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We have performed a comprehensive EPR investigation of the quasi-one-dimensional organic systems 
(TMTTF)2X with centrosymmetrical anions X (X = SbF6, AsF6, and PF6). We observe a strong rotation of g-factor 
principal axes when the temperature decreases below charge-ordering temperature TCO. The possible origin of 
this rotation is analyzed on the basis of quantum chemical calculations performed using density functional theory 
method. A good agreement between theory and experiment is found. 

PACS: 71.27.+a Strongly correlated electron systems; heavy fermions; 
75.85.+t Magnetoelectric effects, multiferroics; 
76.30.–v Electron paramagnetic resonance and relaxation. 
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Quasi-one-dimensional systems such as organic charge-
transfer salts have been intensively studied during the last 
decades. Among these organic salts, (TMTTF)2X mole-
cules, where X represent a inorganic anion, exhibit a very 
rich phase diagram [1] and display phase transitions such 
as antiferromagnetic, charge-ordering, spin-Peierls, etc. 
They cristallize in the triclinic 1P  space group with two 
donor molecules and one anion in the unit cell. TMTTF mo-
lecules are arranged in a “zig-zag” configuration, forming 
stacks along the a  direction and layers in ab plane which 
alternate with the anion X along the c axis. Charge-order-
ing (CO) is observed in these compounds at TCO = 65 K, 
105 K [2], and 154 K [3] for X = SbF6, AsF6, and PF6, 
respectively. 

Here, we report a continuous wave (cw) electron para-
magnetic resonance (EPR) study of (TMTTF)2X (X = SbF6, 
AsF6, and PF6). The rotation of g-factor principal axes was 
observed in these three salts when the temperature decreases 
from 300 to 4 K. This rotation is considerably enhanced 
below the charge-ordering transition. We discuss the pos-
sible origin of this rotation by comparing experimental re-
sults with those obtained from our quantum chemical cal-

culations performed with density functional theory (DFT). 
When considering only a thermal contraction of the TMTTF 
structure, as temperature decreases, the DFT calculations 
show a rotation of about 4–5° between T = 300 and 4 K. 
But when a uniform anion displacements due to the charge-
ordering transition were considered [4] we obtain a much 
stronger rotation ranging up to 26° in the case of 
(TMTTF)2SbF6 salt, in fair agreement with the experi-
mental data. 

Single crystals of (TMTTF)2X were prepared by stand-
ard electrochemical method [5] and were needle-shaped 
with typical dimensions of 3×0.1×0.5 mm. X-band EPR 
measurements were performed on a cw Bruker EMX spec-
trometer operating at about 9.6 GHz and equipped with a 
continuous flow cryostat covering the temperature range 
from 4 to 300 K. The microwave power supplied into the 
cavity was below 1 mW in order to avoid saturation of the 
EPR signal. The modulation frequency was set at 100 kHz 
and its amplitude was chosen between 0.1 and 1 G to pre-
vent distortion of the EPR signal due to over-modulation. 
The sample was fixed on quartz suprazil rod with the a  
axis parallel to the rotation axis, in addition the a  direction 
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being oriented along the microwave magnetic field mwh . 
A small amount of DPPH was used as g-factor marker. The 
sample holder was rotated around the a  axis every 5° with 
an accuracy of 0.25°. For each set of measurements a fresh 
crystal was used. 

Quantum chemical calculations have been performed 
by DFT method using the ORCA program package [6]. 
The g factor was obtained from single point calculations, 
combing the hybrid functional B3LYP [7,8] and the EPR-II 
basis set, as a second derivative property of the energy 
with respect to the external magnetic field and the electron 
magnetic moment [9–12]. To analyze our experimental 
results, we have introduced an orthogonal coordinate sys-
tem with *a , *b , and *c  axes such as *a , *b , and *c  are the 
principal axes of the g factor. We choose the *a  axis of our 
coordinate system to be parallel to the long axis of the 
studied crystal which according to [13] is parallel to the 
crystallographic a  axis. Independently, by EPR measure-
ments, we have checked that the *a  axis is one of the prin-
cipal axes of the g factor. Therefore, the two other g-factor 
principal axes should be in the plane perpendicular to the 
*a  axis, and are denoted *b  and *c  axes. Note that the *b  

and *c  axes are not fixed by the symmetry elements of the 
point group in considered low symmetry crystals. 

