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We consider a graphene sheet with a zigzag edge subject to a perpendicular magnetic field and investigate the 
propagation of in-plane acoustic edge waves. In particular it is shown that propagation is significantly blocked 
for certain frequencies defined by the resonant absorption due to electronic-acoustic interaction. We study 
absorption of acoustic energy as a function of magnetic field and find that, for a finite gate voltage and fixed 
acoustic frequency, tuning the magnetic field may bring the system through a number of electronic resonances. 
We suggest that the strong interaction between the acoustic and electronic edge states in graphene may generate 
significant nonlinear effects leading to the existence of acoustic solitons in such systems. 

PACS: 43.35.+d Ultrasonics, quantum acoustics, and physical effects of sound; 
81.05.ue Graphene; 
73.43.–f Quantum Hall effects. 
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The discovery of graphene [1], an ultra-pure 2D crystal 

membrane of remarkable promise [2], has in just the past 
few years led to the rapid growth of a new field of re-
search, uniting and challenging scientists from research 
backgrounds as diverse as the capabilities of the material 
itself. In addition to its astounding material properties, the 
very existence of a true 2D crystal both requires and 
inspires new ways of thinking. 

It is well known that a 3D continuous medium supports 
acoustic waves localized to the surface [3]. Such surface 
waves have been used to probe the electronic properties of 
samples [4], e.g., the fractional quantum Hall effect of 2D 
electron gasses in semiconductor heterostructures [5,6], 
topological insulators [7,8] and, more recently, graphene [9]. 
In past schemes the surface wave direction of localization 
was normal to the 2D electron gas plane so that the 
electrons experienced no localization of acoustic energy. 
However, the isolation of single-layer graphene [1], a flex-
ible 2D membrane, suggests the existence of acoustic edge 
waves, a 2D analog of the 3D surface waves. Recent 
studies have shown such edge-localized vibrational motion 
in graphene to consist of both in-plane and flexural modes, 
both decaying into the 2D “bulk” [10]. At the same time, 
a magnetic field applied perpendicularily to the sheet would 
induce current-carrying electronic states localized to 
the same graphene edge on the order of the magnetic 

length, = / | | 26 nm / [T]Bl eB B≈  ( [T]B  is the dimen-
sionless field strength in Tesla) [11–17]. In this paper we 
investigate the interaction between electronic quantum 
Hall effect edge states and localized acoustic edge waves, 
specifically low-amplitude in-plane Rayleigh waves [3], 
while flexural modes will be neglected. 

To be concrete, we consider a 2D graphene sheet with a 
stress-free zigzag edge at = 0y , directed along the x axis, 
see Fig. 1. A transverse magnetic field, = | | zB−B e , is 

Fig. 1. (Color online) A schematic picture of a continuous 
(graphene) sheet with an edge along the x axis and an applied 
perpendicular magnetic field (purple). The electronic states (red) 
may be either localized Landau orbits in the bulk or dispersive 
states near the edge. Along the edge there are propagating 
acoustic (Rayleigh) edge waves given by a 2D displacement field 
(blue, amplitude exaggerated). 
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then applied to the sheet ( , ,x y ze  are unit vectors), bringing 
the sample into the quantum Hall effect regime. The sheet 
is treated as a continuous medium and the width of the 
sample is taken to be large enough for the electronic and 
acoustic edge states to decay completely across the sample; 
it is then enough to consider only one edge. The sample 
length L is assumed to be long enough to allow for acoustic 
wave propagation in the x direction. 

Since the graphene edge, which is normal to y−e  and 
located at = 0y , is stress-free, the elastic boundary condi-
tions are 

 ( ,0) = 0, = , ,jy x j x yσ  (1) 

where ( , )ij x yσ  is the usual 2D stress tensor [3]. Since the 
Rayleigh waves are pseudo-1D, they can be specified by 
the wave vector x-component q alone, which will be 
referred to as the wave number. Standard techniques [3] 
give the two-component displacement field ( ) ( , )q x yu  for 
an in-plane Rayleigh wave as 

