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Vortex gyrotropic motion in thin ferromagnetic nanodisks of elliptical shape is described here for a pure vor-
tex state and for a situation with thermal fluctuations. The system is analyzed using numerical simulations of the 
Landau–Lifshitz–Gilbert (LLG) equations, including the demagnetization field calculated with a Green's func-
tion approach for thin film problems. At finite temperature the thermalized dynamics is found using a second or-
der Heun algorithm for a magnetic Langevin equation based on the LLG equations. The vortex state is stable on-
ly within a limited range of ellipticity, outside of which a quasi-single-domain becomes the prefered minimum 
energy state. A vortex is found to move in an elliptical potential, whose force constants along the principal axes 
are determined numerically. The eccentricity of vortex motion is directly related to the force constants. Elliptical 
vortex motion is produced spontaneously by thermal fluctuations. The vortex position and velocity distributions 
in thermal equilibrium are Boltzmann distributions. The results show that vortex motion in elliptical disks can be 
described by a Thiele equation. 

PACS: 75.75.+a Magnetic properties of nanostructures; 
85.70.Ay Magnetic device characterization, design, and modeling; 
75.10.Hk Classical spin models; 
75.40.Mg Numerical simulation studies. 
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1. Introduction: Vortex dynamics in thin nanodisks

The magnetic vortex state in a thin nanodisk is an intri-
guing stable yet dynamic state [1,2], for appropriate disk 
radius a  and thickness L. It attracts attention for applica-
tion as an oscillator [3,4] and for data storage [5]. The vor-
tex state has been mostly studied in nanodisks [6,7] with a 
circular perimeter due to the high symmetry, often made 
from Permalloy-79. 

Thin film magnetic nanodots of elliptical shape have 
been studied for their magnetization reversal properties [8] 
and as elements for artificial spin ice arrays [9]. In this 
article the changes expected for vortex dynamics in a disk 
of elliptical perimemter are considered. Especially, it is 
important to consider how the deviation from perfect circu-
lar symmetry affects the time dynamics of a vortex. A se-
cond related goal is to determine the limits of stability of 
the vortex state when subjected to the non-circular bounda-
ry of an elliptical nanodisk. 

A vortex state can be the ground state when centered in 
a circular disk, in contrast to either a quasi-single-domain 
state or some multi-domain state. A vortex is characterized 
by a curling of the nearly planar magnetization around a 

localized core region centered at point R, where the mag-
netization points perpendicular to the plane of the disk. 
This structure gives the vortex a topological charge or 
gyrovector G that interacts with applied forces and is es-
sential in determining the dynamics [10,11]. If produced 
away from the disk center, a central force = ,FF k R−  
where Fk  is a force constant, acts on the vortex [12]. This 
force is due to combined effects of exchange interactions 
and demagnetization effects that generate magnetic pole 
density on the disk edge. When interacting with the 
gyrovector, the force leads to a periodic orbital motion of 
the vortex core around the disk center known as gyrotropic 
motion [13,14], that can be excited by pulsed magnetic 
field [15]. The motion has been described in terms of the 
Thiele equation [10,11], which predicts the gyrotropic fre-
quency as = / .G Fk Gω  In circular disks, different predic-
tions [12,16–18] for Fk  result in Gω  roughly proportional 
to /L a  [13,19]. 

For an elliptical disk, the breaking of the circular sym-
metry can be expected to modify the potential experienced 
by the vortex into one that has different force constants xk  
and yk  along the two principal axes of the ellipse. Of 
course, for an ellipse of high enough eccentricity, the qua-
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si-single-domain state will be prefered over a vortex state. 
The goal here is to study how the gyrotropic frequency is 
determined by the eccentricity, and as a part of that, to de-
termine the changes in the force constants with ellipse 
shape. A byproduct is that the stability limit of the vortex 
state with ellipse shape will emerge. 

A Lagrange-constrained micromagnetics simulation 
[12] is used here to determine quasi-static vortex force 
constants, as determined naturally from the microscopic 
exchange interactions and the demagnetization field ener-
gy. A constraint is used to hold a vortex with a desired core 
position R, from which calculation of the total microscopic 
energy gives a vortex effective potential ( ).U R  Know-
ledge of this effective potential is used in the Thiele equa-
tion for analysis of vortex core motion theoretically. The 
vortex motion also is studied by simulations of the micro-
scopic time dynamics via micromagnetics [20,21] either 
for zero temperature, solved by fourth order Runge–Kutta 
(RK4) integration, or for finite temperature, using a 
Langevin equation for the magnetization dynamics, solved 
by a second order Heun algorithm. At finite temperature, 
the gyrotropic motion is spontaneously generated [22] just 
due to thermal fluctuations, further analyzed in earlier 
work [16]. The results of these studies provide support for 
using the Thiele equation in vortex analysis in non-circular 
disks. Further, effects are calculated as functions of ellipse 
shape and size, and some asymptotic rules are found for 
large disk size and moderate eccentricity. 

The system energetics and calculational techniques are 
described in Sec. 2. Results for force constants from quasi-
static vortex structures are found in Sec. 3. The modifi-
cations to Thiele dynamics, and gyrotropic frequencies for 
an elliptical disk are discussed in Sec. 4. Thermally gener-
ated vortex gyrotropic motion is considered in Sec. 5, and 
the main conclusions of these studies are summaried in 
Sec. 6. 

2. Elliptic nanodisk magnetic system 

The magnetic system is a thin elliptical disk of magnet-
ic material such as Permalloy with saturation magnetiza-
tion sM , deposited on a nonmagnetic substrate. The disk 
has height L  (along z-axis) perpendicular to the substrate. 
The perimeter of the disk in the xy-plane is assumed to be 
an ellipse with semi-major axis a  and semi-minor axis b, 
defined by the equation 

 
2 2

2 2 = 1.x y
a b

+  (1) 

The volume of magnetic material in the disk is = .V abLπ  
Instead of the eccentricity 2 21 /b a−  to characterize the 
shape, we find that the ellipticity or geometric aspect ratio 
is more relevant for this problem, defined by 

 = / 1.b aε ≤  (2) 

The goals of this study include finding how the vortex 
gyrotropic frequency Gω  is affected by the elliptical shape 
of the nanodisk, as characterized by ellipticity. An im-
portant aspect of this study is to determine the effective 
potential ( )U R  in which a vortex in the nanodisk moves. 
This requires a determination of the energy for placing a 
vortex with its core at different positions R. The energy as 
determined by the local magnetization M(r) will be used to 
describe the magnetization dynamics, and as well, to find 
the vortex effective potential ( ).U R  

2.1. Energetics 

The microscopic energetics is assumed to be dominated 
by exchange energy and demagnetization energy (or 
equivalently, magnetostatic energy). The continuum Ham-
iltonian for the system is taken as 

 0
1= ,
2

MdV A ∇ ⋅∇ − µ ⋅ 
 ∫ m m H M  (3) 

where A  is the exchange stiffness (around 13 pJ/m for 
Permalloy), M is the spatially varying magnetization with-
in the disk, and m is the magnetization scaled by the satu-
ration value, 

 = / sMm M . (4) 

In addition, the Hamiltonian includes the permeability of 
free space 0µ  on the interactions of the demagnetization 
field MH  that is itself generated by M. There is no exter-
nal applied field considered here. 

