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The aim of this review is the analysis of dynamical properties of Josephson junctions (JJ) with anharmonic 

current-phase relation (CPR). Firstly, discussion of theoretical foundation of anharmonic CPR in different Jo-

sephson structures and their experimental observation are presented. The influence of anisotropy and multiband 

effects on CPR of JJ are analyzed. We present recent theoretical study results of the anharmonic CPR influence 

on I–V curve, plasma frequency, and dynamics of long JJ. Results of study of Shapiro steps in I–V curve of an-

harmonic JJ are also presented. Finally, CPR anharmonicity effect on characteristics of JJ-based qubits is dis-

cussed. 
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1. Introduction 

The Josephson effect was discovered by Brian Josephson 

[1]. The stationary Josephson effect was first observed exper-

imentally by Rowell [2], and the nonstationary Josephson 

effect was observed by Yanson et al. [3]. Since that time, 

there has been a continuously growing interest in the funda-

mental physics and applications of this effect. The achieve-

ments in Josephson-junction (JJ) technology have made it 

possible to develop a variety of sensors for detecting ultralow 

magnetic fields and weak electromagnetic radiation; they 

have also enabled the fabrication, testing, and application of 

ultrafast digital rapid single flux quantum (RSFQ) circuits as 

well as the design of large-scale integrated circuits for signal 

processing and general purpose computing [4,5]. 
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It is clear that the Josephson effect, the 50th anniver-

sary of which was celebrated in 2012, remains one of the 

most spectacular manifestations of quantum mechanics in 

all of experimental science. At its most fundamental level 

the Josephson effect is nothing more than the electronic 

analogue of interference phenomena in optical physics. 

But from this humble premise springs a huge range of 

physical phenomena and electronics applications which 

placed Josephson devices at the heart of physics research 

during the second half of the century of superconductivity 

and beyond. 

The Josephson effect may be observed in a variety of 

structures. To realize such structures it is enough to fabri-

cate a “weak” place interrupting the supercurrent flow in a 

superconductor or suppress the ability of a superconductor 

to carry a current, e.g., by deposition of a normal metal on 

its top, by implantation of impurities within a restricted 

volume, or by changing the sample geometry. One main 

characteristic of a JJ is the current-phase relation (CPR). 

Only in few cases CPR reduces to classical sinusoidal form 

with critical current cI  [6,7]: 

 ( ) = sin .S cI I  (1) 

Modern aspects of the supercurrent SI  dependence on 

the phase difference  and the forms this dependence takes 

in Josephson junctions of different types ( superconductor–

normal–superconductor, superconductor–insulator–super-

conductor, double barrier, superconductor–ferromagnet–

superconductor, superconductor–two-dimensional electron 

gas–superconductor junctions, and superconductor–con-

striction–superconductor point contacts) were discussed in 

[8,9]. CPR manifestations related to unconventional sym-

metry in the order parameters of a high-Tc superconductors 

were also widely investigated during last years [10–13]. As 

it follows from reviews [8–12] supercurrent SI  dependence 

on the phase difference  can be presented in general as 

 

1

( ) = ( sin cos ).S c n

n

I I n J n  (2) 

The shape of supercurrent ( )SI  does not only depend on 

temperature and the distance between electrodes, but also 

on the critical temperature and transport parameters of both 

superconductors and the interface layer in JJ structures. 

Detailed analysis of CPR in different JJ structures was car-

ried out in [9]. The pairing symmetry in superconducting 

state also strongly influences on CPR [11]. 

Simple sinusoidal form of CPR (1) was widely used to 

study the dynamics and ultimate performance of analogous 

and digital devices based on JJ up to recent time [4–14]. 

Above mentioned reviews [8–12] have been devoted to the-

oretical basis for the study of CPR in different Josephson 

structures. Results of these studies reveal fundamental phys-

ical mechanisms for control and experimental investigation 

of CPR. It is clear that modification of CPR in different JJ 

structures leads to changing of dynamical properties of Jo-

sephson circuits. Several recent research papers (see below) 

have been devoted to study dynamical effects in JJ with an-

harmonic CPR. Recent progress in the theoretical study and 

experimental investigation of dynamical properties of such 

junctions justifies an overview of the fundamentals of JJ 

dynamics with anharmonic CPR. 

The main emphasis of this review is the investigation of 

CPR influence on dynamical properties of Josephson junc-

tions. Firstly, we will briefly discuss influence of anisotro-

py and multiband effects of the order parameter in super-

conducting electrodes on the shape of CPR of JJ. The 

experimental investigations results concerning Josephson 

structures with anharmonic CPR are also reviewed. In se-

cond section we present detailed results of study of anhar-

monic CPR influence on I–V curve and on the plasma fre-

quency of JJ. This section contains study of Shapiro steps 

in anharmonic JJ. Properties of long JJ with anharmonic 

CPR are also described in this section. Third section is 

devoted to detailed investigation of anharmonicity effects 

on characteristics of JJ qubits. Finally, conclusions are 

presented. 

2. Influence of anisotropy and multiband effects of 

superconducting state on the CPR of JJ 

2.1. JJ based on d-wave superconductors 

For the calculation of Josephson current in such struc-

tures it is easy to use a Ginzburg–Landau theory of d-wave 

superconducting state based on its symmetry properties. 

Figure 1 presents schematic diagram of a JJ between pure 

2 2x y
d  superconductors. The gap states are assumed to 

align with the crystalline axes, which are rotated on angles 

L and R with respect to the junction normals Ln  and 

Rn  on the left and right-hand sides, respectively. It is well 

known that d-wave order parameter symmetry was ob-

served in cuprate superconductors [10–12]. In this sym-

metry, we use a complex order parameter, which behaves 

the same way as the pair wave function [10] 

 ( ) = cos cosx yk kk . (3) 

The Ginzburg–Landau free-energy functional F for d-

wave superconductors has a form [15] 

2 4 2 2
1= [ ( ) (| | | | )x yF dV A T K D D   

2
2

1
| | ( 2 )] .