 
( )
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q
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f y qx t
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where 

 | | | |( ) ( ) = e eq y q yq l tx xf y C−λ −λ−  (3) 

and 

 | | | |( ) ( ) = e e .q y q yq l ty l yf y C−λ −λ−λ +  (4) 

The scalar prefactor 0u  is the amplitude, and the dimen-
sionless constants are 

 = 0.81, = 0.46,l tλ λ   

 = 0.61, = 1.3,x yC C  (5) 

and depend only on the ratio of the transverse and longi-
tudinal sound velocities in graphene, /t ls s , or, equivalent-
ly, on the Poisson ratio. The sound velocities are taken to 
be 4= 1.4 10 m/sts ⋅  and 4= 2.1 10 m/sls ⋅  [18,19]. The dis-
persion relation is linear, 

 ( ) = | | ,Rq s qω  (6) 

with Rayleigh-wave sound velocity 4= 1.2 10 m/sRs ⋅ . 
The electronic subsystem is described by the standard 

effective-model graphene Hamiltonian 

 el ˆ ˆ= ( ),F
x x y yp p+ τH σ σv  (7) 

where 6= 1.0 10 m/sF ⋅v  is the Fermi velocity of graphene, 
valley index = 1τ +  ( 1− ) for the spectral valley around the 
K-point (K′-point), the sσ  are the sublattice-space Pauli 
matrices [16,17,20] and the sublattice pseudospinor upon 
which the Hamiltonian acts is defined by ( , ) =x yτψ
= ( ( , ), ( , ))T

A Bx y x yτ τψ τψ . The transverse magnetic field is 
represented by a vector potential in the Landau gauge, 

= ( ,0)T
B ByA , and then included in the Hamiltonian of 

Eq. (7) through the minimal coupling e→ +p p A  (the elec-
tron charge is < 0e− ). 

In an infinite bulk system the electronic energies form 
Landau levels [21–23], 

 1= sgn ( ) | |, = 0, 1, 2,nE n E n n ± ±   

 1
1 = 2 | | ,F

BE l B− ∝v  (8) 

and the electronic wave functions are localized and center-
ed around 2=c By kl−  ( = /xk p  being the electron wave 
number), corresponding to closed Landau orbits, see 
Fig. 1. This simple picture is modified by the introduction 
of an edge. 

In the considered system the edge at = 0y  is a zigzag 
edge of B-atoms, leading to the electronic boundary con-
dition [24] 

 ( ,0) = 0.A xτψ  (9) 

Since the zigzag boundary condition does not mix valleys 
the K- and K ′-points can be considered separately. 

The edge induces a positive (negative) dispersion in the 
electron-like (hole-like) Landau levels as k  increases and 
the wave function center cy k∝ −  moves toward and over 
the edge [11], pressing the oscillator wave functions 
against the edge and turning them into edge-localized 
current-carrying states. For a classical, intuitive picture of 
this effect, see Fig. 1. 

The dispersion can be calculated by generalizing the Lan-
dau-level index n to a continuous analogue, 2

1= ( / )E Eν , 
and describing the wave functions with (Whittaker's) para-
bolic cylinder functions ( )D zν , which reduce to the wave 
functions for the bulk electronic states for integer ν but 
allow for non-integer ν solutions between the bulk Landau 
levels. The spectrum is then calculated from the boundary 
condition of Eq. (9) [12–15]. The dimensionless energy 

1/E E E≡   is schematically plotted against the dimen-
sionless wave number Bkl k≡  in Fig. 2 for both the K- and 
K ′-points. The energy band stemming from Landau level 
n will be referred to as “edge band n”. When = = 0Bk kl , 

= 0cy  and the wave function is centered on the edge. 
As seen in Fig. 2, the zeroth Landau level remains dis-

personless for all k in the K ′-point spectrum, whereas it is 
seemingly split in two edge bands, one electron-like and 
one hole-like, in the K-point spectrum. This can be ex-
plained by extra degeneracies introduced by topological 
edge states; the peculiar nature of the = 0n  Landau level 
have been studied in other papers [14,15,25,26]; for the 
purpose of this paper the schematic spectra in Fig. 2 will 
suffice. 

