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An additional magnetization damping for an inhomogeneous spin texture in metallic ferromagnets is calculat-
ed on the basis of the s–d exchange model. The effect of conduction electrons on the magnetization dynamics is 
accounted for the case of slowly varying spin texture within adiabatic approximation by using a coordinate trans-
formation to the local quantization axis. The moving magnetic vortex in a circular nanodot made of permalloy is 
considered as an example. The dependence of the damping on the dot geometrical sizes is obtained. It is found 
that the additional damping can reach up to 50% of magnitude of the phenomenological Gilbert damping in the 
Landau–Lifshitz equation of magnetization motion and should be taken into account for any inhomogeneous 
spin texture dynamics in ferromagnetic metals. 

PACS: 76.60.Es Relaxation effects; 
76.20.+q General theory of resonances and relaxations; 
75.75.–c Magnetic properties of nanostructures; 
75.78.–n Magnetization dynamics. 
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1. Introduction

The Landau–Lifshitz (LL) equation of motion was 
first introduced in 1935 as a phenomenological equation 
to describe the dynamics of magnetization field ( )M r  in 
a ferromagnet well below the Curie temperature [1], 
when the exchange energy dominates and the magnetiza-
tion vector keeps its magnitude unchanged. If there is an 
effective field eff ( )H r  in a sample, then the local mag-
netization ( )M r  aligns eventually to its direction to min-
imize magnetic energy. The torque equation of motion of 
the unit vector of magnetization ( , ) ( , )/ st t M=m r M r  is 

eff= γ ×m H m  (here sM  is the saturation magnetization, 
dot over the symbol means derivative with respect to time, 
and γ  is the gyromagnetic ratio). This equation, however, 
describes only a precession around the field effH  and does 
not account any energy dissipation. Landau and Lifshitz 
accounted the dissipation [1] by adding a damping torque 
to the equation of magnetization motion: 

eff eff( ),LL= γ × + γα × ×m H m m m H  (1) 

where the last term describes the damping torque, which 
tends to align m  along eff ,H  and LLα  is a relaxation 
constant. Later in 1955, Gilbert [2] using a Lagrangian 

approach to the magnetization dynamics and Rayleigh dis-
sipation function proposed another form of the damping, 
which contains m , 

eff ,G= γ × + α ×m H m m m  (2) 

where 1Gα <<  is a phenomenological Gilbert damping 
constant [2] (e.g., for permalloy 0.01Gα ≈ ). Equation (2) 
is called the Landau–Lifshitz–Gilbert (LLG) equation. De-
spite of its phenomenological origin, the LLG equation is 
widely used in the modern magnetism on the mesoscopic 
(10–100 nm) and microscopic length scales. Damping pa-
rameter Gα  is usually treated as a scalar constant and is 
frequently determined from the line broadening in ferro-
magnetic resonance measurements. 

Equations (1), (2) are essentially equivalent, and they 
describe correctly the decay of magnetization precession 
and relaxation to the equilibrium direction, eff|| ,m H  for 
many particular cases. In the above, LLα  and Gα  are di-
mensionless parameters. As it was shown (for instance, see 
Ref. 3), the damping terms of Gilbert form can be derived 
by integrating out the environment degrees of freedom. 
Although the LL and LLG damping terms are mathemati-
cally equivalent and give the same solutions for small 
damping ( 1,LLα <<  1),Gα <<  the LLG equation repre-
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sents better the relaxation behavior when the damping pa-
rameter is large [4]. We show below that there is an addi-
tional contribution to the Gilbert damping in the LLG 
equation in metallic ferromagnets due to spatial inhomoge-
neity of the moving magnetization ( , ).tm r  

The effective magnetic field effH  is a functional deriv-
ative of the magnetic energy, eff ( ) / ( ),E= −δ δH r M r  and it 
includes the exchange field, the magnetic anisotropy field, 
external field and the nonlocal demagnetizing field. Thus, 
Eqs. (1), (2) are nonlinear integro-differential equations, 
and can be solved analytically in some limited number of 
simple particular cases. Nowadays powerful micromag-
netic simulation codes [5] based on the LLG equation have 
already become a standard tool for studying the magnetiza-
tion dynamics of complex magnetization distributions on 
timescales which are longer than 10 ps (the oscillation fre-
quency is less than 100 GHz).  