8
zK D B B H  (4) 

Fig. 1. Schematic diagram of a JJ between d-wave superconductors. 



Effects of anharmonicity of current-phase relation in Josephson junctions 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2015, v. 41, No. 4 317 

The real coefficients  and iK  are phenomenological 

parameters, and ( ) = ( )cA T T T  changes its sign at the 

superconducting transition temperature Tc. The symbols 

D denote the components of the gauge-invariant gradient 

D 0[ (2 / )]iA , where A  is the vector potential 

( = ).B A  For the calculation of the Josephson cur-

rent, it is useful to introduce the coupling between the 

order parameters of two linked superconductors (Fig.1). 

Coupling between superconductors can be expressed 

through addition of term 

 coup 1 1 2 2 1 2 2 1= ( ) ( ){ }F t dS n n , (5) 

where t is a real parameter denoting the coupling strength. 

The functions ( )j jn  are symmetry functions of the inter-

face normal vector jn  in the crystal basis of the side j. 

For the current density perpendicular to the interface we 

can get 

 

 1 1 2 2 1 2
0

4
( ) = ( ) ( ) sin .

ct
I n n  (6) 

For the d-wave superconductors usage of symmetry func-

tion as 
2 2

1 1( ) = x yn nn  [16] leads to final Sigrist–Rice 

result for clean JJ 

 ( ) = cos(2 )cos(2 )sins L RI A , (7) 

where sA  is a constant characteristic of the junction [12]. 

For the dirty limit of JJ the relation is: 

 ( ) = cos2( )sin .s L RI A  (8) 

Basing a Green's function method the Josephson current 

in a d-wave superconductor/insulator/d-wave superconduc-

tor ( / / )d I d  junction is calculated taking into account the 

anisotropy of the pair potentials explicitly [17,18] 

____________________________________________________ 

 

/2
1 1

, ,/2

( , , ) ( , , )
( ) = | ( ) | | ( ) | cos ,N n n

N L L
L L

n

R kT a i a i
R I d

e
 (9) 

where 
2 2

, , = ( ) .n L L n  The quantity NR  denotes the normal resistance and NR  is expressed as 

 

/2 2
1 0

2 22
0 0/2

4
= cos ; = ,

(1 ) ( ) 4 cosh( )sinh
N N N

i i

Z
R d

Z d Z d
 (10) 

_______________________________________________ 

 2 2
0 0

2 2

cos
= 1 ; Z =cos

1 cos

. (11) 

Here, N  denotes the tunneling conductance for the in-

jected quasiparticle when the junction is in the normal 

state. The quantity = 2 ( 1/2)n kT n  denotes the Mat-

subara frequency. The Andreev reflection [19] coefficient 

1( , , )na i  is obtained by solving the Bogoliubov equa-

tion [21], and 1( , , )na i  is obtained substituting ,  

– ,L  and – R  for ,  ,L  and R  into 1( , , ),na i  

respectively. If we take only the = 0  component, the 

magnitude of the Josephson current is proportional to 

cos(2 )cos(2 ), and the phenomenological theory by 

Sigrist and Rice [16] is reproduced. 

In general, supercurrent in JJ with d-wave superconduc-

tors ( )I  can be decomposed into the series of sin ( )n  

and cos( )n  using above presented Eq. (2). This equation 

includes the Josephson current component carried by the 

multiple Andreev reflection processes at the interface. In 

the above equation, the current components with index n 

correspond to the amplitudes of the nths reflection pro-

cesses of quasiparticles. For ~ 0,N  supercurrent ( )I  is 

proportional to sin ( )  and the classical results of 

Ambreokar–Baratoff theory [22] are reproduced, while for 

= 1,N  above Eqs. (5)–(11) reproduce the previous re-

sults of Kulik and Omel’yanchuk theory [23,24]. On the 

other hand, for a fixed phase difference between two su-

perconductors, the component of the Josephson critical 

current becomes either positive or negative depending on 

the injection angle of the quasiparticle (as it follows from 

Tanaka's analysis [17,19]). In some situations, the phase 

difference 0 ,  which gives the free energy minima, is lo-

cated at neither zero nor .  When the crystal axis is tilted 

from the interface normal, zero-energy states i.e. midgap 

states, are formed near the interface depending on the an-

gle of the crystal axis and the injection angle of the 

quasiparticle. This effect leads to enhancement of the Jo-

sephson current at low temperatures. 

Negative Josephson coupling was first noted by Kulik 

many years ago [3]. He discussed the spin-flip tunneling 

through an insulator with magnetic impurities. Late 

Bulaevskii et al. [20] proved that under some conditions 

such spin-flip tunneling prevails over the direct tunneling 

and leads to a -junction. The junction energy achieves 

minimum at the phase difference , and a spontaneous 

supercurrent may appear in a circuit containing the junc-

tion. Two possible directions of the supercurrent reflect the 

doubly degenerated ground state. In contrast to the usual 

junction such a state is achieved without application of an 

external field. 
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2.2. JJ between two-band superconductors 

Multiband superconductivity became a hot topic in 

condensed matter physics in 2001, when the two-band su-

perconductivity in MgB2 with anomalous high = 39KcT  

was discovered [25]. It is striking that the pairing mecha-

nism had electron-phonon origin in magnesium diboride 

and that order parameters, which are attributed to super-

conducting energy gaps, have s-wave symmetry. Iron-

based superconductors, which have been discovered not 

long ago, and nonmagnetic borocarbides [15,26] can be 

classified as multiband systems. In this section the station-

ary Josephson effect in SCS (superconductor–constriction–

superconductor) junction is presented. The behavior of such 

junctions even in the case of one-band superconductors, as 

revealed in [23,24], has the qualitative differences compar-

ing to SIS (superconductor–insulator–superconductor) tun-

nel junctions. The microscopic theory of the “dirty” SCS 

junction for two-band superconductors is built, which gener-

alizes the Kulik–Omel’yanchouk theory in this case [27]. 