The electronic pseudospinor wave functions are given 
in Appendix A for reference. There, scaled physical coor-
dinates ( ) / ( / )B Bx y x l y l≡   are introduced, which will be 
employed below when considering the absorption. 
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The standard first-order-in-strain Hamiltonian for the 
electron-strain interaction in graphene is given by [27] 

 ( )int 1( , ; ) = ( )xx yyx y t g u uτ + +H u I   

 ( )2 ( ) 2 ,xx yy x xy yg u u u+ −τ − +σ σ  (10) 

where iju  is the standard strain tensor. The diagonal ele-
ments are the scalar deformation potential, with coupling 
constant 1 10 eVg 

, and the off-diagonal elements are 
usually imagined as a strain-induced pseudo-vector-poten-
tial, and their coupling constant is 2 1 eVg 

. Since the 
valley separation is 1| ' | a−−K K  , with a being the lattice 
constant, interaction with the acoustic Rayleigh waves will 
not mix K  and K ′ if the acoustic wave number 1q a− , 
which must hold for the continuous-media model to be 
valid. Therefore all electronic transitions induced by the 
acoustic waves are intravalley and the K- and K ′-point 
spectra can still be considered separately using = 1τ ± . 

Inserting Eqs. (2), (3), and (4) into Eq. (10) yields the 
Hamiltonian for an the electronic interaction with the 
acoustic Rayleigh waves as 

 ( ) { | |( )
int 0 1 1( , ; ) = e ( ) ( e q yq iqx i t lx y t u iq g T −λτ − ω +H u I   

 ( | |,
2 2 2sgn ( ) e q yyx l lx yg T i q T −λ + −τ + + σ σ   

 )}| |,
2 2sgn ( ) e H.c.q yyx t tx yT i q T −λ + τ − + σ σ , (11) 

where the constants are 

 1 2= 0.34, = 1.6,yT T    , ,
2 2= 1.7, = 1.2 .x l x tT T  (12) 

Considering the scaled spectra for the K - and K ′-points 
in Fig. 2, we have, for a finite gate voltage GV , that the 
scaled Fermi energy is 

 
1

[V]
= ,

[T]

F
F GVEE

E B
≡ −α  (13) 

where [V]GV  is the gate voltage in volts and the propor-
tionality factor is 

 1/2= V/T 1.4.
2F

e
α ≈

v
 (14) 

This means the effect of tuning GV  and/or B  is to simply 
shift the scaled Fermi level in the scaled spectrum. Doing 
so alters the number of dispersive energy bands crossing 
the Fermi level. If 

 1| | < | | < | |,F
n nE E E−
    (15) 

where nE  refers to the scaled energy of bulk Landau level 
n (see Eq. (8)), there will be n edge bands ( 1n −  edge bands) 
crossing the Fermi level in the K-spectrum (K ′-spectrum). 
These crossings are the quantized conduction channels of 
the quantum Hall effect theory and the absolute values in 
Eq. (15) correspond to the electron–hole symmetry of the 
spectrum. The dispersionless level in the K ′-spectrum ne-
ver crosses the Fermi level and is therefore assumed never 
to be involved in transitions. 

To analyze the possible electronic transitions we neg-
lect back-scattering due to the assumed low amplitude of 
the acoustic wave and consider the transition rate between 
levels, thereby introducing conservation laws. The transi-
tion rate ,m nW  for an electronic jump from edge band n to 
edge band m due to interaction with an acoustic wave with 
scaled wave number Bql q≡   is given by the Fermi golden 
rule, 

 ( ), ,
2=m n m n R m k q kn m

kn

W dE E E E +
π

δ + − δ ×∑∫  





   



  

 ( )
2

; ;
( ) ( ) 1 ( ) .m FD n FD mk q km n
E f E f Eτ× ρ Λ −

 



 (16) 

Here, , ; ;k q k k q kn m m n
τ

+δ Λ 

 


 is the matrix element of a transi-

tion from nk  to mk , induced by an acoustic wave with wave 
number q . It is defined by 

Fig. 2. (Color online) A schematic picture of the electronic 
spectrum around the points K  (a) and K ′ (b). The scaled energy 