It is assumed that locally the magnetization stays satu-
rated with | ( ) | = ,sMM r  however, its direction changes 
over a length scale exλ  known as the exchange length. 
Equating the exchange energy term (of order 2

ex/ )A λ  with 
the demagnetization energy term (of order 2

0(1/2) ,sMµ  
because also MH  is of order )sM  leads to the definition 
of the exchange length, 

 ex 2
0

2=
s

A
M

λ
µ

. (5) 

Exchange is dominant over lengths less than ex .λ  Any 
significant variations in the direction of the magnetization 
take place over distances greater than ex .λ  

While exchange interactions are considered local, the 
demagnetization field is determined by the global configu-
ration of M. From Gauss' Law for magnetism, = 0,⋅B∇  
with magnetic induction 0= ( ),Mµ +B H M  the demagnet-
ization field satisfies 

 = .M⋅ − ⋅H M∇ ∇  (6) 
This is solved formally by introducing a scalar potential 

MΦ  such that = ,M
M− ΦH ∇  which then gives a Poisson 

equation for the magnetistatics problem, 

 2 = , .M M M−∇ Φ ρ ρ ≡ − ⋅M∇  (7) 
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Thus, the instanteous magnetization distribution deter-
mines the demagnetization field MH  via an effective 
magnetic charge density .Mρ  

2.2. Thin film demagnetization field 

For a very thin magnet with L a  and ,L b  de-
magnetization energy leads to a natural tendency to keep 
M nearly within the plane of the film [23]. Further, there is 
little variation in M through the thickness of the film. For 
this situation, an effective two-dimensional (2D) Green's 
function approach can be used [24], leading to a 2D 
magnetostatics problem for .MH  This is done by averag-
ing all responses over the z-coordinate through the thick-
ness of the magnetic film. This was implemented in our 
previous studies [16] on vortex dynamics in circular 
nanodisks, where effective 2D Green's functions give the 
demagnetization field components ( = , , )x y zα  by convo-
lutions, 

 2

= , ,
( ) = ( ) ( ).M

x y z
H d G Mα αβ β

β

′ ′ ′−∑∫r r r r r  (8) 

The nonzero elements of the Green's function matrix are 
, ,xx yy zzG G G  and = .xy yxG G  The problem is separated: 

M
zH  perpendicular to the plane is determined solely by 
zM  while M

xH  and M
yH  are determined only by in-plane 

components xM  and .yM  Because the z-dependence has 
been averaged over, r and ′r  are 2D position vectors. Let-
ting = ′−r r r  be a 2D displacement, the out-of-plane 
Green's function for = | | > 0r r   is 

 
2 2

1 1 1( ) =
2zzG

L rr L

 
 −
 π + 

r




. (9) 

Primarily, zzG  generates the field due to magnetic poles 
ˆ( = )M zσ ± ⋅M  on the top and bottom surfaces of the 

magnetic film. The other components of Gαβ  generate the 
fields due to variations in M over the xy  plane and also 
the magnetic pole charges on the perimeter of the ellipse 
(with thickness L). For > 0,r  these components are 

 
2 2

4 2 2 2 2
( ) = ,

2
xx

L x yG
r r L r L r

 
 −
 π + + + 

r
 





  

 (10) 

 
2 2

4 2 2 2 2

2( ) =
2

xy
L r L r xyG
r r L r r L

+ +

π + + +
r

  





  

 (11) 

with swapping x  and y  displacements to otain yyG  and 
.yxG  At large distances, these are the field of a point di-

pole in the xy-plane. Whether finding the vortex potential 
or evolving time dynamics, the field MH  has a strong 
influence on the energetics, and its calculation is the most 
time-consuming part of the numerics. 

2.3. The 2D micromagnetics approach 

 We use a micromagnetics [20,21,25] calculation for the 
magnetization ˆ( , ) ( ),i s it M m t→M r  where the 2D system 
is partitioned into cells i  at positions ir . A single layer of 
cells of height L  in the z-direction (perpendicular to the 
film) and square cross section cell cella a×  in the xy-plane 
are used. See Fig. 1 for a typical partitioning of a nanodisk 
with a vortex present into cells. The cells are set symmetri-
cally within the ellipse, Eq. (1). In some cell labeled i  
there is a time-dependent unit magnetization ˆ ( ),im t  such 
that the magnetic moment is 2

cell ˆ= .i s iLa M mµ  Then, dis-
cretization of the continuum Hamiltonian (3) leads to the 
2D micromagnetics Hamiltonian in a form [16] 

 
2
cell

2
( , ) ex

ˆ ˆ ˆ= ,
2

M
i j i i

i j i

a
J m m H m
 
 − ⋅ + ⋅
 λ 
∑ ∑   (12) 

where ,i j  label micromagnetics cells, and the exchange 
constant between nearest-neighbor cells is 

 = 2J AL . (13) 

The demagnetization field enters scaled by the saturation 
magnetization of the medium, 

 = /M M
i i sH MH . (14) 

The factor involving exchange length indicates how ex-
change effects become more dominant for large exchange 
length. For the assumptions of the micromagnetics ap-
proach to be valid, one should have adequately small cell 
size, cell ex< ,a λ  making the demagnetization term a per-
turbation on the exchange term. 

The Green's matrix Gαβ  also must be discretized on the 
lattice of cells. The contribution to the MH  field at posi-
tion r from a source cell at ir  is proportional to 

2
cell( ) ,iG aαβ −r r  including the area 2

cella  of the source 
cell. The elements of Gαβ  become singular at 0,r →  as 
for any Green's operator for a self-interaction. That deriva-
tion, however, did not account correctly for = 0r  because 
it was assumed that the field was measured outside the 
source cell. A given cell can also produce a finite averaged 
demagnetization field within itself, however, so the point 

= 0r  needs to be treated correctly. We do this [12,16] by 
using the Green's function components averaged over a 
circle whose area is equivalent to the cell area 2

cell .a  The 
components of Gαβ  at the origin = 0r  are replaced by 
their values averaged over the circle of radius 0 ,r  such that 

2 2
0 cell= .r aπ  This gives 

 2 2
0 0 02

cell

1(0) = = .zz zzG G L r L r
La

 〈 〉 − + − + 
 

 (15) 

This is the same as 2
cell(0) = / ,zz zG N a−  where zN  is the 

longitudinal demagnetization factor of a cylinder that gives 
the internal field due to surface magnetic charges at its 
ends. The factor of cell area 2

cella  cancels out when the 
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integral (8) is converted to a sum. In a similar way, averag-
ing the transverse components of Gαβ  over a circle of ra-
dius 0r  leads to setting (0) = (0) = 0xy yxG G  and 

   2 2
0 0 02

cell

1(0) = (0) = = .
2

( )xx yy xxG G G L r r
La

〈 〉 − + −  (16) 

This is the same as 2
cell(0) = /xx xG N a−  and (0) =yyG

2
cell/ ,yN a= −  where =x yN N  is the transverse demagnet-

ization factor for a cylinder. For long thin circular cylin-
ders, the formula gives the expected value = 1/2.x yN N ≈  
One can see that the requirement = 1x y zN N N+ +  is then 
reflected in the relation 

 2
cell

1(0) (0) (0) = .xx yy zzG G G
a

+ +  (17) 

With the Green's matrix defined on a square grid, the cal-
culation of MH  can be accelerated by the use of a fast 
Fourier transform (FFT) approach [26], replacing the con-
volution integral in real space with a product in reciprocal 
space. Thus, we choose a N M×  grid with a binary size 
2 2 ,n m×  where n  and m  are integers such that 

cell2(2 )a Na≤  and cell2(2 ) .b Ma≤  This ensures that the 
computation grid is at least twice the size of the ellipse 
along both axes. That is necessary to avoid the wrap-
around problem of the FFT, so that the simulation gives the 
demagnetization field of an isolated nanodisk, without in-
teraction effects due to aliasing. The FFT of Gαβ  can be 
done once at the start of the calculations, but then FFT's of 
the magnetization configuration are continuually carried 
out at every step of the simulations. The ( , )x y  coordinate 
system is then set up with the origin at the center of the 
ellipse, and the x-axis along the semi-major axis (a), and 
the y-axis along the semi-minor axis (b). 