The case of dirty two-band superconductor with strong intra-

band scattering rates by impurities (dirty limit) and weak 

interband scattering is investigated [27]. In the dirty limit 

superconductor is described by the Usadel equations for 

normal and anomalous Green's functions g and f, which for 

two-band superconductor take the form presented in [27] 

(Fig. 2). Calculation of the Josephson current between two-

band superconductors in the absence of inter-band scatter-

ing leads to: 

____________________________________________________ 

 

1 1

2 2 2 22 21 >0 1 1

2 2

2 2 2 22 22 >0 2 2

cos ( /2) sin ( /2)4
( ) = arctan

( /2) ( /2)cos cos

cos ( /2) sin ( /2)4
arctan .

( /2) ( /2)cos cos

N

N

T
I

eR

T

eR

 (12) 

_______________________________________________ 

As it follows from Eq. (12) current flows independently 

from the first band to the first one and from the second 

band to the second one. This equation is a straightforward 

generalization of Ambreokar-Baratoff results for one-band 

superconductor [22]. Introducing the total resistance 

1 2 1 2= /( )N N N N NR R R R R  and normalizing the current 

on the value 0 = (2 / )N cI eR T  the current-phase relations 

for different values of 1 2= /N Nr R R  and temperature T  

are plotted in Fig. 3(a, b). Results of calculation of critical 

current temperature dependence for two-band based JJ are 

presented in Fig. 4. For the calculation of ( )I  and ( )cI T  

the parameters for two-band superconductor MgB2 without 

inter-band interaction [15,27] were used. The deformation 

of ( )I  curve depending on different parameters of JJ 

based on two-band superconductors is clear. 

Using perturbation theory in the first approximation for 

Green’s functions in each band for the case of nonzero 

interband scattering, the corrections to the current (12) 

1 2=I I I  were obtained [27]: 

 
____________________________________________________ 

 

2
12 2 1 1

1
2 2 3 2 2 2 22 21

1 2 1

2
2 1

2 2 2 2 2 22
1 1 2

2 ( e )cos ( /2) sin ( /2)
= arctan

( ( /2)) ( /2)cos cos

( e )sin1
,

2 ( )( ( /2))cos

i

N

i

T
I

eR

 (13) 

 

2
12 1 2 2

2
2 2 3 2 2 2 22 22

1 2 2

2
1 2

2 2 2 2 2 22
2 2 1

2 ( e )cos ( /2) sin ( /2)
= arctan

( ( /2)) ( /2)cos cos

( e )sin1
.

2 ( )( ( /2))cos

i

N

i

T
I

eR

 (14) 

Fig. 2. Schematic diagram of a Josephson junction between two-

band superconductors. 
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where 12  is parameter of the interband scattering, and  is 

a phase shift. When the interband scattering is taken into 

account and the phase shift 0,  the phases of Green’s 

functions d0 not coincide with phases of order parameters 

.i  From the above-mentioned discussion it follows that 

CPR of JJ based on two-band superconductors also devi-

ates from simple sinusoidal form (1) (see Fig. 3). 

2.3. CPR relation of JJ structures with FM and AFM 

layers 

In this part we pay attention to the approach based on 

the Usadel equation and consider the S/F/S junction with F 

layer of thickness 2df (Fig. 5). The following formula for 

the supercurrent was used in [8,28] 

 ( ) = (0) f
dF dF

I ieN D TS F F
dx dx

, (15) 

where anomalous Green’s function ( )F x  depends only on 

one coordinate x, and this function meets following condi-

tions: 

 

/2
*

2 2

e
( , ) ( , – ) : ( ) = ,

i

s fF x h F x h F d   

 

/2

2 2

e
( ) =s fF d ,  

S is the junction cross-section area, and (0)N  is the elec-

tron density of state for one-spin projection. The last ex-

pression gives the usual sinusoidal current-phase depend-

ence with the critical current [28]: 

 

2

2 2 2

2 / cosh (2 )
= (0) ,

tanh (2 ) (1 ) 2

f
c f

f

k kd
I eN D TS

kd k k
  

  (16) 

where = / .B N sG  Generalization of the presented 

theory on the case of the different interface transparencies 

is presented in [9,29]. It gives: 

 0 cos2 sinh(2 ) sin 2 cosh(2 )
= 4

cosh(4 ) cos4
c

N

V y y y y
I y

R y y
, (17) 

where = ( / ) /(2 ),F F cy d H T  H is the exchange energy 

in F layer. The S/F/S junctions reveal the nonmonotonic 

behavior of the critical current as a function of the F layer 

thickness. Vanishing of the critical current signals the tran-

sition from the state 0 to the state . It occurs at 

2 = 2.36cy  which is exactly the critical value of the F 

layer thickness in the S/F/S multilayer system correspond-

ing to the 0– -state transition (Fig. 6) [8,9]. 

CPR in different structures such as SFcFS and double-

barrier SIFIS are presented in [30], where the non-

monotonic temperature dependence of the critical current 

is analyzed. Deformation of CPR of double-barrier SIFIS 

junctions for different exchange integrals in F layer is pre-

sented in Fig. 7. Similar change in CPR was experimental-

ly observed in [31]. One of the interesting properties of 

SFS systems is the rotation of the magnetization vector of 

F layer under action of an external magnetic field [32–34]. 

Details of CPR of different Josephson structures with F 

Fig. 3. CPR of MgB2/MgB2 junction for different temperatures T: 

0(1); 0.5Tc(2); 0.9Tc(3) and ratios of resistances r = RN1/RN2. 