1= /E E E  is plotted against the scaled wave number = Bk kl  
(energy bands in red). The leftmost low-k  states are bulk states 
and their spectrum consists of discrete Landau levels. The dis-
persive states are edge states and here share the label n  with their 
bulk counterparts. 
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 , † ,2 ( )
int, ; ;

( )k kqm nBk q k k q kn m m n
l dxdyτ ττ τ

ν ν+δ Λ = ψ ψ∫∫ H u
 

 

 




  ,  

  (17) 

where the interaction is given by Eq. (11) (the harmonic 
time dependence is accounted for by the energy conserva-
tion), the electronic wave functions are given in Appen-
dix A and the integration surface is the whole sheet in 
terms of ( , )x y  . The continuous level index is 2

1= ( / )E Eν  
as before, ( ( ))FDf E k  is the Fermi–Dirac distribution func-
tion, ( )mEρ  is the density of final states, nk  is the scaled 
wave number for an electronic state in edge band n corres-
ponding to energy nE , and the scaled acoustic dispersion is 
given by, using Eq. (6), 

 ( ) = | | ,R RE q s q

    (18) 

with dimensionless speed of sound 

 .
2

R
R F

ss ≡

v
 (19) 

The energy conservation and the Fermi–Dirac factors 
confine the energy region of absorption to the vicinity of 
the Fermi energy, F

n mE E E  , and thus imply that the 
energies and wave numbers may be taken at the Fermi 
level, e.g., F

n nk k→  . Armed with this knowledge, the pic-
ture can be simplified by linearizing the spectrum, swapping 
each curved edge band n for a linear band n with velocity 
equal to the Fermi velocity nv  of the band, see Fig. 3. Then 
the linearized dimensionless dispersion of band n is 

 ( ) = ( )F F
n n n n nE k k k E− +  
 

v , (20) 

where the dimensionless velocity of the band is defined 
analogously to Eq. (19), 

 ,
2

n
n F≡

v
v

v
 (21) 

and R ns 
 v . 

The above arguments together with energy and momen-
tum conservation restrict the number of allowed transitions 
by imposing the requirement that 

 , ,F F F
m n m nq k k k≈ − ≡ ∆  

  (22) 

i.e., the acoustic wave number q  must roughly match the 
k-separation of the two Fermi crossing points. Transitions 
occur in the vicinity of the Fermi level, so for the purpose 
of this calculation it is sufficient to take ,= F

m nq k∆  . The 
same above arguments also imply that there are no allowed 
intra-level transitions, n m≠ . 

The number of band-to-band transitions ( )tN n  for n 
Fermi level crossings is then 

 ( )
! if 2,

2( 2)!=
0 if < 2 ,

t

n n
nN n

n

 ≥ −


 (23) 

and it must be remembered that transitions can occur in 
both the K - and K ′-spectra. 

Since the spacing 1,
F
n nk +∆   between neighboring Fermi 

crossings is approximately equal for the same energy, i.e. 
, , 1

F F
n n j m mk j k+ +∆ ≈ ∆  , it is potentially useful to group the tran-

sitions in terms of how many bands they jump, i.e., a jump 
from band n to band n j−  is a j-jump (the minus sign is 
due to Fermi crossings of higher-n bands having lower )k . 
For the situation with n Fermi crossings in one of the val-
ley spectra, the number of j-jumps is 

 ( ),
if > 2,

=
0 if 2.t j

n j n
N n

n
−

 ≤
 (24) 

Summing ,t jN  for all <j n  yields the total number of 
transitions in the spectrum, tN . Since all j-jumps have 
approximately equal ,

F
m nk∆  , i.e., absorbed acoustic frequen-

cy, they might appear as a multi-peak in the absorption 
spectrum: ,t jN  peaks close together. 