The damping term in Eq. (2) comes from different relax-
ation processes that do not necessarily involve conduction 
electrons, and thus present even in insulating ferromagnets. 
Since many magnetic properties such as magnetic hysteresis 
are not sensitive to the origin of the damping parameter, one 
could use this equation without paying much attention to the 
details of damping mechanism. However, there are other 
cases, where details of the damping are important. For ex-
ample, the current-induced spin torque [6] directly competes 
with the damping torque and thus the threshold currents de-
pend on the strength and form of the damping. The damping 
is usually determined by two-magnon scattering on the sam-
ple imperfections. Therefore, sometimes it is considered as 
an extrinsic parameter.  

There is a number of the papers dedicated to the investi-
gation of the different forms and sources of the damping in 
the Landau–Lifshitz equation [7–16]. It was shown [9–12] 
that an extension of the LLG equation is needed, but it is 
unclear whether accounting for other damping terms would 
describe the magnetization dynamics better due to com-
plexity of many microscopic damping mechanisms. The 
essential contribution to understanding of the magnetiza-
tion damping was done by Baryakhtar et al. (see Ref. 8 and 
references therein). Baryakhtar et al. suggested to include 
to the damping torque in the LL equation the relaxation 
terms of both relativistic and exchange nature and account 
explicitly for the symmetry of crystal lattice and spatial 
derivatives of the effective field. The general phenomeno-
logical approach to the magnetic relaxation was formulated 
in Ref. 8 and applied to relaxation of magnetic solitons in 
bulk magnets. The limits of applicability of the damping 
terms (1, 2) were established [8]. It was shown that the LL 
and Gilbert damping terms cannot properly describe relax-
ation in the magnetic systems with continuously degener-
ated ground state, for instance, in uniaxial “easy plane” 
ferromagnets [8]. Considering a semiphenomenological 
model of an isolated classical spin interacting with the bath 
modeled by stochastic Langevin fields in the whole range 

of temperatures has led to the closed equation of motion for 
magnetization interpolating between the Landau–Lifshitz 
and Bloch equations at low and high temperatures — the 
Landau–Lifshitz–Bloch (LLB) equation [7]. The spin-spin 
interactions responsible for ferromagnetism were taken into 
account within the simplest, mean field approximation. 
Nevertheless, both transverse and longitudinal relaxation of 
magnetization were naturally accounted in this approach [7]. 

In conducting ferromagnets, the most significant source 
of damping are the conduction electrons that carry away 
the excess angular momentum of the precessing magneti-
zation via interband and intraband transitions [13,14]. For 
instance, an enhanced Gilbert damping constant was calcu-
lated on the ferromagnetic/nonmagnetic metal interface as 
a result of spin “pumping” from precessing magnetization 
in ferromagnetic layer into adjacent normal metal layer [9]. 
For the complex magnetization textures like magnetic vor-
tex, it was shown in Ref. 15 that the effective phenomeno-
logical damping increases due to the inhomogeneity of 
magnetization structure. This damping was found to be a 
function of the sizes of magnetic dot, where the vortex is 
moving. The extension of LLG phenomenology including 
the spin-texture effects stemming from the dynamically gen-
erated emergent electric and magnetic fields for magnetiza-
tion motion was done in Refs. 16, 17. The additional LLG 
damping was written via spatial derivatives of magnetization 
and estimated to be comparable with the bare Gilbert damp-
ing. The deeper understanding of the damping process is 
rather complex. In the literature there are various approaches 
to derive the LLG equation or extension of this equation 
from microscopic theories (see a recent review [18]). 

In this paper, we use the s–d exchange model and de-
fine gauge electric and magnetic fields appearing due to 
transformation to the local quantization axis of magneti-
zation determined by the strong exchange interaction. We 
represent the additional damping in the LLG equation 
coming from the conduction electrons in a form conven-
ient for description of magnetic solitons (domain walls, 
vortices, skyrmions) within the collective coordinate ap-
proach. Then, we calculate this damping for the particular 
case of a magnetic vortex moving in a thin circular fer-
romagnetic nanodot. 

