deal with the MAE 

caused only by the spin-orbit interaction. Both magneto-

optical effects and MAE have a common origin in the spin-

orbit coupling and exchange splitting. Thus, a close con-

nection between the two phenomena seems plausible. 

The MAE is, in this paper, defined as the difference be-

tween two self-consistently calculated fully relativistic 

total energies for two different crystallographic directions, 

<001>( )E E . To attain good convergence in the total 

energy a large number of k points has to be used in the 

calculations. In the present work the total energy has been 

calculated with an accuracy high enough to be able to re-

solve the difference in total energies for different spin di-

rections. 

X-ray magnetic circular dichroism. Using straightfor-

ward symmetry considerations it can be shown that all 

magneto-optical phenomena (XMCD, MO Kerr and Fara-

day effects) are caused by the symmetry reduction, in 

comparison to the paramagnetic state, caused by magnetic 

ordering [54]. This symmetry lowering has consequences 

only when spin-orbit coupling is considered in addition. 

Therefore, in order to calculate the XMCD properties one 

has to account for both magnetism and SO coupling at the 

same time when dealing with the electronic structure of the 

material considered. 

Within the one-particle approximation, the absorption 

coefficient  for incident x rays is determined by the 

probability of electron transitions from an initial core state 

(with wave function j  and energy )jE  to a final unoc-

cupied states (with wave functions nk  and energies 

)nE k  as 
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where  is the photon energy,  its polarization and 

= eαa  being the dipole electron–photon interaction 

operator, where α  are Dirac matrices, a  is the  polari-

zation unit vector of the photon vector potential 

[ =1/ 2(1, ,0), = (0,0,1)].za i a  (Here /  denotes, 

respectively, left and right circular photon polarizations 

with respect to the magnetization direction in the solid). 

Concurrent with the x-ray magnetic circular dichroism 

experimental developments, some important magneto-

optical sum rules have been derived in recent years [55–58]. 

For the 2,3L  edges the zl  sum rule can be written as [59] 

 3 2

3 2
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z h
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where hn  is the number of holes in the d  band 

=10h dn n , zl  is the average of the magnetic quantum 

number of the orbital angular momentum. The integration is 

taken over the whole 2p absorption region. The zs  sum rule 

is written as 

3 3
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where zt  is the z  component of the magnetic dipole oper-

ator 2= 3 ( )/ | |t s r r s r  which accounts for the asphe-

ricity of the spin moment. The integration 

23

( )

L L

 is tak-

en only over the 3/2 1/22 (2 )p p  absorption region. 

Crystal structure. Mn3CuN at room temperature crys-

tallizes in the cubic perovskite-type structure with 3Pm m  

space group (No. 221). Mn atoms being at the face centers, 

Cu atoms at the corners, and N atoms at the body center 

(see Fig. 1). The Mn atoms have two N nearest neighbors 

at the 1.948 Å distance. The second coordination consists 

of 8 Mn atoms and 4 Cu atoms at the 2.755 Å. 

The paramagnetic to ferromagnetic phase transition in 

Mn3CuN at TC= 143 K is accompanied by a structural 

change from the cubic to the tetragonal lattice. The Mn 

moments in the low temperature ferromagnetic phase 

4/P mmm  space group, No. 123) constitute a noncollinear 

magnetic structure: Mn1 canting from the c axis to [111] 

direction, the Mn2 and Mn3 ferromagnetically align to the 

c axis (Fig. 2). In the low temperature tetragonal structure 

Mn–N interatomic distances are slightly increased in com-

parison with the high temperature cubic phase up to the 

1.954 Å. Mn1 atoms are surrounded by two Mn2 and two 

Mn3 atoms at the 2.743 Å distance and four Mn1 atoms at 

the 2.763 Å distance. 

The details of the computational method are described 

in Refs. 59,60, and here we only mention several aspects. 

The calculations were performed for the experimentally 

observed lattice constants (a = 3.896 Å for the cubic 

perovskite-type structure and a =3.9075 Å c/a =0.9853 for 

the low temperature tetragonal phase) using the spin-

polarized linear-muffin-tin-orbital (LMTO) method [60,61] 

with the combined correction term taken into account. We 

used the von Barth–Hedin parametrization [62] for the 

exchange-correlation potential. Brillouin zone (BZ) inte-

grations were performed using the improved tetrahedron 

method [63] and the charge self-consistency was obtained 

with 405 irreducible k-points. To improve the potential we 

include additional empty spheres both in the cubic 

Fig. 1. (Color online) Cubic perovskite-type crystal structure of 

Mn3CuN at room temperature. 

Fig. 2. (Color online) Low temperature magnetic structure of 

Mn3CuN. 
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perovskite-type structure and the low temperature tetrago-

nal phase. The basis consisted of Mn and Cu s, p, d and f; 

N s, p, d and empty spheres s, and p LMTO's. 