2.4. Dynamics 

Each cell has a magnetic moment ˆ= ,i imµµ  where the 
magnitude is 2

cell= .sLa Mµ  With the definition of the 
Hamiltonian (12), each cell's dynamics is governed by a 
Landau–Lifshitz–Gilbert torque equation [27,28], includ-
ing a dimensionless damping parameter ,α  

 ( )= .i
i i i i i

d
dt

α
γ × − × γ ×

µ
B B

µ
µ µ µ  (18) 

γ  is the gyromagnetic ratio and iB  is the effective mag-
netic field acting on the cell, obtained from 

 =i
i

δ
−
δ

B 
µ

. (19) 

It is convenient to define a unit of magnetic induction 0B  
and dimensionless field 0= /i i Bb B  and corresponding 
dimensionless time τ  by 

 
2
ex

0 0 02 2
cell cell

2= = = , = .s
s

J ALB M B t
La M a

λ
µ τ γ

µ
 (20) 

Then the dynamics follows an equation in dimensionless 
quantities, 

 
ˆ

ˆ ˆ ˆ= ( ),i
i i i i i

dm
m m m

d
× −α × ×

τ
b b  (21) 

where the dimensionless field is 

 
2
cell
2

0 ( ) e
ˆ= = .

2

M
i i

i j
j z i x

a H
m

B ∈
+
λ

∑B
b



 (22) 

The first term involves a sum only over the nearest neigh-
bors ( )z i  of site i; the second term shows how the demag-
netization field effect depends on the cell size. These fields 
are used to determine the quasi-static vortex properties, 
such as force constants in the vortex effective potential. 
The LLG equation in the form (21) is also used here to get 
gyrotropic frequencies for pure vortex states at zero tem-
perature, solving it by a fourth order Runge–Kutta integra-
tor. 

For time dynamics at nonzero temperature, thermal 
fluctuations can be included by changing to a correspond-
ing Langevin equation based on the Landau–Lifshitz-
Gilbert equation [16], by including a damping term with 
parameter α  and stochastic magnetic inductions sb  
caused by temperature. Suppressing the cell index i  for 
simplicity, the Langevin-LLG equation for one cell is 

 
ˆ ˆ ˆ ˆ= ( ) [ ( )].s s

dm m m m
d

× + −α × × +
τ

b b b b  (23) 

The net dynamics is a combination of the deterministic 
motion due to b  modified by the stochastic effects due to 

sb . The strength of these stochastic fields is determined 
through the fluctuation-dissipation theorem, which can be 
stated as 

 ( ) ( ) = 2 ( ).s sb b ′λ λ
′λλ′ ′〈 τ τ 〉 α δ δ τ − τ  (24) 

Indices ′λλ  refer to Cartesian components, which appear 
in a Kronecker delta function on the RHS. The Dirac delta 
function ( )′δ τ − τ  shows the instantenous time correlation 
of the fields. Their amplitudes are ultimately related to the 
strength of damping and the dimensionless temperature , 
defined as 

 =
2

B Bk T k T
J AL

≡  (25) 

where Bk  is Boltzmann's constant. The stochastic fields 
must be generated to satisfy (24). For numerical solution of 
these Langevin-LLG equations, that is accomplished by 
solving them with a second order Heun method [29,30], 
see further details in Ref. 16. Essentially, the second order 
Heun method is the same as a predictor-corrector method 
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where the predictor stage is an Euler step and the corrector 
stage is the trapezoid rule. The same random fields sb  
used in the predictor step, generated by a random number 
generator, are re-used in the corrector step. The fluctua-
tion-dissipation theorem (24) is implemented by choosing 
random fields with a variance sσ  that depends on the time 
step ,∆τ  according to 

 = 2 .sσ α ∆τ  (26) 

That is, in the equations integrated over one time step, an 
individual stochastic field component x

sb  is effectively 
replaced by a random number of variance sσ  by doing 

 ( ) ,x
s sd b r

τ+∆τ

τ
τ τ → σ∫  (27) 

where r  is a uniformly random number of zero mean and 
unit variance. The usual uniform deviate from 0 to 1 from 
a random number generator has a variance of 1/ 12.  We 
used the generator [31] mzran13 to produce uniform devi-
ates from 0 to 1, shifted them to the range –0.5 to +0.5, and 
finally rescaled by 12 sσ  to get stochastic fields of the 
correct distribution. 

Simulations were done by supposing that Permalloy is 
the medium, with values A = 13 pJ/m, = 860sM  kA/m, 
which results in exchange length ex 5.3λ ≈  nm. For most 
simulations we used cell size parameter cell = 2.0a  nm. 
Then with gyromagnetic ratio 111.76 10γ ≈ ⋅  T–1 s–1, one 
has field strengths 0 = 1.08sMµ  T and 0 = 7.59B  T. The 
time unit is then 1

0 0( ) 0.750t B −≡ γ ≈  ps, which also im-
plies a frequency unit 1

0 0= = 1.336f t−  THz. 

3. Relaxed vortex structure calculations 

Determination of the vortex potential ( )U R  requires a 
precise static solution of the Hamiltonian (3) or equivalent-
ly, one with zero time derivatives as determined from the 
zero-temperature limit of (23), putting all = 0.sb  A pure 
isolated vortex structure is also important for initiation of 
dynamics simulations. Here an approach for generating a 
pure vortex structure, such as those in Fig. 1, without the 
presence of spin waves, is summarized. 

The magnetization can be described by an in-plane an-
gle ( )ϕ r  and out-of-plane angle ( )θ r , 

   ˆ ( ) = (cos ( ) cos ( ),cos ( )sin ( ),sin ( ))m θ ϕ θ ϕ θr r r r r r . (28) 

For a vortex state whose core is centered at = ( , ),X YR  
the in-plane angle is approximately 

 1( ) = tan
y Yq
x X

− −
ϕ

−
r  (29) 

where = 1q +  is the vorticity. For the numerical studies 
here, we start with this in-plane structure and let the out-of-
plane structure develop naturally by a relaxation procedure 
with a constraint on the desired vortex core position [12]. 
In this “spin alignment” relaxation procedure, each cell's 

ˆ im  is iteratively redirected [32] to the direction of its ef-
fective field ,ib  until the changes are insignificant. Once 
all ˆ im  are aligned with the corresponding ,ib  the time 
derivatives will be zero and the configuration will be static. 
However, to enforce a desired position, fictitious extra 
fields are added to ib  in the core region by a Lagrange 
undetermined multipliers technique. The details of the La-
grange relaxation procedure are given in Ref. 12. The un-
determined fields become determined in the procedure, 
which requires a similar constraint for unit length of each 
ˆ .im  The fictitious fields in the core region produce torques 

that secure the vortex without changing its internal struc-
ture significantly. While this relaxation proceeds, the out-
of-plane structure in ( )rθ  develops, if one initiates the 
configuration with some small random z-components in the 
magnetization field. 