2. General approach 

Here we consider an extension of the LLG equation (2) 
accounting for an additional damping contribution. The 
second term in Eq. (2) describes the magnetization damp-
ing, i.e., the transfer of angular momentum from the spin 
system to other degrees of freedom, e.g., to the lattice.  

2.1. The s–d exchange interaction and gauge fields 

One of the simplest approaches to extend the LLG 
equation on the basis of a microscopic theory is the s–d 
exchange model. In this model the electrons are subdivided 
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into two types: (1) itinerant conduction electrons (denoted 
as s electrons) with energies close to the Fermi level ,Fε  
which are responsible for the spin-dependent transport, and 
(2) localized electrons (classical magnetization field M) far 
below Fε  (denoted as d electrons), which give the main 
contribution to ( , )tm r  (inducing in turn a spin polarization 
to the s electrons). These s and d electrons are treated as 
distinct degrees of freedom, which are coupled by the s–d 
exchange interaction ( , ),sdH J t= − ⋅σ m r  where ( , )tm r  is 
the unit vector representing the direction of the local mag-
netization, ( , , )x y z= σ σ σσ  is the Pauli spin matrix vector 
for the conduction electrons, J  is the exchange coupling 
strength. An important point is that J  is rather strong in 
3d ferromagnets, / 0.1FJ ε ≈  ( 1 eV).J ≈  That is why this 
interaction should be taken into account in the zero-
approximation in the conductivity electron Hamiltonian.  

The rotation of the spin coordinate system locally (a 
gauge transformation) was successfully used for a new 
formulation of Fermi-liquid theory in Ref. 19 for describ-
ing the itinerant ferromagnetism, in particular in iron, co-
balt and nickel. Later, in Ref. 20 the gauge transformation 
was applied to derive the LL equation from the simple 
model of ferromagnetism in the system of localized fermi-
ons with spin 1/2. Then, by using the same approach the 
LLG equation was generalized in Refs. 16, 21, 22 for the 
systems with inhomogeneous ( , ).tm r  The idea behind was 
that the magnetization produced by the conduction elec-
trons in general is not parallel to ( , ).tm r  As far as conduc-
tion electrons experience spin-flip scattering processes, 
they cannot follow ( , )tm r  immediately [22]. But the con-
duction electron time and spatial scales are much smaller 
than ones for the magnetization ( , )tm r  and we assume 
that the electron spins follow the variations of ( , )tm r  
(adiabatic approximation [16,22]). Thus, a torque density 
is exerted on ( , )tm r  via the exchange interaction between 
the conduction and localized electrons described by the 
Hamiltonian sdH  above. This torque should be added to 
the LLG equation (2). The generalization of the LLG equa-
tion with the damping scalar Gα  is [22]  

 eff .G= γ × + α × +m H m m m T   (3) 

In order to know the extra torque ,T  we should cal-
culate the spin current generated by conduction elec-
trons. For this purpose we describe the conduction elec-
tron states by a wavefunction .ψ  This single-particle 
wavefunction for conduction electrons satisfies the 
Schrödinger equation /i t H∂ψ ∂ = ψ  with the Hamilto-

nian 2 /(2 ) .sdH p m H= +  As far as the magnetization vec-
tor ( , )tm r  varies in space and time, one can choose the 
appropriate 2×2 unitary matrix ( , ) exp ( /2)U t i= − θ ⋅r σ n  

such as ( , ) ( ( , ) ) ( , ) ,zU t t U t+ ⋅ = σr m r σ r  where θ  is the 
angle of rotation of the quantization axis from the fixed 
axis ze  to the axis parallel to m  at given ( , )tr  and the 

vector /z z= × ×n e m e m  represents the axis of rotation. 
Thus, we rotate locally the electron spin quantization axis 
to be parallel to the local magnetization vector ( , ).tm r  By 
replacing U ′ψ = ψ  we can diagonalize sdH  in the spin 
space and the new Schrödinger equation becomes 

( )2/ ( ) /(2 ) zi t e m eV J′ ′∂ψ ∂ = − + + σ ψp A  

with the spin-dependent scalar and vector potentials 
( / ) tV i e U U+= − ∂  and ( / )i e U U+= ∇A   being consid-

ered as perturbations. These potentials can be projected 
to two spin-up and spin-down bands with respect to the 
local direction of ( , ).tm r  The gauge electric and mag-
netic fields for each spin band can be introduced as 

i i t iE V A↑↓ = −∂ − ∂  and ( )i iB = ∇×A  and may be repre-
sented in terms of ,m  t∂ m  and i∂ m  ( , , )i x y z=  [16]. 