Fig. 4. Temperature dependencies of critical current Ic for differ-

ent values of r = RN1/RN2: 0.1(1); 1(2); 10(3). 

Fig. 5. Schematic description of S/F/S junction. 
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layer were presented in excellent reviews [8,9]. The study 

of the CPR is also important for understanding the funda-

mental properties of superconducting materials, such as 

symmetry of the superconducting correlation and peculiari-

ties of the spin transport in multilayer systems based on 

superconducting and ferromagnetic materials. 

Despite wide discussion about JJ with FM layers, there 

are few papers concerning investigations of structures with 

AFM layers. Firstly such structure was studied by Gor’kov 

and Kresin [35]. They found that the critical current 

strongly depends on external magnetic field. The analytical 

expression can be written as 

 0
2

( ) = cos
4

c s c s
s

I M I M
M

, (18) 

where 1  is related to characteristic of AFM layer, 

0 < < 1sM  is parameter of AFM ordering, 0cI  is critical 

current in the absence of external magnetic field coinciding 

with corresponding critical current in SNS junctions. It is 

useful to note the importance of study of JJ with magneti-

cally ordered layers. As mentioned in [5], such Josephson 

structures may allow substantial savings in the Josephson 

circuit area. 

2.4. Experimental results of CPR investigations 

 in different Josephson structures 

As it follows from above presented theoretical review, 

the general case CPR in Josephson structures is determined 

by the types of JJ. At high temperatures ( << )c cT T T  de-

viation of CPR ( )I  from sin  law is negligible for any 

type of JJ. At low temperatures ( << )cT T  the relation 

( ) sinI  takes place for SIS junctions [36]. In early in-

vestigations [36], the high accuracy realization of sinusoidal 

character of CPR was shown using plasma resonance tech-

nique. Recently, Gronbech-Jensen et al. [37] studied the 

dynamics of the tunnel JJ simultaneously carrying dc and ac 

currents by measuring the statistics of switching of low-

temperature Nb–NbAlOx–Nb type tunnel junctions to the 

resistive state. The critical current statistics in this system, 

which is controlled by thermal fluctuations at the bottom of 

the potential well ( ) = ( 1 cos ),JU E i  was deter-

mined for 10000 events. By changing the amplitude of ac 

current, it was possible to control the dc current correspond-

ing to a peak in the switching events distribution. 

A new method for CPR measurement and some of its 

practical applications were presented in [38,39]. Most 

commonly for the experimental investigation of the CPR, 

the weak link of interest is incorporated in a superconduct-

ing ring with a sufficiently small inductance L. This circuit 

is usually called a single-junction interferometer [4]. Under 

limitations / << 1,NL R  and 
2 << 1LC  the supercon-

ducting part ( ) = ( )s cI I f  of the current exceeds essen-

tially all other components, so the following equation is 

valid for single junction interferometer [38,39]: 

 = ( ),e lf  (19) 

where l is the normalized inductance, 02 / .cl LI  There 

is a more precise method to determine the CPR using radio 

frequency (rf) technique. It was proposed many years ago 

[40,41]. Further development of this method was presented 

Fig. 6. Critical current of S/F/S junctions versus =y

/ /(2 ),F F cd H T  where H is the exchange energy. 

Fig. 7. Deformation of CPR of SIFIS junction for different ex-

change energies. 

Fig. 8. Experimental CPR of symmetric /4 grain-boundary 

junction. 
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by Ii’ichev et al. in [42]. They have shown that the CPR 

and the phase-dependent conductance can be extracted 

from experimental data. Results of measurements of Jo-

sephson current through a junction as a function of the 

phase difference  in symmetric 45  grain-boundary high-

Tc junction are presented in Fig. 8 [43]. Recent achieve-

ments in fabrication of the JJ based on high-Tc superconduc-

tors were described in [44]. Measurements reveal that 

YBCO-based grain boundary tunnel junctions fabricated in 

[44] are highly hysteretic and Fig. 9 shows the ratio of coef-

ficients 1I  and 2I  determined by a Fourier analysis of the 

CPR at various temperatures. With decreasing T, value of 

2I  grows monotonically down to = 4.2K,T  while the 1I  

component exhibits only a weak temperature dependence 

[44]. Very recent review of physical properties of JJ based 

on high-Tc superconductor was presented in [45]. Further-

more anharmonic CPR in graphene JJ was reported recently 

in experimental research [46] and corresponding theoretical 

calculations were proposed in [47]. 

Very recently, topological insulators attached to super-

conductors have attracted great interest of researchers. The 

topological insulator offers a new state of matter, which is 

topologically different from the conventional band insula-

tor [48–50]. When SF junctions are deposited on a topo-

logical insulator, surface Dirac fermions gain a domain 

wall structure of the mass. The CPR shows 4  periodicity, 

i.e., the shape of supercurrent has a form of sin ( /2)  

[51,52]. JJ in hybrid superconductor-topological insulator 

devices revealing two peculiarities was reported in [53]. 

c NI R  products for this structures is inversely proportional 

to the width of the junction. Another property is related to 

a low characteristic magnetic field needed for suppression 

of supercurrent, i.e., Fraunhofer capture is different from 

traditional dependence ( )cI H  [4]. The shape of CPR for 

such a junction is presented in Fig. 10. Detailed analysis of 

the superconductor-topological insulator junctions is the 

subject of future investigations. 

3. Influence of anharmonic effects of CPR  

on JJ dynamics 

3.1. Anharmonic effects in I–V curve 

For a long period, the real shape of the CPR was not 

considered as an important factor affecting dynamical 

properties of JJ. Tunnel Josephson junction of SIS struc-

ture reveals ( ) = sin ,SI  which was observed experimen-

tally with high precision for such junctions (see above). 