3.1. Vortex gyrotropic motion 

At the vortex core, the relaxed configuration has 
( , ) 1,zm X Y ≈ ±  and zm  diminishes with radius away from 

the core. The two signs are energetically equivalent polari-

Fig. 1. (Color online) Vortex structures at times (a) τ = 2050 and 
(b) τ = 3250, for a disk with a = 60 nm, ε = 0.5, and L = 10 nm. 
The cell size is acell = 2 nm. Arrows show only the projection of 
( , )yx

i im m  on the page. Green line (red open) arrows indicate posi-
tive (negative) values of .z

im  The core appears as a hole in this 
projection. Exchange, in-plane and out-of-plane demagnetization 
energies are ex, ddx, and ddz, respectively. The vortex was initiated 
at (0,16 nm) from the disk center with Lagrange-constrained re-
laxation. It has been evolved forward in time via RK4 with damp-
ing α = 0.02 turned off at τ = 1600. The gyrotropic motion is 
clockwise. 
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zations = 1p ±  of the core, and due to the slight random-
ness in initial conditions, either one may result. The vortex 
dynamics is then strongly influenced by the product of ,qp  
which enters into the so-called gyrovector (a type of topo-
logical charge), 

 0ˆ ˆ= = 2 .
m

Gz pq zπ
γ

G  (30) 

The factor 2 = 2pqπ ± π  is the solid angle of the unit sphere 
covered by the magnetization profile, and 

2
0 cell= / = sm a LMµ  is the magnetic moment per unit area 

in the film. The gyrovector is known to be important for 
vortex dynamics, because it enters in the Thiele equation 
for describing the motion of the core, according to 

 = 0, = ,+ ×F G V V R  (31) 

where the dot on R indicates time derivative, such that V is 
the cortex core velocity. The force F is the negative gradi-
ent of the total vortex energy with respect to vortex core 
position, i.e., 

 = ( ).U−F R∇  (32) 

Here any damping or intrinsic vortex mass is not included. 
Primarily, we are concerned with the determination of 

( )U R  for the elliptic system and analyzing whether the vor-
tex motion can be described by a Thiele equation. This can 
be fairly generally expected, however, the Thiele equation 
dynamics is expected whenever the vortex structure is nearly 
fixed in shape while it translates to different positions. 

In the case of a circular nanodisk, the force on a vortex 
is essentially a restoring force that points towards the disk 
center, with a force constant Fk : 

 = .Fk−F R  (33) 

This then corresponds to a circularly symmetric parabolic 
potential (near the center of the disk), 

 2 2 21 1( ) = = ( ).
2 2F FU k k X Y+R R  (34) 

The force constant has been estimated by various methods, 
including the rigid vortex approximation [18], the two-
vortex model [17,18], and numerical simulations [12,16]. 
Regardless of the method, this potential then predicts a 
uniform circular motion of the vortex core, at instantane-
ous velocity 

 2= = .G
G
×

×
G FV Rω  (35) 

The rotational angular frequency is 

 ˆ= F
G

k z
G

−ω . (36) 

Thus, a vortex with positive gyrovector ( = 1,pq +  G 
pointing along ˆ)z+  will rotate in the clockwise sense in 
the xy-plane, and one with negative gyrovector ( = 1)pq −  
rotates in the counterclokwise sense. It is important to see 
how this uniform circular motion is modified for elliptical 
nanodisks. 

3.2. Vortex potential in elliptical disks 

For an elliptical nanodisk with perimeter from (1), re-
laxed vortex structures were generated by the spin align-
ment algorithm [12], using a Lagrange constraint to en-
force different vortex core locations = ( , ).X YR  R near 
the origin (the center of the disk) is of most interest. The 
results of those studies for different aspect ratios ε  and 
semi-major axes a  indicate that the vortex effective poten-
tial is close to quadratic near the disk center, and can be 
approximated by 

 2 2
0

1( ) = ( ).
2 x yU U k X k Y+ +R  (37) 

The constant 0U  is the total energy for the vortex centered 
in the disk. Due to the distortion of the disk compared to a 
circular disk, there are nonequal force constants xk  and 

yk  for the two semi-major axis directions. We restrict the 
studies to situations with a b≥  or 1;ε ≤  the long axis of 
the ellipse is along the x-axis. Then, there is a lower energy 
cost for displacement of the vortex in the long direction of 
the ellipse, and .x yk k≤  The force constants were estimat-
ed by fitting to (37), after finding the total system energy 
for a centrally located vortex, = 0,R  and for small dis-
placements cell= (2 , 0)aR  and cell= (0, 2 ),aR  where 

cell = 2.0a  nm was the cell size. Calculations were done 
for two different film thicknesses, = 5.0L  nm and = 10L  
nm. Generally, the force constants increase approximately 
as 2 ,L  similar to the L-dependence for circular nanodisks. 

The energies of relaxed vortex configurations were cal-
culated in units of = 2 ,J AL  and with displacements in 
units of cell size cell ,a  in earlier work [16] values of Fk  
for circular disks were initially calculated in units of 

cell/ .A a  That unit depends on cell size. Instead, results for 
force constants are quoted here in a more natural unit of 

21
ex 0 ex2/ = ,sA Mλ µ λ  which combines both the exchange 

and demagnetization energy scales. 
Force constant results for = 5.0L  nm and various a, as 

functions of the ellipticity or aspect ratio ε = b/a, are 
shown in Fig. 2. Further results at twice the thickness, 

= 10.0L  nm, are displayed in Fig. 3. The shapes of the 
curves are very similar to those for = 5.0L  nm, however, 
the force constants are larger, approximately in proportion 
to 2L . At the circular limit = 1,ε  one has =x yk k  and 
these values decrease with increasing nanoparticle radius, 
approximately as 1a− . As ε  becomes less than 1, the lon-
gitudinal force constant xk  decreases while the transverse 
force constant yk  increases. However, once ε  reaches 
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some lower limit, depending on a, the vortex state becomes 
unstable, as would be the case even for circular disks of 
very small size. Obviously, the limit as 0ε →  will lead to 
a needle-like nanodisk, whose ground state will be a quasi-
single-domain state, once the aspect ratio is high enough. 
In the region where the vortex state is destabilized, yk  
reaches either a maximum value, or even turns over and in 
the case of smaller disks (especially = 30a  nm), it is pos-
sible for yk  to become less than .xk  

The fact that yk  is greater than xk  is understandable in 
terms of the energetics of magnetic pole density generated 
on the perimeter of the ellipse. When the vortex is dis-
placed along the semi-major axis (x axis), extra pole densi-
ty ˆ=M nσ ⋅M  primarily appears along the long edges at 

.y b≈ ±  The pole strength is weak, because M will be able 
to align parallel to these long edges. In the opposite case of 
vortex displacement along the semi-minor axis (y axis), the 

pole density will appear primarily at the pointed ends at 
.x a≈ ±  Because there is a larger curvature there, it is more 

difficult for M to remain parallel to the perimeter at these 
ends, leading to a larger pole density. Also, the greater 
proximity of the vortex to the edges at y b≈ ±  leads to 
greater energy effects for a displacement in the y  direc-
tion. In either case, the energy should be proportional to 
the demagnetization field integrated over nanodisk volume, 
however, the weaker poles for displacement of the vortex 
along the long axis makes xk  less than .yk  In the plots, 
one sees that xk  appears to extrapolate towards a value of 
zero as 0,ε →  consistent with these arguments. 