Figure 1 shows a representative angular dependence 
of the g factor in the * *b c  plane taken at different tem-
peratures for (TMTTF)2SbF6 sample. We observe a clear 
g-factor anisotropy which is in agreement with previous 
results [13]. We assign the minimum of g-factor value in 

* *b c  plane to the *b  axis and the maximum to the *c  axis. 
To simplify our analysis the room temperature (RT) curve 
of ( )g θ  is chosen as a reference and we set the magnetic 
field orientation *||H b  as = 0θ ° in the laboratory coordi-
nates at 300 K. 

Our main finding is that the *b  axis continuously ro-
tates when the temperature decreases. For instance, as seen 
in Fig. 1, the position of the *b  axis is close to θ = 19° in 

(TMTTF)2SbF6 at T = 30 K. This difference in the *b  axis 
position is denoted ( )T∆θ  and is plotted in Fig. 2. 

Interestingly, the ∆θ temperature dependence is not 
monotonic, and is characterized by two different behaviors 
in two distinct temperature intervals. Between RT and 
TCO, ∆θ reaches at most 5–6° with a slow variation. In 
contrast, between TCO and 4 K, the ∆θ temperature de-
pendence is much more important, and at low temperature 
the ∆θ reaches up to 22° for (TMTTF)2SbF6. This latter 
behavior can be attributed to charge-ordering phase tran-
sition. 

To explain the observed rotation calculations were per-
formed using experimental crystal data obtained at dif-
ferent temperatures from previous studies [14,15] as input 
parameters. They were conducted to compute the g-factor 
parameters and the corresponding spin density distribu-
tions. Above TCO, the charge is equally distributed be-
tween two neighbouring TMTTF molecules. Below TCO, 
there is a charge disproportion between two TMTTF mole-
cules causing the loss of the symmetry centre. 

In Fig. 2 in addition to the observed temperature de-
pendence of ∆θ we show the one predicted by DFT calcu-
lations. Consistently with experiments, the calculations 

Fig. 2. Experimental temperature dependence of the *b  axis posi-
tion as compared to its position at RT for (TMTTF)2X (X = 
= SbF6, AsF6, and PF6). The calculated *b  axis position due to 
the thermal contraction of TMTTF is represented by ∆θ calc. 
scen. 1 and due to the thermal contraction of TMTTF and uni-
form anion displacements is represented by ∆θ calc. scen. 2. 

Fig. 1. A representative g-factor angular dependence for 
(TMTTF)2SbF6 at different temperatures when the static magnet-
ic field is applied perpendicular to the a axis. The evolution of 
the position of the *bg  is indicated by a dashed line. 
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reveal two different behaviors of ( )T∆θ  in two distinct 
temperature intervals. When considering only thermal con-
traction of the molecular structure between 300 K and TCO, 

calc ( )T∆θ  varies slowly up to 4–5° as temperature decreas-
es (scenario 1). If now one considers a uniform anion dis-
placement of about 10% towards the charge rich TMTTF 
[4,16] below TCO, calc ( )T∆θ  reaches up to 26° for 
(TMTTF)2SbF6 (scenario 2), 18° for (TMTTF)2AsF6 and 
12° for (TMTTF)2PF6, respectively, in a good agreement 
with experiment. 

In conclusion, quasi-one-dimensional charge-transfer 
salts (TMTTF)2X with X = AsF6, PF6, and SbF6, have 
been studied by cw X-band EPR and data have been inter-
preted by quantum chemical calculation. We observed the 
g-factor principal axes rotation when the temperature de-
creases. To explain this behavior, quantum chemical calcu-
lations were performed using the DFT method. Our com-
putational study has revealed two distinct temperature 
behaviors of ∆θ in a good agreement with experimental 
results. We argue that the charge-ordering transition in 
(TMTTF)2X crystals induces a strong g-factor axis rotation 
around the a  axis. 

This work was supported by CNRS's research federa-
tion RENARD (FR3443) for EPR facilities. 
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