Since the conductivities G↑↓  for spin-up and spin-down 
channels are different, the gauge electric field generates 
both electrical and spin currents. Electric current is calcu-
lated by Ohm’s law for each spin channel .i ij G E↑↓ ↑↓ ↑↓=  

The total charge and spin currents are ch
i i ij j j↑ ↓= +  and 

spin .i iij j j↑ ↓= −  The spin current carries a spin angular 
momentum. If one uses continuity equation for the angular 
momentum, the divergence of the spin current is identified 
as the change of total angular momentum [16], or as spin 
torque spin( , ) ( , )e i i

i
t j t= − ∂∑T r r  received from the local 

moving magnetization .m  The extra torque T  acting on 
the magnetization is the opposite to the s-electrons spin 
torque .eT  If we calculate the explicit expressions for the 

emergent electric fields iE↑↓  via derivatives of m  and 
insert this extra torque to Eq. (3), then it has the form of an 
additional damping torque and the generalized LLG equa-
tion reads as  

 eff
ˆ( ),t tD∂ = γ × + × ⋅∂m H m m m  (4) 

where Dαβ  is the 3 3×  damping matrix [16]: 

 ( ) ( ) ,G i i
i

Dαβ αβ α β= α δ + η ×∂ ×∂∑ m m m m  (5) 

where αβδ  is the unit matrix element, 
2

0 /(4 ),B sg G e Mη = µ   0G G G↑ ↓= +  is the sum of the 

conductivities for the spin-up G↑  and spin-down G↓  
bands. We notice that the enhanced damping parameter η  
is proportional to the material conductivity. This is not 
surprising because the larger the conductivity, the more 
rapidly the angular momenta are carried away by the con-
duction electrons. Thus, the LLG equation with the 
damping given by Eq. (5) is more significant for magnet-
ic materials with large conductivities. Estimation of the 
magnitude of η  can be readily done for transition 3d 
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metals. For example, if we use 1
0 (5 cm)G −= µΩ⋅  and 

800 emu/ccsM =  for permalloy (NiFe alloy), we find that 
20.5 nm .η =  

2.2. The magnetization damping of dynamical spin texture 

By using the relation 1
eff /sM E−= − ∂ ∂H m  the equation 

of motion Eq. (4) can be rewritten in the following way: 

 ˆ( ) ,t t
s

E D
M
 γ ∂

∂ = × + ∂ ∂ 
m m m

m
 (6) 

where E  is the total magnetic energy density. As far as E  
in Eq. (6) includes local (e.g., the exchange, Zeeman and 
anisotropy energies) as well as the dipolar nonlocal long-
range interactions, Eq. (6) is a nonlinear and nonlocal 
equation with multiple length and time scales solvable in 
only a few simple cases. For example, in the case of trans-
lational motion of a spin texture (domain wall, vortex, 
skyrmion), [ , ( )],t=m m r s  the LLG equation can be fully 
parameterized by the texture’s “enter-of-mass” collective 
coordinate s . Such parameterization is very useful to sim-
plify Eq. (6) because we can write ( / ) .t ts sβ β∂ = ∂ ∂ ∂m m  If 
we calculate the vector product of / sα∂ ∂m  and Eq. (6), 
and then multiply this product by ,m  we get 

ˆ .t t
s

Es D s
s s M s s sβ β
α β α β α

   ∂ ∂ γ ∂ ∂ ∂
⋅ × ∂ = + ∂      ∂ ∂ ∂ ∂ ∂   

m m m mm  (7) 