The absorbed acoustic frequencies 1
,

F
B m nsl k− ∆   can be 

found by using the electronic boundary conditions to find 
the Fermi level crossings F

nk , see Appendix B. These fre-
quencies are on the order of 1 11 1[T] 10 sBsl B− −⋅  and 

Fig. 3. (Color online) In the K-point spectrum of Fig. 2 the Fermi 
energy FE  (horizontal grey line) is set by a gate voltage to lie 
between, say, bulk Landau level 1 and Landau level 2, thus 
giving the spectrum two Fermi crossing points (green circles), at 

1
Fk  and 0

Fk , for edge band 1 and 0, respectively. Since transitions 
occur only near the Fermi level, the spectrum can be linearized, 
resulting in an effective model with two linear bands crossing the 
Fermi level at points 1

Fk  and 0
Fk  (see magnified inset). The 

resonant frequency is then given by the wave number separation 
at the Fermi level 0,1 0 1= | |F F Fk k k∆ −   . The picture is schematic. 
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depend only on the scaled Fermi energy FE . The periods 
of these acoustic frequencies must be much shorter than 
the acoustic decay time due to interaction with the elec-
tronic subsystem for the Fermi golden rule to remain valid. 

For the linearized spectrum, Eq. (20), standard periodic 
boundary conditions in the x direction yields the density of 
final states per unit length ( )mEρ  as 

 1( ) = .
2 2

m F
m

Eρ
π 
v v

 (25) 

As seen in Fig. 2, the density of states decreases with edge 
localization, i.e., increasing k increases nv . This effect 
decreases the strength of the absorption, but is not 
sufficient to counter the interaction since for Fermi levels 
in the range of the single-digit Landau levels, the edge 
bands typically have < 1nv . 

Since transitions occur near the Fermi level, the matrix 
element of transition in Eq. (17) is evaluated for ,= m nq k∆   
and = = ,F

n mE E E    and is then 

 ( )0
, 1 1 2 2;

= F
m nF Fk k Bm n

u
i k g F g F

l
τ  

Λ ∆ + 
  

 , (26) 

where the dimensionless transition-dependent integrals have 
been separated into a scalar potential contribution 1F  and 
pseudo-vector-potential contribution 2F ; both given in 
Appendix C. Normalization of the electronic wave func-
tions causes these integrals to be at the most unity. 

Inserting the above into Eq. (16), the final expression 
for the absorption rate per unit length is 

 
22

2, 0
, 1 1 2 22

( )1= .
| |2

F
m n

m n F
m n B

k u
W g F g F

l
∆   

+   −   



 



v vv
  

  (27) 

The first factor 24 2 1 11.6 10 eV ·s ·m− − −≈ ⋅  and consists 
of general constants, and the second factor consists of 
parameters specific to the transition in question. The third 
is the amplitude dependence, with the amplitude scaled by 
the magnetic length. By assumption, the amplitude is low, 
causing this factor to be very small. The final factor is the 
coupling coefficients and the transition integrals, which are 
less than one by normalization, meaning that the order of 
magnitude is set by the coupling. Inserting the definition of 
the magnetic length yields ,m nW B∝ . This direct pro-
portionality to the field comes from the x-derivatives in the 
strain tensor yielding a factor ( )iq  and the fact that absorp-
tion occurs only for the acoustic wave numbers q which 
match the electro-magnetic spectrum and thus are of 
the order of inverse magnetic length. 

The total energy of the acoustic wave is [28] 

 2 ( ) 2
ac gr= ( ) | ( , ;0) |q

S

E q x y dxdyρ ω ∫∫ u  , (28) 

where 7 2
gr = 7.6 10 kg / m−ρ ⋅  is the surface mass density 

of graphene [19]. In this case 

 
2

( ) 2 0
2
ac

2
| ( , ;0) | = ,

| |
q

S

Lu
x y dxdy

q N∫∫ u  (29) 

and integration yields 

 ac = 1.2,N  (30) 

whereas the energy lost to each electronic transition is 
simply ( )qω . The inverse acoustic decay time Dτ  due to 
interaction with the electronic subsystem is then given by 

 
2 2

2ac ,
1 1 2 22

gr

( )1 =
2 2 | |

F
m n

F
D m n B R

N k
g F g F

l s

 ∆
  + =
 τ − ρ 



 
v v v
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2,
1 1 2 22

( )2.0 10 [T]= .
| |[s eV ]

F
m n

m n

kB g F g F
∆⋅

+
−⋅



 v v
 (31) 

As an example, consider the simplest case. The gate 
voltage is adjusted in relation the magnetic field so that 