The dependence of xk  and yk  on ellipticity can be fur-
ther analyzed by first looking at how these force constants 
influence the vortex gyrotropic motion. This is done initial-
ly from the theoretical view of applying the Thiele equa-
tion to the vortex dynamics. 

4. Thiele equation dynamics for elliptic nanodisks 

Here it is assumed that the vortex motion obeys the 
Thiele equation, using the potential (37) as determined 
from xk  and .yk  The orbital frequency, trajectory, and 
other basic properties are of most interest. 

First, it is interesting to note that the motion is not the 
same as for a 2D harmonic oscillator with nonequal force 
constants, because the x  and y  motions are not independ-
ent. With gyrovector ˆ= ,GzG  the components of the 
Thiele equation (31), using the force from potential (37) 
give 

 = = ( ) =x x xF k X GY− − ×G V  ,  

 = = ( ) =y y yF k Y GX− − × −G V  . (38) 

The components can be easily separated, and each follows 
the same second order differential equation, namely, 

 
2 2= , = .x y x yk k k k

X X Y Y
G G

− −   (39) 

One can see that the geometric mean of the force constants 
will determine the gyrotropic frequency. However, it is 
best to maintain the coupling of comoponents and express 
the first order equations in matrix form, 

 
0 /

= .
/ 0

y

x

k GX Xd
Y Ydt k G

    
     −    

 (40) 

Then letting the 2 2×  matrix on the RHS be called A, the 
solution is written formally as 

 0

0

( )
= e

( )
At XX t

YY t
  
  

   
 (41) 

where the initial position is 0 0(0) = ( , ).X YR  Expansion of 
the exponential is simple because the square of A  is 

Fig. 2. Vortex force constants along the semi-major axis (kx, solid 
circles) and along the semi-minor axis (ky, open circles) for dif-
ferent sized ellipses with thickness L = 5.0 nm, organized by 
semi-major axis a, plotted versus ellipticity ratio ε = b/a. 

Fig. 3. Vortex force constants versus ellipticity ratio ε = b/a as in 
Fig. 1, but for film thickness L = 10.0 nm. Note that larger thick-
ness leads to higher force constants, roughly proportional to L2. 
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 2
2= ,x yk k

A I
G

−  (42) 

where I  is the 2 2×  identity matrix. At this point one can 
define the gyrotropic frequency, 

 = .x y
G

k k

G
ω −  (43) 

The negative square root has been used, such that a vortex 
with G  in the positive ẑ  direction has a negative frequen-
cy, corresponding to its clockwise movement in the xy-
plane. Then the time development proceeds from 

 e = cos sin .At
G G

G

AI t tω + ω
ω

 (44) 

Thus, the vortex motion is found to be elliptical, 

 0 0( ) = cos siny
G G

G

k
X t X t Y t

G
ω + ω

ω
,  

 0 0( ) = cos sinx
G G

G

k
Y t Y t X t

G
ω − ω

ω
. (45) 

Differentiation gives the vortex core velocity, 

 0
0( ) = sin cosy

G G G
k Y

X t X t t
G

−ω ω + ω ,  

 0
0( ) = sin sinx

G G G
k X

Y t Y t t
G

−ω ω − ω . (46) 

One can then verify that the motion follows the equation 
(35) just as for circular nanodisks, namely, 

 
2

1= ( ) = ,y
x x

k
V Y

GG
×G F   

 2
1= ( ) = .x

y y
k

V X
GG

× −G F  (47) 

4.1. Transforming to circular coordinates 

The last results might be expected, especially since the 
elliptical system can be thought of as a distortion of a cir-
cular system by rescaling the axes. Conversely, consider 
the distortion of the elliptical system back to an equivalent 
circular system. 

The potential can be symmetrized with respect to semi-
major and semi-minor axes in the sense that 

 2 21( ) = [( ) ( ) ]
2 x yU k X k Y+ =R   

 2 21= .
2

yx
x y

y x

kk
k k X Y

k k

 
 +
 
 

 (48) 

This suggests the definition of the energetic ellipticity e, 

 ,x

y

k
e

k
≡  (49) 

as well as the geometric average of the force constants,   

 .x yk k k≡  (50) 

Then the potential is 

 2 21 1( ) = .
2

U k eX Y
e

 + 
 

R  (51) 

One can see that e  also relates to the ellipticity of the vor-
tex core motion, from the solution obtained above, for ex-
ample, with 0 = 0Y , 

 max

max
= = = .

| |
x x

G y

Y k k
e

X G kω
 (52) 

The solution for vortex core position can be expressed in a 
similar symmetrized way, first scaling X  by xk  and Y  
by :yk  

 0 0( ) = cos sinx x G y Gk X t k X t k Y tω − ω ,  

 0 0( ) = cos siny y G x Gk Y t k Y t k X tω + ω . (53) 

Note that the change in sign on the second terms (com-
pared to Eq. (45)) is due to using equation (43) for 
gyrotropic frequency. However, the potential in the form 
(51) can be expressed in a circular coordinate ρ  defined as 
follows, 

 21 1( ) = , , .
2

U k eX Y
e

 
≡  
 

ρ ρ ρ  (54) 

Thus, this shows the scaling needed on X  and Y. Then the 
solution (45) can be expressed in these circular coordinates 
as a uniform circular motion, e.g., 

 0 0
1( ) = cos sinG GeX t eX t Y t
e

ω − ω ,  

 0 0
1 1( ) = cos sin .G GY t Y t eX t
e e

ω + ω  (55) 
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With initial position 0 0 0 0 0= ( , ) = ( , / ),x y eX Y eρ ρρ  
this is 

 0 0 0( ) = cos sin = cos( )x x G y G Gt t t tρ ρ ω −ρ ω ρ ϕ +ω ,  

   0 0 0( ) = cos sin = sin( )y y G x G Gt t t tρ ρ ω +ρ ω ρ ϕ +ω . (56) 

The radius is conserved at 2 2
0 0= ,x yρ ρ +ρ  while 0ϕ  is 

the initial angle to the x-axis, 

 0 0
0

0 0

1tan = = .y

x

Y
e X

ρ
ϕ

ρ
 (57) 

Then the time-dependent angle to the x-axis simply in-
creases linearly in time, 

 0( ) = .Gt tϕ ϕ +ω  (58) 

Note that the angular position of the vortex core in the 
original coordinates, 1= ( / ),tan Y X−θ  is related to ϕ  also 
by the energetic ellipticity, 

 tan ( ) = = = tan ( ).
1

y

x

eYt e t
X

e

ρ
θ ϕ

ρ
 (59) 

For the core velocity = ( , ),X YV    one finds for the 
gyrotropic motion 

 1 1= , = , .G G y xY eX e
e e

  ω − ω − ρ ρ  
   

V  (60) 

The corresponding expression for the time derivative of ρ  
carries a greater simplicity, 

        = =x G yeXρ −ω ρ

 ,      1= =y G xY
e

ρ ω ρ

  (61) 

which is equivalent to the expected expression for uniform 
circular motion, 

 = ( , ) = .x y Gρ ρ ×  ρ ω ρ  (62) 

This is based on the assumption that the vector angular 
velocity is ˆ= .G G zωω  Therefore the motion is equivalent 
to that for circular nanodisks, once transformed into these 
circular coordinates. 

4.2. Further analysis of force constants 

 In light of the above results expected from the Thiele 
equation dynamics, it makes sense to further analyze the 
force constants found from the vortex relaxation algorithm. 
In particular, we now see that = x yk k k  directly deter-

mines the gyrotropic frequency, while = /x ye k k  deter-

mines the shape of the path followed by the vortex core. 