The last product in Eq. (7) is equal to 
( / )( / ).tD s m s m s′ ′γγ β γ α γ β

′γγ
∂ ∂ ∂ ∂ ∂∑  After the integration of 

Eq. (7) over the whole volume of the magnetic material (it 
is a magnetic cylindrical nanodot in the case considered 
below), we get the Thiele equation of motion [23] for the 
center of magnetization texture ( , ):x ys s=s  

 .t tG s F sαβ β α αβ β∂ = + Γ ∂  (8) 

The differential Thiele equation (8) is a simplified form 
of the LLG equation and sometimes it can be solved ana-
lytically. In this equation Gαβ  is an anti-symmetric 
gyrotropic tensor, Fα  is the net conservative force, and 
αβΓ  is a dissipation tensor: 

 ,sM
G dV

s sαβ
α β

∂ ∂
= ⋅ ×

γ ∂ ∂∫
m mm  (9) 

 ,EF dV
sα
α

δ ∂
= − ⋅

δ ∂∫
m

m
 (10) 

 .s m mM
dV D

s s
′γ γ

′αβ γγ
α β′γγ

∂ ∂
Γ =

γ ∂ ∂∑∫  (11) 

A magnetization texture moves like a massless particle 
with electric charge in an effective magnetic field deter-
mined by the gyrotropic tensor (9) and an external poten-

tial (10) through a viscous medium. Although Eq. (8) was 
derived by Thiele for the steady state motion of magnetic 
domain walls in bulk magnets, this equation using defini-
tions given by Eqs. (9)–(11) can serve as a good approxi-
mation in more general situations. The Thiele equation is 
widely used for describing the domain wall and vor-
tex/skyrmion dynamics in magnetic dots, stripes etc. In the 
present paper we calculate the damping tensor αβΓ  (11) 
taking into account the conduction electrons. By using 
Eq. (5), we can rewrite Eq. (11) in the following form: 

sM
αβΓ = ×

γ
 

.G
i i

dV
s s x s x sα β α β

   ∂ ∂ ∂ ∂ ∂ ∂
× α ⋅ +η ⋅ × ⋅ ×     ∂ ∂ ∂ ∂ ∂ ∂     
∫

m m m m m mm m  

  (12) 

The first term in Eq. (12) is proportional to the phe-
nomenological Gilbert damping Gα  that comes from all 
the sources in the material except the mechanism of s–d 
interaction considered here. The second term represents the 
influence of the conduction electrons. It is shown in 
Ref. 16 that the η-term corresponds to the magnetization 
dissipation rate equal to the Joule heating rate in the emer-
gent electric fields .↑↓E  One can notice from Eq. (8) that 
the diagonal elements ααΓ  represent the actual damping 
and the nondiagonal αβΓ  elements renormalize the 
gyrotensor, which has no diagonal components. Thus, here 
we are interested in the diagonal elements of the damping 
tensor: 

22

.s
G

i

M
dV

s x sαα
α α

     ∂ ∂ ∂ Γ = α + η ⋅ ×      γ ∂ ∂ ∂     
∫

m m mm  

  (13) 

The unit vector of magnetization can be defined by the 
spherical angles ,Θ Φ  as 

(sin cos , sin sin , cos ).= Θ Φ Θ Φ Θm  

For simplicity we rewrite the damping tensor as the sum of 
phenomenological contribution and an additional damping 
related to the conduction electrons ph add .αα α αΓ = Γ +Γ  In 
order to simplify Eq. (13) we use a relation between the gauge 
field vector-potential 0( , ),AµΑ = A  ( / )A i e U U+

µ µ= ∂  

( ( / , ))tµ∂ = ∂ ∂ ∇  and the magnetization vector µ ν∂ ×∂ =m m  

4 ( )A A A Aθ ϕ θ ϕ
µ ν ν µ= −m  taken from the paper by Tatara et 

al. [24], Eq. (160), where the components of the gauge 
potential are defined as (1/2)sinAθµ µ≡ − Θ∂ Φ  and 

(1/2) .Aϕµ µ≡ ∂ Θ  Using the relation ( / ) ,t ts sβ β∂ = ∂ ∂ ∂m m  
we get for the diagonal components of the damping tensor: 