 1 2= ,
2

F E EE + 

  (32) 

i.e., the Fermi level is now in the middle of the gap between 
Landau level 1 and 2. According to Eq. (15), there will be 
2 bands crossing the Fermi level in the K-point spectrum 
(1 in the K ′-spectrum) and by Eq. (23) there will, trivially, 
be 1 possible transition (0 possible transitions). Equation (24) 
specifies that this one transition will be between neighbor-
ing edge bands. Solving Eq. (B.1) numerically returns 

1 = 1.29Fk −  and 0 = 0.36Fk , the points where the bands inter-
sect the Fermi level. This leads to 0,1 = 1.65Fk∆  , which will 
be the acoustic wave number absorbed in the transition 
from edge band 1 to edge band 0. The fixed FE  means that 
the generalized level index is, according to Eq. (B.3), 

2= ((1 2) / 2) 1.4571Fν + ≈  and the band velocities are 
estimated to 0 0.6≈v  and 1 0.3≈v . Using the wave 
functions of Eq. (A.2) with parameters Fν  and 1

Fk  0( Fk ) for 
edge band 1 (0) as well as the acoustic wave number 0,1

Fk∆   
allows for numerical evaluation of the integrals in 
Appendix C. The interaction integrals in Eqs. (C.1) and 
(C.2) yield 1 = 0.0546F −  and 2 = 0.0918F τ − . Inserting all 
known values into Eq. (31) the resulting inverse decay 
time is 

 
8

2
1 22

1 1.8 10 [ ]= 0.0546 0.0918 .
[s·eV ]D

B T g g⋅
+

τ
 (33) 

With the standard values [27] of 1 20 eVg ≈  and 2 2 eVg ≈ , 
the decay time becomes 3.4 ns/ [T]D Bτ ≈ , which corres-
ponds to a characteristic decay length of 41 m / [T]Bµ . For 
reasonable magnetic fields, the decay time is much longer 
than the acoustic period 11[T] 10 sB −

 , thus validating 
our use of the Fermi golden rule. The prerequisite for this 
transition, Eq. (32), together with Eqs. (13) and (14), means 
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that the transition requires [V] / [T] 1GV B− 
. In addition, 

the acoustic frequency must be such that its scaled wave-
number, which is dependent on the magnetic field, fulfills 

= 1.65.Fq k≈ ∆   
In order to study the electronic absorption as a function 

of magnetic field, we performed a numerical simulation 
and plotted the inverse acoustic decay time of Eq. (31) vs 
1/ [T]B  with a fixed gate voltage = 50 mVGV −  for 
different acoustic frequencies ac= 2 fω π . By decreasing the 
magnetic field, the effective Fermi level is shifted upward 
in the scaled spectrum of Fig. 2; simultaneously, the acous-
tic wave number is continuously being rescaled according 
to = Bq ql . Valleys K  and K ′ are treated separately, but 
both contribute to the total absorption. In the numerical 
model we introduced a finite electronic relaxation time 

10
el 10 s−τ   and a small temperature = 5 K.T  

The resulting absorption plots are shown in Fig. 4 and 
the corresponding resonant transitions are plotted in the scal-
ed electronic spectrum in Fig. 5. As shown, for a given 
acoustic frequency propagation may be blocked for several 
values of the magnetic field due to multiple resonant trans-
itions, but for a given pair of edge bands n and m, resonance 
occurs only for a certain continuous interval of B. Generally, 
it can be shown that transitions n to m occur when 

 < < .F Fm
mn mn

n
k q k∆ ∆



 





v
v

 (34) 

In conclusion, we have demonstrated that a stress-free 
graphene edge supports propagating vibrational in-plane 
edge modes in the form of 2D Rayleigh waves, and that 
interaction with such waves can cause electronic transi-
tions between the electronic edge states induced by a per-
pendicular magnetic field. Since momentum conservation 
requires the wavelength of the acoustic waves to be on the 
scale of the magnetic length for transitions to occur, the 
magnetic field strength enters into the matrix element as 
a simple proportionality through the strain tensor. Finally 
we studied the acoustic decay time as a function of mag-
netic field strength for several acoustic frequencies, and 
found that for a given acoustic frequency the medium can 
become non-transparent for several values of the magnetic 
field, corresponding to different resonant transitions. The 
results could be verified by, e.g., tuning the magnetic field 
for a fixed gate voltage while measuring the decay of 
propagating acoustic edge waves. We suggest, based on 
comparison with similar systems [29], that this edge-
localized interaction could result in nonlinear phenomena 
such as acoustic solitons propagating along the edge. Such 
solitons will be the subject of a future paper. 
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Fig. 4. (Color online) Inverse acoustic decay time in seconds 
1[s]D
−τ  vs inverse square root of magnetic field in Tesla 1 / [T]B  