Based on the force constant results for L = 5.0 nm and 
L = 10.0 nm, k  has been calculated and the results plotted 
versus aspect ratio ε  are shown in Fig. 4. k  is found to 
scale with the reciprocal of the semi-major axis, hence, the 
results for ka  versus ε  are displayed. Especially for large 
a , there appears to be an asymptotic limit in the functional 
dependence, ( )k ε . For the smaller ellipses ( 60a ≤  nm), 
the scaling of k  as 1/a is not present. In addition to this 
dependence on the size of the xy  perimeter, it is also ob-
served that k  increases almost as fast as L2. Of course, the 
vortex gyrotropic frequency Gω  should be directly propor-
tional to ,k  hence Fig. 3 should also give a sense of the 
dependence of Gω  on the nanodisk shape. But note that 
the magnitude of the gyrovector depends on film thickness, 

 = 2 / .sG pqLMπ γ  (63) 

The dependence of G  on film thickness cannot be ignored 
when considering gyrotropic frequencies. 

Next, the calculated values of energetic ellipticity 
= /x ye k k  are shown in Fig. 5 for L = 5.0 nm and in 

Fig. 6 for L = 10.0 nm, as functions of ε . The results for 
different semi-major axis sizes tend to fall close to the 
same linear relation, 

 = , o = ,x

y

k be r
k a

ε  (64) 

which is shown as a dashed line. The matching to this ap-
proximate fit is best for the largest elliptical particles, and 
especially when ε  approaches unity. Thus, there is some 
simplicity in the force constants, provided the system is far 
from the stability limit of the vortex state. This requires, 
however, reasonably large sized nanondisks and/or a 
strong quasi-2D aspect with both L a  and .L b  

Fig. 4. (Color online) The geometric mean of force constants, 
= ,x yk k k  scaled by semi-major axis a, in units of the ex-

change stiffness A, versus geometric ellipticity ε = b/a. 
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4.3. Gyrotropic frequencies from simulations 

For some selected shapes of elliptic nanoparticles, the 
gyrotropic vortex motion was simulated based on the mag-
netization dynamics, as it evolves according to the zero tem-
perature LLG equations (21). For these studies the time evo-
lution was found using RK4 with time step = 0.04,∆τ  
starting from an initial state with vortex core at desired posi-
tion by the Lagrange constrained relaxation method. An 
initial 4.0 nm displacement from the disk center was used. 
An example of vortex structure and motion with a large ini-
tial dispacement for showing structural details is shown in 
Fig. 0. The damping constant = 0.02α  was used for further 
relaxing the structure over close to one period of the motion, 
and then set to zero. The period Gt  was determined from 
five or more subsequent revolutions, from which estimates 
of the gyrotropic frequencies = 1/G Gf t  or = 2G Gfω π  
were made. These could be analyzed in light of the force 
constants k  calculated on the same system, assuming the 
motion follows the Thiele equation dynamics. 

The vortex period could be determined either from ob-
serving oscillations of the components of total system 
magnetization, or from the trajectory of the vortex core. 

For analysis of the trajectory followed by the vortex 
core, an algorithm is needed to locate the core position 
( ( ), ( ))X t Y t  precisely. The core is the point with maximum 
magnitude of out-of-plane magnetization around which the 
magnetization has a nonzero rotation. This was done by 
first locating the computation cell containing the vorticity 
center, where | | = 2× ϕ π∇ ∇  is a nonzero rotation of m̂  
around the cell. Then, neighboring cells out to a distance of 

exrλ  were used to further refine the position estimate by 
weighting their position contributions with 2( ) ,z

im  giving 
a better estimate of the location where zm  is maximimum. 
It is found that this procedure is adept at locating the core 
even in the presence of thermal fluctuations [16]. It is ap-
plied for that purpose in the next section. 
From the expression (62) for G  and the definition of the 
exchange length, the gyrotropic frequency magnitude can 
be expressed in a form using exλ  as the physical length 
scale, and e/ xA λ  as the unit for force constants, 

 0 e e| | = = .
4

x x
G s

k M k
G A L

µ λ λ   ω γ   π   
 (65) 

This displays a natural SI unit of angular frequency, ω0 ≡ 
(µ0γMs)/4π (the same as sMγ  in CGS units). Results for 
the frequencies in these units, found from simulations, are 
shown in Fig. 6, as functions of the ellipticity parameter ε 
= b/a. The curves for ( )Gω ε  show an increase with de-
creasing ε as ε deviates away from unity, similar to the 
curves of ( ).k ε  When the vortex state begins to reach its 
limit of stability, ( )Gω ε  makes a much faster drop with 
decreasing ε. 

To check whether expression (64) applies to these re-
sults, and to show the dependence of Gω  on film thick-
ness, the frequencies divided by dimensionless force con-
stants are plotted in Fig. 8, again versus ε. Data at different 
semimajor axes a = 30 nm, 60 nm and 120 nm are found to 
collapse onto the straight dotted lines corresponding to 
expression (64) for the selected values of thickness L. This 
shows that the calculations of force constants can be used 
to predict gyrotropic frequencies, in conjunction with use 
of the Thiele theory even for elliptic disks. 

5. Thermal equilibrium statistics 

In this section the spatial distribution of a vortex in a 
nanodot in thermal equilibrium is considered. The analysis 
is based on supposing that the dynamics is following the 
Thiele equation, but with thermal fluctuations. To proceed, 
it is important to verify the canonical coordinates for the 
motion of the vortex core. Based on that, the Boltzmann 
distribution can be applied to the vortex statistics. 

Fig. 5. (Color online) The energetic ellipticity for L = = 5.0 nm, 
as calculated from the square root of the ratio of forces constants, 

= / ,x ye k k  versus geometric ellipticity ε = b/a. 

Fig. 6. (Color online)  The energetic ellipticity for L = 10 nm, as 
defined from the square root of the ratio of forces constants, 

= / ,x ye k k  versus geometric ellipticity ε = b/a. 
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5.1. Vortex Lagrangian dynamics 

Generalizing the Lagrangian for a vortex in a circular 
nanodisk [16] to the case of the elliptical potential ( ),U R  
it is possible to show that an appropriate Lagrangian for 
the core motion is [16] 

 2 21 1= ( ) ( )
2 2 x yL G XY YX k X k Y− − − +  . (66) 

Gyrotropic motion is similar to that of a charge q moving 
in a magnetic field, where the effective vector potential 

= ( )/2 = ( , )/2GY GX× −A G R  generates the gyrovector by 
= .×G A∇  Then, the first term in L is ,− ⋅A V  just as a 

term q− ⋅A V  appears in the Lagrangian for a nonrelativ-
istic charge. Then the Lagrangian is 

 = ,L U− ⋅ −A V  (67) 

when the anisotropic potential (37) is included. Its Euler-
Lagrange equations correctly give the dynamics equations 
(38) found in Sec. 4. 

In this symmetric choice of gauge, the momentum con-
jugate to core position R is 

 1= = = ( , ).
2

L GY GX∂
− −

∂
P A

V
 (68) 

Then the Lagrangian can be written as = .L U⋅ −P V  
However, the Hamiltonian is desired for statistical me-
chanics. It is obtained by the transformation 

 2 21= = = ( ).
2 x yH L U k X k Y⋅ − +P V  (69) 

This shows that the Thiele equation dynamics is derived 
purely from the potential. Note that alternatively the Lan-
dau gauge can be used [33] with a nonsymmetric momen-
tum of one component, = ,xP GY  which leads to the iden-
tical Hamiltonian, independent of the choice of gauge. 