992 Low Temperature Physics/Fizika Nizkikh Temperatur, 2015, v. 41, No. 10 



Effective magnetization damping for a dynamical spin texture in metallic ferromagnet 

 
2 2

ph 2sin ,s
G

M
dV

s sα
α α

    ∂Θ ∂Φ Γ = α + Θ   γ ∂ ∂     
∫  (14) 

 
2

add 2sin .sM
dV

s sα
α α

 ∂Φ ∂Θ
Γ = η Θ ∇Θ −∇Φ γ ∂ ∂ 

∫  (15) 

Equations (14), (15) are written in general form for any 
moving inhomogeneous magnetization configuration in the 
form [ , ( )],t=m m r s  where ( )ts  is a spin texture (soliton) 
center position. In the next section we apply these equa-
tions to moving magnetic vortex in a nanodot. In particu-
lar, we are interested in calculation of add

αΓ  for the vortex 
magnetization configuration. 

3. Damping of moving magnetic vortex  

Here we consider a magnetic vortex in cylindrical 
nanodot of thickness L and radius R (Fig. 1). The static 
vortex is the dot ground state for a wide range of L and R 
[15]. The typical nanodot is thin (thickness L is about of 
10–30 nm) and the dependence of the vortex configuration 
on the dot thickness can be neglected. Then, we can inte-
grate Eqs. (14), (15) over the dot thickness. We can safely 
use the Gilbert damping in Eqs. (6) and (8) because the 
system relaxes to the nondegenerate ground state 0=s . 
The phenomenological damping ph

αΓ  for magnetic vortex 
moving in a circular nanodot has already been calculated in 
Ref. 15 as ph 2 [ ln ( / )/2]/ ,G s cM L b R RαΓ = α π + γ  where 

0.85
ex ex( )/ 0.59 0.21( / )cR L l L l= +  [25] is the thickness 

dependent vortex core radius, ex 2 / ,sl A M=  and A  is the 
material exchange stiffness. The parameter b is b = 1 with-
in the rigid vortex model [25] or b = 5/8 within two-vortex 
model [26]. Thus, the phenomenological damping is a 

function of the dot geometrical parameters (R and L).  
Concerning the additional damping, after the integration 

over the dot thickness we get add 2/ ,sM LI Rα αΓ = η γ  where 
2 2 2sin [ ( / ) ( / )]I d s sα α α= Θ ∇Θ ∂Φ ∂ −∇Φ ∂Θ ∂∫ ρ  and the 

integration coordinates and the vector s are normalized to the 
dot radius R. This damping can be significant due to a com-
plex magnetization distribution of the vortex state. The dy-
namical vortex profile in the linear approximation on small 
core displacement X  ( / ,R=s X  1)<<s  from equilibrium 
position in the dot center can be written within two-vortex 
model accounting absence of the dot side surface magnetic 
charges [26,27] as 0 ˆ( , ) cos ( ) ( )( )z zm m g= Θ = ρ + ρ ⋅ρ s s ρ  
and 0( , ) /2 ( )[ sin cos ],x yC m s sΦ = π +ϕ+ ρ ϕ− ϕρ s  where 

2
0 ( ) (1 )/m ρ = −ρ ρ  is the gyrotropic mode profile, 

2 2 2 2 2( ) 4 (1 )/( ) ,g pc cρ = ρ +ρ +ρ  (0) 1zp m= = ±  is the 
vortex core polarization, 1C = ±  is the vortex chirality, 
and ( , )= ρ ϕρ  is the polar radius-vector. Thus, we can 

rewrite the integral Iα  in the following form: 

 
2

2

core

.z
z

mI d m
s sα
α α

 ∂∂Φ
= ∇ − ∇Φ ∂ ∂ 
∫ ρ  (16) 

The damping add Iα αΓ ∝  is solely determined by 
the vortex core because 0zm =  (negligibly small) outside 
the vortex core by definition. One can show that zm∇ =  

2 2 2 2( 4 )/( ) .p c cρ= − ρ +ρe  The profile of z-component 

of magnetization inside the vortex core is zm =
2 2(1 )/(1 ),f f= − +  where 

2( / )( )( 1)/(1 )f i c z s zs s= − − − +  

within two-vortex model [26], /cc R R=  is the dimension-
less vortex core radius, ,x ys s is= +  and .z x iy= +  Our 
calculations show that 