The shape of the CPR, or more explicitly the energy and 

phase dependencies of spectral current density have be-

come important parameters in the analysis of the dynamic 

properties of Josephson junction circuits. Small deviation 

from harmonic case does not essentially affect the response 

of the junctions on a steady magnetic field and may be 

taken into account in the circuit design as an additional 

intrinsic inductance (see [54]), which must be added to the 

geometrical one in the circuit simulation. In this section, 

we study I–V curve of JJ with considerably anharmonic 

CPR using relation = (sin sin 2 ).J cI I  The resistive-

ly, capacitively, inductively shunted Josephson junction 

(RCLSJ) circuit shown in Fig. 11 is shunted by a small 

external resistor isatisting s nR R  [4,55,56]. Here nR  

and sR  denote the normal state and shunt resistances, re-

spectively. As shown in the Fig. 11 the Josephson tunnel 

junction is replaced by three parallel current channels. The 

total current through JJ is represented as a sum of the 

supercurrent ( ),I  the displacement current =DI  

( / ),C dV dt  and the normal current due to quasiparticles 

Fig. 9. YBCO based grain boundary junction: I2/I1 versus tem-

perature. 

. 

Fig. 10. CPR of superconductor-topological insulator junction. 

Fig. 11. Circuit model of RCLSJ. 
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= / ( ).NI V R V  The voltage-dependent junction resistance 

[4,55] is assumed to be: 

 
sg

if | | > ,
( ) =

if | | .

n g

g

R V V
R V

R V V
 (20) 

where = 2 /gV e  is the gap voltage that depends on the 

energy gap (i.e., ) of superconductor, nR  is the normal 

state resistance and sgR  is the sub-gap resistance of the JJ 

in the superconducting state. The applied bias current dcI  

is carried by the sum of the listed components ( , , ).J N SI I I  

= (sin sin 2 )J cI I , = / ( )NI V R V , = ( / ).DI C dV dt  

= D N J sI I I I I  where sI  denotes the current in the 

shunt branch. For simplicity, we ignore the effect of ther-

mal noise throughout this study fluc( = 0).I  

Equations that correspond to the circuit in Fig. 11 in 

dimensionless form are 

 =
d

d
v ,  

 ( ) ( ) = ,C s
d

g f i i
d

v
v v  (21) 

 = ,s
L s

di
i

d
v   

where 2= (2 / )C c se I CR  is the McCumber capacitance 

parameter; ( ) = / ( )sg R Rv v  is the normalized tunnel 

junction conductance; = /s s ci I I  is dimensionless shunt 

current; = / ci I I  is dimensionless external dc bias current; 

= (2 / )L c se I L  is the dimensionless inductance; = ct  

is the normalized time, = (2 / )c ce V  is the characteristic 

frequency, and =c c sV I R  is the characteristic voltage. 

The relationship between C  and c  can be written as 

2= ( / (0))C c p  where plasma frequency (0) =p

2 / .ceI C
 
 

The solutions of Eqs. (21) are numerically obtained using 

MATLAB routine based on adaptive Runge–Kutta method 

[57]. The time-averaged voltage for the determination of I–V 

curve can be evaluated using the expression: 

 

0

1
= / = ( )

rng

rng

d d dv v , (22) 

where rng  is the sampling range. Note that rng  in 

Eq. (22) is taken much longer than the period of Josephson 

oscillations as well as relaxation oscillations. For that rea-

son, the time-averaged voltage in Eq. (22) is sometimes 

called in literature as long-time averaged voltage. 

In order to study the influence of second harmonic on 

the dynamics of the JJ, we firstly evaluated the critical cur-

rent related to the amplitude of both harmonics. In such 

way, the normalized critical current can be found as an 

extremum of the function ( ) (sin sin 2 )f  

 
0

/ = max( ( ))c cI I f , (23) 

where 
0c

I  is the critical current at = 0.  The normalized 

critical current with respect to anharmonicity parameter  is 

plotted in Fig. 12. As shown in the figure, cI  is nonlinear 

for small , whereas it is linear for large  values. Moreo-

ver, the linear dependence of critical current cI  was exper-

imentally observed at large  in YBCO-based JJ [43]. In 

addition, a similar plot in Fig. 12 was obtained using analyt-

ical expression for critical current given in [58]. 

Two types of dynamics of RCLSJ circuit presented in 

Fig. 13 can be explained using load-line analysis associat-

ed with I–V curve of the JJ. The first case is shown in 

Fig. 13(a) and corresponds to relaxation oscillations in the 

circuit with parameters =1.1i , 
0

= 1.11C , 
0

= 21.7L  at 

= 0.  Relaxation oscillations in Josephson circuits have 

been studied by many authors [55] and [59]. A similar re-

laxation generator was used to study the dynamical proper-

ties of tunnel JJ comparator in [60]. The second regime 

corresponds to the regular ac Josephson oscillations [55] 

and it is shown in Fig. 13(b) with parameters =1.1i , 

0
= 2.22C , 

0
= 43.4L , at = 0 . For nonzero anhar-

monicity parameter such as = 0.4  (see Fig. 13(c)), the 

amplitude of the Josephson oscillations becomes smaller, 

which is related to the effective capacitive properties of JJ. 

Such situations can be explained by the increase of the 

critical current of JJ with anharmonic CPR (the detailed 

discussion is given below). 

Fig. 12. (Color online) Normalized critical current versus 

anharmonicity parameter . 
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In paper [57] numerical analysis of I–V characteristics 

for different  values was performed as shown in Fig. 14. 