As Hamiltonian (69) has no momentum present, as 
written, it does not lead to correct dynamic equations of 
motion, based on the usual Hamilton equations of motion, 

 = , X = .H H∂ ∂
−
∂ ∂

P
R P

   (70) 

This is because the connection (68) between momentum 
and coordinate makes them dependent. To get a Hamilto-
nian whose dynamics leads back to the Thiele equations, it 
is necessary to rewrite H  not as purely a potential term, 
but as half potential energy involving R and half kinetic 
energy involving P. Then H  must be written 

     
2

2 2 2 21 1 2= ( ) ( ) ,
4 4x y x y y xH k X k Y k P k P

G
 + + + 
 

 (71) 

which does lead back to the correct Thiele equation. Alt-
hough this resembles the Hamiltonian of a 2D harmonic 
oscillator, it bears repetition that the constraint 

= = ( )/2,− − ×P A G R  between coordinate and momen-
tum means that the vortex phase space is collapsed to only 
two dimensions, rather than four. Therefore, for the pur-
poses of statistical equilibrium calculations, the mean 
thermal energy in vortex motions will be only ,Bk T  be-
cause there are only two independent quadratic variables in 
H, each receiving on average ( )/2Bk T  of energy. 

5.2. Vortex core radial distribution 

In thermal equilibrium, the distribution for vortex core 
position or velocity should be determined by a Boltzmann 
factor, exp ( ),H−β  where 1= ( )Bk T −β  is the inverse re-
duced temperature and Bk  is Boltzmann's constant. The 
vortex core Hamiltonian H  can be expressed either purely 

Fig. 7. (Color online) Vortex gyrotropic angular frequencies cal-
culated from simulations of zero-temperature dynamics, for the 
indicated nanodisk sizes. The frequency unit is ω0 ≡ (µ0γMs)/4π 
(about 15.1 GHz for Permalloy). 

Fig. 8. (Color online) Vortex gyrotropic angular frequencies from 
zero-temperature simulations divided by force constants k  from 
Lagrange constrained vortex relaxation, as a function of 
ellipticity ε = b/a. The frequency unit is ω0 ≡ of ellipticity ε = 
= b/a. The frequency unit is ω0 ≡ (µ0γMs)/4π, the force constant 
unit is k0 ≡ a/λex. Dashed lines are the theoretical result (64) 
based on the Thiele equation dynamics, where e/ / .G xk Lω ∝ λ  
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as potential energy, Eq. (69) or in terms of equal parts po-
tential energy and kinetic energy, Eq. (71), or even in a 
third form with only a kinetic energy term. This is a 
somewhat unusual freedom and allows one to find either 
the distribution in real space or in velocity space. 

In the effective circular coordinates ρ defined in (54) 
then the Hamiltonian expressed purely with potential ener-
gy is very simple and circularly symmetric, 

 21= ( ) = .
2

H U kρρ  (72) 

The probability for the vortex core to be found in some 
range dρ  near the radius ρ  is proportional to 

 
1 2
2( ) 2 e = 2 e .

kHp d d d
− β ρ−βρ ρ πρ ρ πρ ρ  (73) 

Making this a unit normalized probability distribution, the 
result is   

 
1 2
2( ) = e .

k
p k

− β ρ
ρ β ρ  (74) 

This circularly symmetric form is best for comparison with 
simulations, because we have the value of = /x ye k k  
available that is necessary to get results into the circular 
coordinates. From equipartition one can arrive at the root-
mean-square radius, 

 rms
2= = .BH k T
k

〈 〉 ⇒ ρ
β

 (75) 

In addition, the mean radius and the most probable radius 
(where ( )p ρ  is maximum) are 

 max
1= , = .

2 k k
π

〈ρ〉 ρ
β β

 (76) 

Simulations of the Langevin LLG equations were carried 
out to calculate some typical thermalized dynamics for a 
vortex in thermal equilibrium. The initial state is taken as a 
relaxed vortex at the center of a nanodisk. Using damping 
parameter α = 0.02, the integration was carried out to final 
dimensionless time τ = 2.5·105 by the second order Heun 
algorithm [29,30] with time step = 0.01.∆τ  Depending on 
the gyrotropic periods this is a fairly large number of vor-
tex revolutions. Even starting from the potential energy 
minimum, thermal fluctuations can initiate the gyrotropic 
motion spontaneously [22]. The result is a noisy gyrotropic 
orbital motion; examples in circular nanodisks were given 
in Ref. [16]. 

Distributions of the vortex core position away from the 
nanodisk center are shown in Fig. 9 for a = 60 nm and in 
Fig. 10 for a = 120 nm, both with ε = 0.5. The data are com-
pared with the theoretical expression (74), applying the ap-
propriate values of k  from the Lagrange-relaxed vortex 
calculations. There is a good agreement here between theory 
and simulations, being better for larger L and smaller a. Of 
course, at larger L the gyrotropic period Gt  is shorter, and 
averaging out to a fixed time is then done over more revolu-
tions, leading to smaller errors. In addition, the system with 
larger a  also has longer periods, hence its errors are greater, 
and averaging to a longer time would give a better fit to the-
ory. The deviation between theory and simulation in Fig. 9 
for L = 10 nm is typical for these simulations over a limited 
number of vortex periods, where on occasion for many peri-
ods, the vortex may move with noticably larger or smaller 
radius than normal from the disk center. This can be seen in 
Fig. 11, where both ( )X τ  and ρ(τ) are shown for the case of 
a = 120 nm, ε = 0.5, L = 10 nm. 

The distribution in the original coordinates ( , )X Y  
will certainly be elliptic, with the same ellipticity parame-
ter e. The normalized probability distribution in ( , )X Y  is 
found as 

 
1 12 2
2 2( , ) = e e

2 2

k X k Yx yyx kk
p X Y

− β − βββ
π π

 (77) 

that is, a Gaussian in each coordinate, with variances in-
versely proportional to the corresponding force constants, 

 1 1= , = .x y
x yk k

σ σ
β β

 (78) 

Of course, the distributions in X  separately from Y  have 
zero mean, which makes them less useful than the distribu-
tion for ρ , with its peak at a finite value of ρ. 

Fig. 9. (Color online) Vortex core position radial distributions 
at T = 300 K for semi-major axis a = 60 nm, ε = 0.5 for two 
disk thicknesses. Symbols are from Langevin LLG simulations 
out to dimensionless time τ = 2.5·105. Solid curves are the theo-
retical expression (73) with 4= 4.299 10k −⋅  N/m for L = 5.0 
nm and 3= 1.676 10k −⋅  N/m for L = 10 nm, from relaxed vor-
tex calculations. The T = 0 gyrotropic periods were τG ≈ 2970 
for L = 5.0 nm and τG ≈ 1500 for L = 10 nm. 
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An example of the vortex core distribution along the 
semi-major axes of a nanodisk are shown in Fig. 12 for a = 
= 120 nm, ε = 0.5 and thickness L = 10 nm. The simulation 
data are compared to the theoretical expression (76) by 
using the appropriate xk  and yk  force constants from La-
grange-relaxed vortex simulations. The greater value of yk  
relative to xk  then leads to the expected narrower distribu-
tion in Y  compared to X. 