2 2 2 2 2/ 4 cos (1 )/( ) ,z xm s c c∂ ∂ = − ρ ϕ +ρ +ρ    0.s →  

After all the substitutions to Eq. (16) and integration over 
the vortex core region we get within the limit of linear dy-
namics determined by Eq. (8), 0,s →  the integrals Iα  

 4
2

2 (7 ).
3

x yI I I c
c
π

= = = +  (17) 

For analytical integration we used the equations 
(2.115.1-3) from Ref. 28. The additional damping is 

add add 2
, ( )/( ).x y sM LI c RΓ = Γ = η γ  Usually, the vortex core 

radius is small comparing with the dot radius 0.10,c ≈  

thus from Eq. (17) we get 2( ) 14 /(3 ).I c c≈ π  Then, the ad-
ditional damping can be expressed in the form  

Fig. 1. Magnetic vortex in cylindrical nanodot with radius R and 
thickness L. The vortex core position is X = (X,Y). The dimen-
sionless core displacement is / .R=s X  
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 add 27 ( / ) ,
3 cG R RηΓ =  (18) 

where 2 /sG M L= π γ  is the magnitude of gyrovector 

G=G z  calculated as xyG G=  using Eq. (9), Rη = η  

0.7Rη =  nm for permalloy), and 10cR ≈  nm. We see 

that the damping addΓ  (18) is determined by the small 
ratio 2( / ) .cR Rη  The ratio of the additional damping add

αΓ  

to the phenomenological Gilbert damping phΓ  can be 
written in the following form: 

 
add

ph 2
( / )1 ,

2 ln ( / )/2
c

G c

I R R
b R RR

Γ η
=

πα +Γ
 (19) 

The ratio add ph 2 1/ ( )[ ln ( / ( ))]c cR L b R R L− −Γ Γ ∝ +  as a 
function of the dot sizes L, R is shown in Fig. 2 for typical 
values of L, R.  

4. Discussion 

It is important that the additional damping described by 
Eqs. (15), (18) and (19) originates from the emergent elec-
trical fields tV↑↓ = −∇ −∂E A  induced by a spatially in-

homogeneous moving magnetization ( , ),tm r  and the spa-
tial derivatives ( , )i t∂ m r  must be not equal to zero. The 
damping tensor has been approximated to be a constant in 
most studies [26,27,29,30] on magnetic vortex dynamics 
assuming that the vortex core is positioned near the dot 
center. However, in the recent paper [31] it was shown by 
micromagnetic modeling that the gyrovector and damp-
ing parameters are changing with the vortex oscillations. 
We showed that the ratio add ph/Γ Γ  varies from 0.2 to 0.5 
for permalloy (Ni80Fe20 alloy) and typical dot sizes 

(Fig. 2). I.e., the additional damping is approximately equal 
to 40% of the phenomenological damping. For other ferro-
magnetic metals and alloys with lower bare Gilbert damping 

Gα  and/or higher conductivity, the ratio add ph/Γ Γ  can be 
different and might by order of unit. The same approach 
to the additional magnetic vortex damping has been used 
in [32], where the micromagnetic simulations with and 
without additional damping in the form of Dαβ  given by 
Eq. (5) were performed. In the present paper we have writ-
ten the damping term in a convenient form for analytical 
calculations. Equations (14), (15) are general and can be 
used for any magnetization distribution if the soliton pro-
files ,Θ Φ  are known. Then, the damping tensor αβΓ  can 

be calculated in the main approximation ( 0)αβΓ =s  for 
the soliton equilibrium position 0.=s  

It was found in Ref. 32 that the enhanced damping does 
not change the frequency of vortex gyrotropic oscillations, 
while the gyration radius and velocity of a vortex core de-
crease when considering the total damping tensor (12). In 
the present paper we calculated analytically the additional 
damping for small vortex core displacements 1.<<s  
However, our calculations would be extended for larger 
vortex core displacements beyond the linear approximation 
[30]. We assume that there should be an enhancement of 
the additional damping and a decrease of the vortex gyra-
tion radius in the nonlinear regime.  