In the figure, we have plotted I–V characteristics of the 

system with different 
0C  and 

0L  values using the same 

,sR  sg ,R  and nR  from Table 1, similar [55]. Note that 

0C  and 
0L  refer to the harmonic case of the CPR (i.e., 

= 0).  Similar results were obtained in [61] for = 0.2  

case only due to the limited nature of the analytical calcu-

lations. Furthermore, it is difficult to study directly the 

details of the dynamics both experimentally and analytical-

ly, therefore, we can rely on numerical solutions of 

Eqs. (21) to study the influence of anharmonicity parame-

ter . As can be seen from Fig.14, the width of the hystere-

sis in the I–V curve becomes larger with an increase of 

anharmonicity parameter . Consequently, the presence of 

anharmonic CPR impacts the inertial properties of the JJ as 

an undesirable effect. In addition, we repeat few simula-

tions using opposite sign of the anharmonicity parameter  

in relation to our calculations presented here. We observed 

that the hysteresis of the I–V characteristics decreases 

compared to its counter part in the presented plots. In gen-

eral case, the sign of  is determined by the physical prop-

erties of barrier layer in Josephson structure [10,20,58]. 

The size of hysteresis in I–V curve is characterized by 

the return current, at which the JJ switches from R-branch 

to S-branch in the I–V curve. The relationship between the 

return current and high values of McCumber parameter 

C  can be obtained using simple resistive model [4]: 

 
4 1

= .R

c C

I

I
 (24) 

If we consider Eq. (20), the return current vs 

McCumber parameter qualitatively reveals a similar be-

havior [4]. The deviation from the expression in Eq. (24) 

becomes larger when the ratio of sg / nR R  increases. On the 

other hand, the return current RI  is not only a function of 

Table 1. Fabrication parameters of Josephson junctions (see [55]) 

T, K Ic0, mA Vg, mV Rsg,  Rn,  R,  

4.22  0.550  2.91  50  3 1.1 

7.60  0.275  2.09  15  3 1.1 

 

Fig. 13. (Color online) Time dependence of dynamical variables: 

voltage d /d  and current I through shunt branch. Computational 

parameters are: i = 1.1, C0 = 1.11, L0 = 21.7,  = 0 (a); i = 1.1, 

C0 = 2.22, L0 = 43.4,  = 0 (b); i = 1.336, C0 = 2.696, L0 = 

= 52.701,  = 0.4 (c). 

Fig. 14. (Color online) I–V curves for various  values at C0 = 

10; L0 = 1 (a); L0 = 10(b); L0 = 30 (c). 
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C  but also a function of  and L . However, it is diffi-

cult to obtain an explicit analytical expression for it. For 

this reason, numerical simulations are performed to ana-

lyze the influence of anharmonicity parameter  and di-

mensionless inductance L  on the normalized return cur-

rent /R cI I  at two different values of McCumber parameter 

(e.g., 
0

= 5C  and 
0

=10).C  

First of all, we will discuss the relationship between 

/R cI I  and  which is shown in Fig. 15 for various 
0L  

values. In general, the influence of the capacitance and 

inductance of the JJ on the junction impedance is of oppo-

site character. That is why one reactive element will damp 

the influence of the other. This implies that corresponding 

I–V curve and associated hysteresis will be determined by 

the resulting impedance. At fixed 
0L , the value of the 

Josephson inductance = ( /2 )/c cL e I  decreases with  

increasing. As a result, the influence of the junction capaci-

tance at nonzero  on the I–V curve becomes dominant 

compared to harmonic case. If we compare the plots here 

with the results in [61], the normalized return current 

/ ,R cI I  is defined here accurately in contrast to the result 

therein. The reason is that the author in introduced [61] an 

approximate solution using analytical approach. 

The exact value of return current is sensitive to the 

characteristics of the junction in the subgap region. Usually 

a switching from R-state to S-state leads to an exponential 

decay of the voltage transient waveform. As mentioned in 

[4], the voltage transient from R-state to S-state is accom-

panied by a slowly damped plasma oscillation. For this 

reason, we observed inaccuracies at some points on the 

curves presented in Fig. 15. The accuracy of our calcula-

tions for the return current in Fig. 15 was roughly estimat-

ed as 5%. 

The relationship between return current /R cI I  and di-

mensionless inductance L  is illustrated in Fig. 16 for var-

ious . The junction circuit shown in Fig. 11 is shunted by 

a serially connected inductance sL  and shunt resistor sR . 

This means that the junction is shunted by impedance 

 

2

= 1 .s s

s s

Z L

R R
 (25) 

At vanishing shunt inductance (i.e., sg ),s sL R R  

we come to standard resistively shunted junction (RSJ) 

Fig 15. (Color online) Return current dependence on anhar-

monicity parameter , at C0= 5 (a); C0 = 10 (b). 

Fig. 16. (Color online) Return current dependence on dimension-

less inductance L0 at C0= 5 (a); C0 = 10 (b). 
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model with hysteresis on I–V curve controlled by 

McCumber parameter 2= (2 / ) .C c se I CR  With increasing 

inductance sL  the impedance sZ  also increases. On the 

other hand, if the shunting effect is in the high shunting 

inductance limit (i.e., )s sL R  the impedance sZ  ap-

proaches .sL  In this case, the impedance sZ  becomes 

much greater than sgR  and nR  (i.e., sg ).s nZ R R  As 

a result, McCumber parameter C  can be determined by 

sub-gap resistance sg :R  2
sg sg( ) = (2 / ) .C cR e I CR  Due to 

that reason, sg( )C R  will become greater than .C  The 

return current /R cI I  approximately reaches the constant 

values lower than corresponding value for .s sL R  It is 

shown in Fig. 16, that the crossover from one regime to 

another reveals a peak character. Furthermore, as it follows 

from Fig. 16, peaks width increases for large McCumber 

parameter .C  The inaccurate behavior similar to that in 

Fig. 16 is also observed on the curves in Fig. 15 due to the 

transient plasma oscillation in R → S switching. 