5.3. Vortex core speed distribution 

The result for ( )p ρ  can also be mapped into a distribu-
tion for velocity, using the circular coordinate ρ and its 
velocity ρ. With velocity magnitude denoted u, then 

 =| |=| | .Gu ω ρρ  (79) 

Therefore, the distribution ( )g u  in speed u  is easily 
obtained by a rescaling of the distribution ( )p ρ  in radius. 
Applying conserved probabilities, 

 ( ) = ( ) = ( ) | | ,Gp d g u du g u dρ ρ ω ρ  (80) 

then the normalized speed distribution can be obtained 
from 

 1( ) = | | ( / | |).G Gg u p u−ω ω  (81) 

This results in 

 
1 2 2/
2

2( ) = e
ku G

G

kg u u
− β ωβ

ω
. (82) 

However, using relations (43) and (50) for the frequency, 
this is expressed more directly from the force constants and 
the gyrovector, 

 
1 2 22 /
2( ) = e .

G u kGg u u
k

− ββ  (83) 

Alternatively, the speed distribution is 

 
2 2/ r

2
r

2( ) = e .u u ms

ms

ug u
u

−  (84) 

Fig. 10. (Color online) Vortex core position radial distributions at 
T = 300 K for semi-major axis a = 120 nm, ε = 0.5 for two disk 
thicknesses. Symbols are from Langevin LLG simulations out to 
dimensionless time τ = 2.5·105. Solid curves are the theoretical 
expression (73) with 4= 2.667 10k −⋅  N/m for L = 5.0 nm and 

4= 9.174 10k −⋅  N/m for L = 10 nm, from relaxed vortex calcula-
tions. The T = 0 gyrotropic periods were τG ≈ 4770 for L = 5.0 
nm and τG ≈ 2760 for L = 10 nm. The ρ(τ) used to produce the 
curve for L = 10 nm is displayed in Fig. 11. 

Fig. 11. Vortex core motion for thermalized dynamics at T = 
= 300 K for semi-major axis a = 120 nm, ε = 0.5, thickness L = 
= 10 nm. Graphs of X(τ) and Y(τ) are very similar, but of differ-
ent amplitudes. The resulting equivalent circular radius ρ(τ) was 
used to produce the corresponding probability p(ρ)in Fig. 10. 

Fig. 12. Vortex core linear distributions along the major axes at 
T = 300 K for semi-major axis a = 120 nm, ε = 0.5, thickness 
L = 10 nm. Symbols are from Langevin LLG simulations to 
time τ = 2.5·105. Solid curves are from theoretical expression 
(77) with kx = 4.696·10–4 N/m and ky = 1.792·10–3 N/m, from 
relaxed vortex calculations. 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2015, v. 41, No. 10 1021 



G.M. Wysin 

The rms speed used in the second form has been de-
fined from the rms radius, e.g., 

 rms rms 2
2= | | = .G

ku
G

ω ρ
β

 (85) 

This speed distribution might be compared with one for 
particles with kinetic energy 2( )/2,Gm u  where Gm  is an 
effective mass for gyrotropic motion. Then comparing the 
exponent in the first expression for ( )g u  leads to a result, 

 
2

= .G
Gm
k

 (86) 

G  increases linearly with thickness L, while k  is roughly 
proportional to L2, so this mass is nearly independent of the 
film thickness. Gm  depends on the nanodisk size primarily 
through the dependence of k  on the nanoparticle area .abπ  
However, the expected value for typical nanodisks will be 
extremely small (on the order of 10–23–10–22 kg). This mass 
represents the inertia of the vortex in response to the applied 
forces, as mediated by the effects caused by the gyrovector. 
Certainly it is unusual in that it depends inversely on the 
force constant. 

6. Conclusions 

A combination of Lagrange-constrained vortex relaxa-
tion and time development of the LLG equations have been 
used to study single vortex dynamics in elliptically shaped 
magnetic nanodisks. The results have been analyzed in 
view of using the Thiele equation for the motion of the 
vortex core, where the core position R acts as a collective 
coordinate. Even the vortex relaxation results are interpret-
ed by using R as the coordinate for the vortex effective 
potential ( ).U R  The vortex potential is approximately 
parabolic along the two principal axis directions, but only 
for displacements not approaching the edge of the 
nanodisk. A vortex moving very close to an edge will be 
strongly perturbed by its image vortex outside the system, 
an effect [34] not considered here that softens the potential 
in that region. 

The force constants xk  and yk  in ( )U R  have been de-
termined for some different disk sizes and ellipticities 

= / ,b aε  using the Lagrange-constrained spin-alignment 
relaxation procedure, holding the vortex in different posi-
tions to estimate the potential. Three interesting results 
emerge here: (1) There is a lower limit of ε  below which 
the vortex solution is unstable towards the prefered for-
mation of a quasi-single-domain state. For increasing semi-
major axis a, this lower limit on ε  becomes lower. (2) 
Starting from the circular limit, = 1,ε  and moving towards 
lower values, xk  diminishes and is roughly proportional to 

ε, while yk  increases and is roughly dependent on 1,−ε  
see Figs.2 and 3. These are not precises statements, how-
ever, they hold more closely for larger semi-major axis a 

and over a wider range of ε . (3) As a result, the asymptot-
ic dependence of the energetic ellipticity = /x ye k k  on 

ε  for large a is linear, ,e ≈ ε  see Figs. 5 and 6. This then 
shows that vortex orbits at large a will have the same shape 
as the perimeter of the ellipse. These asymptotic results 
hold only weakly for smaller elliptical nanodisks, and only 
in the region ε  closer to 1 . 

Concerning vortex dynamics in elliptical nanodisks, 
micromagnetic simulations have been used to determine 
the time evolution of the whole disk's magnetizaton, start-
ing from a Lagrange-relaxed initial vortex. The vortex mo-
tion seen in micromagnetics simulation has been compared 
with the core motion expected from the Thiele equation. 
These results agree well, using the force constants , ,x yk k  
from the static relaxed vortex calculations to make the 
comparison. The vortex gyrotropic frequency is predicted 
to be = / ,G k Gω −  where = x yk k k  is the geometric 

mean of force constants. At zero temperature, this is con-
firmed in the micromagnetics, see Fig. 8. The gyrotropic 
frequencies Gω  obtained from micromagnetics, Figure 7, 
have a rather weak dependence on ε  until the vortex sta-
bility limit is reached. The frequencies do increase approx-
imately linearly with film thickness L, and for larger a, we 
also find 1,G a−ω ∝  again only away from the stability 

limit. The behavior of k  with ε  and a, L, Fig. 3, can be 
used to predict gyrotropic frequencies, when included with 
the gyrovector .G L∝  

An effective circular coordinate ρ has been introduced, 
in which the vortex gyrotropic motion becomes uniform 
circular motion. This coordinate is more convenient for 
determination of the vortex core position distribution in 
thermal equilibrium. Longer simulations of the Langevin-
LLG equations were used to get statistics for the vortex 
position over many orbits in equilibrium. Provided a large 
enough number of revolutions has been observed, one 
finds that indeed the distribution of vortex core position 
can be described with a Boltzmann distribution. Again, to 
make the proper comparison, the force constants ,x yk k  
are needed. The force constant k  determines the radial 
distribution ( )p ρ ; larger k  naturally implies a smaller 
width. The force constants xk  and yk  determine the dis-
tributions of core position along the principal axes of the 
nanodisk, and again, the distribution widths decrease with 
increasing force constants. Thus, the determination of the 
effective vortex potential and its force constants is seen to 
be the most important element needed for understanding 
the dynamics in a noncircular magnetic nanodisk. 
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