The intrinsic broadening mechanisms have been ac-

counted for by folding the XMCD spectra with a 

Lorentzian. For the finite lifetime of the core hole a con-

stant width ,c  in general from Ref. 64, has been used. 

The finite apparative resolution of the spectrometer has 

been accounted for by a Gaussian of 0.6 eV. 

3. Results and discussion 

3.1. Energy band structure 

The total and partial density of states (DOS) of cubic hy-

pothetical ferromagnetic Mn3CuN are presented in Fig. 3. 

The occupied part of the valence band can be subdivided 

into several regions. N 2s states appear between –17.6 

and –15.9 eV. Cu 3d states are fully occupied and cross 

the N 2p bands in a very narrow energy interval from –4.6 to 

–1.5 eV. N 2p states extend from –8.6 eV up to 9 eV. The 

states in the energy range –4.5 to 5.5 eV are formed by Mn d 

states. The crystal field at the Mn site 4( hD  point sym-

metry) causes the splitting of d orbitals into three singlets 

1ga  and 1gb  2(3 1z  and 2 2),x y  2 ( )gb xz  and a dou-

blet ( , ).ge xy yz  The 1 1g ga b  and 2g gb e  splittings are 

negligible in comparison with its width in LSDA calcula-

tions. One should mention that there is quite a small N 2p – 

Mn d hybridization in the valence bands below the Fermi 

level. 

Mn3CuN in the cubic perovskite type crystal structure 

has a local magnetic moments of 2.283 B on Mn, 0.230 

B on Cu and –0.115 B on N. The orbital moments are 

equal to 0.013 B, 0.003 B and 0.0002 B on the Mn, Cu 

and N sites, respectively. The interaction between the tran-

sition metals is ferromagnetic, leading to a total calculated 

moment of 6.963 B. 

Mn3CuN partial DOS's for the low temperature tetrag-

onal structure are presented in Fig. 4. For this crystal 

structure the spin magnetic moments are of 2.625 B on 

the noncollinear Mn1 atom sites, 2.390 B on the colline-

ar Mn2,3 ones, 0.144 B on Cu and –0.068 B on N sites. 

The orbital moments are equal to –0.037 B, –0.003 B,  

–0.019 B and 0.002 B on the Mn1, Mn2,3, Cu and 

N sites, respectively. 

Figure 5 presents the variation of Mn 3d spin (upper 

panel) and orbital (middle panel) magnetic moments at the 

Mn1 and Mn2,3 sites with the canting Mn1 angle. The Mn1 

3d orbital moments are negative for all the angle interval 

and reach its maximum absolute value at around 40 . The 

Mn2,3 3d orbital moments increase when the Mn1 canting 

angle changes from 0  to 35 , and then decrease with fur-

ther increasing of the canting angle, cross the zero at 60  

and oscillate around zero up to 90 . The 3d spin moments 

are also show different angle behavior for the Mn1 and 

Mn2,3 sites (Fig. 5(a)). The Mn1 3d spin magnetic mo-

ments are larger for all the angle interval with the largest 

difference between the Mn1 and Mn2,3 spin moments when 

both the moments align along the c axis. 

The lower panel (c) shows the magnetocrystalline ani-

sotropy energy with the canting Mn1 angle. We found that 

the ground state for the low-T phase of Mn3CuN is two Cu 

moments and two Mn (Mn2 and Mn3) moments 

ferromagnetically aligned to the c axis while four Mn1 

magnetic moments are canted by 76.2  from the c axis to 

[111] direction (Fig. 2). It is important to note that this 

ground state with the canted Mn1 magnetic moments is 

very stable. Quite a large energy of 5.5 meV/unit cell is 

needed to transit from the ground state with the canted 

Mn1 magnetic moments to the state with all the magnetic 

Fig. 3. (Color online)The total (in states/(cell eV)) and partial (in 

states/(atom eV)) ferromagnetic density of states of Mn3CuN in 

the cubic perovskite-type structure. The Fermi energy is at zero. 
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moments oriented along the c axes. This fact helps to ex-

plain the magnetization experiments carried out by 

Takenaka et al. Ref. 29. They investigated the element-

selective magnetization defined as peak-height difference 

between the positive 2L  peak and the negative 3L  peak. 