for gate voltage = 50 mVGV −  and temperature = 5 KT , cal-
culated for acoustic ordinary frequencies (a) 11 1

ac = 0.85 10 s ,f −⋅  
(b) 11 1

ac = 1.25 10 s ,f −⋅  (c) 11 1
ac = 1.65 10 sf −⋅ , (d) 11 1

ac = 2.20 10 s .f −⋅  
Absorption due to electronic transitions in the K-valley (K ′-val-
ley) is given by the solid green (dashed red) line. The total ab-
sorption, summed over both valleys, is given by the dotted black 
line (partially obscured). 
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Appendix A: Electronic wave functions 

The electronic pseudospinor wave functions, labeled by 
valley index τ, wave number k, and continuous level index 
ν, are [12–15] 

 
,

, ,( , ) = e ( ),
k

k ikx k

B

N
x y y

Ll

τ
τ τν
ν νψ φ



  



  (A.1) 

where τ labels the valley (K  or K ′) as before. The y-de-
pendent factor is 

 1,

1

( 2( ))
( ) = ,

( 2( ))
k D k y

y
D k y
ν+

ν
ν−

 +
φ   ν + 













 (A.2) 

for the K-point and 

 11, ( 2( ))
( ) = ,

( 2( ))
k D k y

y
D k y

ν−−
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for the K ′-point. The factors , /k
BN Llτ

ν  are normalization 
constants, see Eq. (C.3). 

Appendix B: Fermi level crossings 

The edge boundary condition of Eq. (9) ultimately gives 
an equation for the electronic spectrum. At the Fermi 
energy FE  this equation reads for the K-point 

 ( 2 ) = 0,F
FD k

ν
  (B.1) 

and for the K ′-point 

 
1

( 2 ) = 0,F
FD k

ν −
  (B.2) 

where 

 2= ( ) .F FEν   (B.3) 

Solving Eqs. (B.1) and (B.2) for Fk  gives the Fermi 
crossing points F

nk  for the given FE . Identifying them 
with the different bands allows for calculation of ,

F
m nk∆   

and thus the absorbed acoustic frequencies. In general 
, 1F

m nk∆   . 

Appendix C: Absorption integrals 

Here the dimensionless transition integrals that enter 
into the transition matrix element are given. Since the 
integrands decay into the bulk, they are easily evaluated 
using a cutoff. The integral giving the scalar-potential 
contribution to the absorption is (normalization constants 
have been moved to the left hand side for brevity) 

 
| |, † ,1 ,

1
, * , 0
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FF F k yk k l m nm n

F FF Fk km n
F F

F T y y dy
N N

∞
−λ ∆τ τ

ν ντ τ

ν ν

φ φ∫


 



 

     

  (C.1) 

Fig. 5. (Color online) The transitions corresponding to the ab-
sorption peaks in Fig. 4 shown as black lines in the scaled energy 
spectrum. The K-valley (K ′-valley) spectrum is given by the so-
lid green (dashed red) lines and the transition line opacity is pro-
portional to the (relative) inverse decay time of the associated 
transition. The figures are for the acoustic ordinary frequencies 
(a) 11 1

ac = 0.85 10 sf −⋅ , (b) 11 1
ac = 1.25 10 sf −⋅ , (c) 11 1

ac = 1.65 10 s ,f −⋅  
and (d) 11 1

ac = 2.20 10 sf −⋅ , with gate voltage = 50 mVGV −  and 
temperature = 5 KT . 
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and the pseudo-vector-potential contribution integral is 
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The numerical normalization constants are given by 
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