In principle, the additional magnetization damping 
should be taken into account for magnetic nanodots made 
of ferromagnetic metals (Co, FeNi) with small thicknesses 
(5–10 nm), which normally are used as a free layer in the 
spin-torque nanooscillators (STNO). However, it is diffi-
cult from the experimental point of view to detect such 
contribution to the magnetization damping. For our dot 
parameters and room temperature the ratio phadd /αΓ Γ  does 
not exceed 1, which means that the additional damping 
does not play a dominant role (at least in the considered 
linear regime of the vortex motion). Up to now there are 
no direct experimental measurements of the damping 
influence on the vortex or skyrmion dynamics. The elec-
tro-motive force acting on the moving vortex and ex-
plained by the equation for an emergent electric field 

i i t iE V A↑↓ = −∂ − ∂  should be large enough to be measured 
experimentally as reported in Ref. 33, where an experi-
mental scheme of its detection was proposed. However, the 
sole additional damping may be not easy to measure. Tak-
ing into account Fig. 2 and Ref. 32 we can propose some 
experimental way to detect this additional damping. In a 
dynamical experiment it should be easy either change tem-
perature or external magnetic field. In our calculations we 
did not take into account the temperature dependence of 
the conductivity 0G  that is beyond our calculations. In 
Ref. 34 (see Fig. 5) such dependences were measured ex-
perimentally for permalloy (Py) and it was shown, that if 
temperature is decreased from room temperature to 4 K, 
the conductivity of Py can increase for approximately 20%. 

Fig. 2. The ratio of additional damping addΓ  due to the conduc-
tion electrons and phenomenological Gilbert damping phΓ  calcu-
lated by Eq. (19) for a circular permalloy dot using the explicit 
dependence of the vortex core radius on the dot thickness, ( ).cR L  
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As far as add
αΓ  is proportional to conductivity, then it 

would also increase with the temperature decreasing (the 
dependence ( )sM T  is approximately constant if T << Tc, 
Tc(Py) ≈ 700 K). The external perpendicular magnetic field 
would also change the additional damping. If the magnet-
ic bias field is applied in the direction opposite to the 
vortex core polarization, then the size of vortex core cR  

is shrinking. As far as add 21/ ,cRαΓ ∝  then additional damp-
ing can increase a lot, if we are talking about small dis-
placements of the vortex core from its equilibrium posi-
tion. add

αΓ  would also be important for large vortex core 
displacement applying in-plane bias field, when the re-
gion of magnetization inhomogeneity increases with the 
modification of the vortex core. The detected ferromag-
netic resonance linewidth increased in ≈ 2 times in 
permalloy nanodots [35] approaching the vortex state 
decreasing the applied in-plane field from the vortex 
annihilation field to the vortex nucleation field. Ac-
counting that the vortex nucleation means appearance of 
nonzero mz magnetization component and nonzero inte-
gral over the forming vortex core presented by Eq. (16), 
the observed effect of the considerable ferromagnetic 
resonance linewidth increase [35] could be a result of 
the additional damping increase.  

Conclusions 

In the present paper we considered the extended Landau–
Lifshitz–Gilbert (LLG) equation of magnetization motion 
for the case of conducting ferromagnet with an inhomoge-
neous magnetization texture and showed that an additional 
damping appears due to spin currents generated by emergent 
electric fields, which are determined by the spatial and time 
derivatives of the magnetization. We represented the addi-
tional damping in the LLG equation coming from the con-
duction electrons in a form convenient for description of 
magnetic solitons (domain walls, vortices, skyrmions) with-
in the collective coordinate approach. We calculated this 
additional damping for the particular case of the moving 
vortex in a circular nanodot. It is shown that this additional 
damping depends on the dot sizes and can reach up to 50% 
of the phenomenological Gilbert damping. It should be tak-
en into account for interpretation of the spin torque vortex 
oscillator dynamics and ferromagnetic resonance measure-
ments of spatially inhomogeneous magnetization textures. 
This additional damping can also be significant for descrip-
tion of the vortex domain wall and skyrmion dynamics. 
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