3.2. Plasma frequency of JJ with anharmonic CPR 

It is useful to discuss the influence of CPR anhar-

monicity on small perturbations of the S state of JJ, i.e., the 

possible phase motion in the vicinity of equilibrium state 

0. It is known, that JJ dynamics has much in common 

with the motion of a particle in potential of the washboard 

type [4] 

 ( ) = (cos 1)jU E i , (26) 

where i is the dc current expressed in the cI  (critical cur-

rent) units,  is the Josephson phase, and = /2j cE I e  is 

the Josephson energy. If the capacitance of the junction is 

sufficiently large, the junction may exhibit slowly decay-

ing oscillations of the plasma phase at the bottom of the 

potential well (26). The frequency of these oscillations 

(plasma frequency) depends on the dc current and is given 

by formula (see, e.g., [4]), 

 

1/2
2 1/42

= (1 )c
p

eI
i

C
. (27) 

Relation (27) is usually satisfied for the JJ connected to a 

dc voltage source. If = sin ,cI I  the theory exhibits per-

fect agreement with experiment [36]. However, there are 

deviations from the behavior predicted by Eq. (27) in the 

JJ characterized by anharmonic CPR. The anharmonicity 

may be caused by the simultaneous passage of both dc 

and ac currents of large amplitudes via the junction. Re-

cently, Gronbech-Jensen et al. [37] studied the statistics 

of S → R switching of low-temperature tunnel JJ of the 

Nb–NbAlOx–Nb type. The critical current in this system 

was determined for 10000 events. 

The obtained results confirms the validity of relation 

(27) for the plasma frequency for small amplitudes of the 

ac current component. However, as the ac current ampli-

tude grows, the agreement of formula (27) with the exper-

imental values measured deteriorates, which can be related 

to the anharmonic character of the potential 

( ) = (cos cos2 1)jU E i  at large ac current 

amplitudes. The theoretical investigation of the alternating 

current effect on the plasma frequency of the tunnel JJ 

simultaneously carrying dc and ac currents is presented 

below. The dynamics of a JJ can be described using the 

following equation (in this equation we use time units 

= (0) ):p t  

 
1

sin sin 2 = sind di t . (28) 

For the calculation we will use 0 1= ,  where 1 

obeys equation 

 1 = sind di i t . (29) 

Using mathematical expressions described in [62] 

 2cos ( sin ) = exp( ); = ( )n n ka t A in t A J a , (30) 

 2 1sin ( sin ) = exp( ); = ( )n n ka t B in t B J a  (31) 

we obtain the following expression for plasma frequency 

of JJ with anharmonic CPR 

 

2
pl

0 0 02
pl

( )
= cos 2 ( )cos 2

(0)

a
J a . (32) 

In the last expression 0 ( )J a  is the Bessel function of 

zero order, (0) = 2 / ,p ceI C  2 2= /( ).d da i  Equi-

librium value 0 is determined from relation 

 0
0 0

0

= sin sin 2
( )

i

J a
. (33) 

According to Eq. (32), an increase in the ac current compo-

nent di  results in decrease in the plasma frequency .p  

Thus, the presence of the ac component leads to renormaliza-

tion of the plasma frequency (27) of the tunnel JJ. 

The results of calculations according to Eqs. (32) and 

(33) are presented in the Fig. 17 by the solid and dashed 

curves, respectively, and compared with the experimental 

data (black circles) taken from [37]. Result of calculations of 
2 2
pl pl( )/ (0)  as function of anharmonicity parameter  is 

presented in Fig. 17. Nonsymmetric character of 
2
pl ( )  is 

clear from calculations for different values of a. There is a 

minimum of 
2 2
pl pl( )/ (0) 0.794  at negative = 0.3  

[63]. At positive values of anharmonicity parameter  plas-

ma frequency 
2
pl ( )  decreases with increasing amplitude 

of oscillating part .di  At negative values of anharmonicity 

parameter  influence of a on the plasma frequency 
2
pl ( )  

is very small. 

Results of calculations of 
2
pl ( )a  at different 

anharmonicity parameter  are presented in Fig. 18. At 

small , the change in plasma frequency 
2
pl ( )a  is negli-
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gible, while at high  the influence of anharmonicity is 

important. At negative  influence of anharmonicity of 

CPR on plasma frequency is decreased. 

3.3. Shapiro steps in I–V curve of JJ with anharmonic CPR 

When radio-frequency signal is applied to Josephson 

junction, its I–V curve shows a set of Shapiro steps result-

ing from phaselocking of Josephson oscillations [64]. Ana-

lytical description of the Shapiro step dependence on the 

signal amplitude was obtained only for a high-frequency 

limit in the frame of RSJ model describing an overdamped 

junction with McCumber parameter << 1C  [4]. In par-

ticular, a nonsinusoidal CPR results in the generation of 

subharmonic Shapiro steps [65], which may lead to insta-

bilities in modes of operation of Josephson voltage stand-

ards. Results of analytical and computational investigations 

of high-frequency dynamics of JJ characterized by nonzero 

capacitance ( > 1)C  and the second harmonic in the CPR 

are presented in [66]. Above presented Eq. (28) gives the 

result for step amplitude in harmonic case ( = 0)  

 
2

= 2

( ) 1
n n

C

a
i J , (34) 

where ( )nJ x  is the Bessel function, a  and  are the am-

plitude and frequency of applied rf signal. The case of 

= 0C  coincides with the well known RSJ model [4]. In 

contrast to harmonic case ( = 0),C  there are subharmonic 

steps in I–V curve with amplitude (according to [66]) 

 

1
2 2

(2 1)/2
2

( ) 1 ( ) 1
= 2

( ) /4 1

n n

C C
n

C

a a
J J

i . 