They found that the magnetic-field dependence for Cu is 

different from that for Mn. The H  dependence of the 

peak-height difference is characterized by a sharp increase 

at the low-field region for both Mn and Cu. However, the 

peak-height difference for Cu saturates at 2 kOe, whereas 

that for Mn shows only a kink at 2 kOe and continues to 

increase without saturation up to 19 kOe. Authors conclude 

that the two Cu and two ferromagnetically aligned Mn2,3 

moments are considered to saturate at a magnetic field of 

2 kOe. However, the four counting Mn1 magnetic mo-

ments Mn1 considered to induce relatively weak magneti-

zation under a magnetic field, resulting in the absence of 

saturation in the bulk magnetization up to 19 kOe. To 

reach the magnetic saturation, in other words to align all 

the magnetic moments along the c direction, one needs the 

energy much larger than provided by the magnetic field of 

19 kOe. 

On the other hand, the magnetocrystalline anisotropy 

energy which has been estimated by the difference of total 

energies between the states with spin orientation along and 

perpendicular to the c axes was found to be rather small in 

Mn3CuN reaching 0.5 meV/unit cell in agreement with the 

suggestion of Takenaka et al. Ref. 29. 

3.2. XMCD spectra 

At the core level edge XMCD is not only element-

specific but also orbital specific. For 3d transition metals, 

the electronic states can be probed by the K, 2,3L  and M2,3 

Fig. 4. (Color online) Partial density of states (in states/(atom 

eV)) of Mn3CuN in the low temperature non-collinear tetragonal 

structure. The Fermi energy is at zero. 

Fig. 5. (Color online) Variation of Mn 3d spin (a) and orbital (b) 

magnetic moments at the Mn1 and Mn2,3 sites with the canting 

Mn1 angle. The lower panel shows the magnetocrystalline anisot-

ropy energy with the canting Mn1 angle. 
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x-ray absorption and emission spectra. According to the 

dipole selection rules only the transitions with 

= 1, = 0, 1l j  are allowed [59]. Therefore only elec-

tronic states with an appropriate symmetry contribute to 

the absorption and emission spectra under consideration. 

Figure 6 shows the theoretically calculated Mn L2,3 x-ray 

absorption spectra (XAS) as well as XMCD spectra in 

Mn3CuN in comparison with the corresponding experi-

mental data obtained by Takenaka et al. [29]. In order to 

compare the relative amplitudes of the L2,3 XMCD spectra 

we first normalize the theoretically calculated x-ray absorp-

tion spectra to the experimental ones taking into account the 

background scattering intensity [65]. The LSDA describes 

reasonably well the shapes of the XAS spectra at the Mn 

L2,3 edge (Fig. 6(a)). Because of the electric dipole selection 

rules the major contribution to the absorption at the 3L  edge 

stems from the transitions 3/2 5/22 5 ,p d  with a weaker 

contribution from 3/2 3/22 5p d  transitions. For the latter 

case the corresponding 3/2 3/22 5p d  radial matrix ele-

ments are only slightly smaller than for the 3/2 5/22 5p d  

transitions. The angular matrix elements, however, strongly 

suppress the 3/2 3/22 5p d  contribution. Therefore the 

contribution to the XMCD spectrum at the 3L  edge from 

the transitions with = 0j  is one order of magnitude 

smaller than the transitions with = 1j  [59]. The experi-

mental x-ray absorption L3 spectrum have three peaks 

around 640.5, 642 and 645 eV, which are well repro-

duced by the theoretical calculations. The intensity of the 

second fine structure at 642 eV is slightly underestimates 

by the theoretical calculations. 

Figure 6 (b) shows the experimental XMCD spectrum 

[29] measured at 20 K and the theoretically calculated one 

using the LSDA approximation for the low-T tetragonal 

phase. The theory is in good agreement with the experi-

mental measurements, although the calculated magnetic 

dichroism is somewhat too small at 645 eV in comparison 

with the experimental measurements. The XMCD spectra 

at the L2,3-edges are mostly determined by the strength of 

the SO coupling of the initial 2p-core states and spin-

polarization of the final empty 3/2,5/23d  states while the 

exchange splitting of the 2p-core states as well as the SO 

coupling of the 3d-valence states are of minor importance 

for the XMCD at the L2,3 edge of 3d transition metals [59]. 

Although the number of Mn1 atoms which are canted 

72.2  from the c axis to [111] direction is two times larg-

er than the number of ferromagnetically aligned Mn2 and 

Mn3 atoms (Fig. 2) the main contribution to the L2,3 

XMCD spectra comes from the Mn2,3 atoms (Fig. 6(b)). 

Takenaka et al. [29] apply sum rules [Eqs. (6),(7)] to es-

timate the spin and orbital moments at the Mn and Cu sites. 

They found extremely small spin magnetic moment at the 

Mn site Mn 0.27s Bm  which is almost one order of mag-

nitude smaller than obtained in our band structure calcula-

tions. The Mn 3L  and the 2L  spectra in Mn3CuN are 

strongly overlapped therefore the decomposition of a corre-

sponding experimental 2,3L  spectrum into its 3L  and 2L  

parts is quite difficult and can lead to a significant error in 

the estimation of the magnetic moments using the sum rules. 

Besides, the experimentally measured Mn 2,3L  x-ray ab-

sorption spectra have background scattering intensity and 

the integration of the corresponding XASs may lead to an 

additional error in the estimation of the magnetic moments 

using the sum rules. Besides, XMCD sum rules are derived 

within an ionic model using a number of approximations 

[59,66]. It is interesting to compare the spin moments ob-

tained from the theoretically calculated XAS and XMCD 

spectra through sum rule [Eq. (7)] with directly calculated 

LSDA values in order to avoid additional experimental 

problems. We obtain 
Mn1
sm  = 1.84 B, 

Mn2,3
sm  = 1.17 B 

from sum rules. These values are significantly smaller than 

the corresponding magnetic moments derived from the band 

structure calculations (2.63 B and 2.39 B for Mn1 and 

Mn2,3, respectively). However, they are still much larger 

than the experimental value Mn
sm  = 0.27 B [29]. One of 

the possible reasons of such small experimental magnetic 

moment might be a disorder effect. This question still needs 

an additional experimental investigation. 

Fig. 6. (Color online) The theoretically calculated isotropic ab-

sorption spectra of Mn3CuN at the Mn L2,3 edges for the low 

temperature tetragonal structure (full blue line) in comparison 

with the experimental spectrum [29] (circles) measured at 20 K in 

the external magnetic field H = 19 kOe. The dotted line shows the 

theoretically calculated background spectrum (a); the experi-

mental XMCD spectrum [29] measured at 20 K in the external 

magnetic field H = 19 kOe (circles) and theoretically calculated 

XMCD spectra for the low temperature tetragonal structure (b). 
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Figure 7 shows the theoretically calculated Cu L2,3 edge 

x-ray absorption spectra as well as XMCD spectra in 

Mn3CuN in comparison with the corresponding experi-

mental data [29]. The experimentally measured Cu L2,3 

XAS spectra possess rather large background intensity 

(Fig. 7(a)). Both the 3L  and 2L  XAS spectra contain in-

tensive narrow low energy peaks and wide high energy 

shoulders which reflect the energy distribution of Cu 3d 

empty states (see Fig. 4). Figure 7(b) shows the theoretical-

ly calculated XMCD spectra at the Cu 2,3L  edges in com-

parison with the experimentally measured ones [29]. The 

theory shows a very good agreement with the experiment 

for the x-ray absorption as well as for the XMCD. 

4. Summary 

In Mn3CuN a magnetic phase transition occurs at 

TC =143 K, which has been classified as a first-order tran-

sition from a paramagnetic phase to a ferromagnetic one 

with a noncollinear magnetic structure. The transition is 

accompanied by a structural change from the cubic to the 

tetragonal lattice. 

We have studied the electronic structure in the high-T 

ferromagnetic cubic phase and low temperature non-

collinear phase of Mn3CuN perovskite compound in the 

LSDA approximation by means of an ab initio fully-

relativistic spin-polarized Dirac linear muffin-tin orbital 

method. The magnetic unit cell of low-T ferromagnetic 

Mn3CuN contains two magnetic moments due to Cu and 

six magnetic moments due to Mn; two Cu moments and 

two Mn moments (Mn2 and Mn3) are ferromagnetically 

aligned along the c  axis while other four Mn1 magnetic 

moments are canted from the c axis to [111] direction. We 

found that the ground state corresponds to the canting an-

gle  = 76.2 . We investigated the influence of the Mn1 

canting angle on the total energy and 3d spin and orbital 

magnetic moments at Mn sites. We found that the Mn1 3d 

orbital moments are negative for all the angle interval and 

reach its maximum absolute value at around 40 . The 

Mn2,3 3d orbital moments increase when the Mn1 canting 

angle changes from 0  to 35 , and then decrease with fur-

ther increasing of the canting angle, cross the zero value at 

60  and oscillate around zero up to 90 . The 3d spin mo-

ments also show different angle behavior for the Mn1 and 

Mn2,3 sites. The Mn1 3d spin magnetic moments are larger 

for all the angle interval with the largest difference be-

tween the Mn1 and Mn2,3 spin moments when both the 

moments align along the c  axis. 

We have studied theoretically the x-ray absorption and 

x-ray magnetic circular dichroism spectra at the Mn and 

Cu 2,3L  edges in the low temperature noncollinear phase 

of Mn3CuN. The calculated spectra show excellent agree-

ment with the experiment. We show that although the 

number of Mn1 atoms which are canted by the 76.2  from 

the c axis to [111] direction is two times larger than the 

number of ferromagnetically aligned Mn2 and Mn3 atoms 

the main contribution to the 2,3L  XMCD spectra comes 

from the Mn2,3 atoms. 
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