  (35) 

For JJ with anharmonic CPR ( 0)  the following ex-

pression for harmonic Shapiro step amplitudes is obtained 

as [66]: 
____________________________________________________ 

 2
2 2

= 2max sin sin 2

( ) 1 ( ) 1
n n n

C C

a a
i J J ,  (36) 

and for subharmonic steps as 

 

1 0
2 2

1/2 1
2 2

0 2
2 2

2

2

2

( ) 1 ( ) 12
= 2max sin

( ) 1 ( ) /4 1

2 2

( ) 1 ( ) 1
4 cos .

( ) 1

C C
C

C C

C C
C

C

a a
J J

a
i J

a a
J J

 (37) 

Fig. 17. Plasma frequency of JJ as function of anharmonicity 

parameter. 

Fig. 18. Plasma frequency of JJ as function of amplitude of ex-

ternal ac current for different anharmonicity parameter. 
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Figures 19 and 20 present the analytical results, as well as 

experimental data for both c-oriented and c-tilted 

Nb/Au/YBCO junctions formed on NdGaO substrates (junc-

tion areas ranged from 10·10 m
2
 to 30·30 m

2
) [67,68]. 

Similar results for subharmonic Shapiro steps were obtained 

in [69] for c axis YBa2Cu3O7–x/Pb tunnel junctions. 

Fig. 19. Dependencies of the 1/2- and 3/2-step amplitudes on the applied signal amplitude a at frequencies  = 0.611,  = 35 and  = 0. 

Solid line corresponds to Eq. (35), filled dots correspond to numerical simulation, and empty dots correspond to experimental results for 

the c-oriented Nb/Au/YBCO junctions (a). Dependencies of the critical current amplitude i/2 (0-step) and the 1-step amplitude i (in 

inset) on the applied signal amplitude a at frequency  = 1.62 and  = 4. Dashed and solid lines correspond to formula (36) at = 0 and 

 = 1, the filled dots correspond to experimental results for the c-tilted Nb/Au/YBCO junctions (b). 

Fig. 20. Dependence of the 1/2-step amplitude i on the applied signal of amplitude a at  = 4 for frequencies  = 1.62 (a) and 

 = 2.2 (b). Dashed, solid and dotted lines correspond to the step behavior according to formula (37) with  = 0, = 0.14, and = 0.3,  

respectively. The filled dots are experimental data for the c-tilted Nb/Au/YBCO junction. 
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3.4. Inluence of anharmonic CPR on long JJ dynamics 

Physical properties of magnetic flux dynamics in long 

JJ  play  an important role in the modern superconductivity 

related electronics. We consider a long JJ, where the word 

“long” means that we take into account the variation of the 

phase along one of the spatial coordinates, i.e., along x. 

Further, it will become clear that opposite to the case of the 

usual JJ with only first harmonic in CPR, there is no uni-

versal length scale at which the phase changes or at which 

the weak magnetic field is screened. Moreover, depending 

on the state, the characteristic scale of x variation affecting 

magnetic field screening can be different, so the junction 

can be small if it is in one state and it can be long in anoth-

er state. At the same time, in order to neglect the spatial 

variation of the phase along the junction width (y direc-

tion), we assume that the junction is short in the y direction 

in all states. The calculation of static magnetic flux distri-

butions in the long JJ with consideration of the anharmonic 

CPR was carried out in [58,70–72]. This model is de-

scribed by the double sine-Gordon equation (2SG) for 

magnetic flux distribution in the static regime 

 sin sin 2 = ; ( , )x l l  (38) 

with the boundary conditions in the following form 

 ( ) = el h . (39) 

The magnitude  is the external current, l is the 

semilength of the junction. cI  and  are parameters cor-

responding to contributions of 1st and 2nd harmonic, re-

spectively. he is external magnetic field. Stability analysis 

of ( , )x p  is based on numerical solution of the corre-

sponding Sturm–Liouville problem 

 ( ) = ; ( ) = 0q x l , (40) 

with potential ( ) = cos 2 cos 2 .q x x x  The minimal the 

eigenvalue 0 ( ) > 0p  corresponds to the stable solution. 

In case when 0 ( ) < 0p  the solution ( , )x p  is unstable. 

The case when 0 ( ) = 0p  indicates the bifurcation with 

respect to one of parameters = ( , , , ).ep l h  Results of 

investigations carried out in [70–72] shows that considera-

tion of the second harmonic significantly changes the 

shape and stability properties of trivial and fluxon static 

distribution in long JJ. 

In the “traditional” case = 0  two trivial solutions  

= 0  and =  (denoted by 0M  and ,M  respectively) 

are known at = 0  and 0.eh  Consideration of the se-

cond harmonic sin 2  leads to appearance of two addi-

tional solutions = arccos( 1/2 )  (denoted as M ).ac  

The corresponding 0  as functions of 2SG-equation coeffi-

cients have the form 0 0[ ] =1 2 ,M  0[ ] = 1 2 ,M  

and 2
0[ ] [1 (1/2 ) ].M ac  The exponential stability 

of these constant solutions is determined by the signs of the 

parameters and by the  [70–72] (Fig. 21). The full energy 

associated with the distribution of ( )x  is calculated using 

the expression: 

 
2

( ) = 1 ( )
2

l

e

l

F p q x dx h , (41) 

Fluxon solution of Eq. (38) in the case of = 0eh  and 

= 0  at l  has a form [73]: 

 = ( ) = 4arctan(exp( )) 2x x n  (42) 

where “+” sign corresponds to fluxon, “–” sign corre-

sponds to antifluxon. At small external fields eh  such dis-

tributions are fluxon 1,  antifluxon 1  and their bound 

states 1 1  and 1 1.  As external magnetic field he 

grows, more complicated stable fluxon and bound states 

appear: n  and nn  ( =1,2,3,...).n  

The energy of one-fluxon distribution 1  converges to 

unity ( 0) 1F  which corresponds to an energy of a 

single fluxon 1  in a traditional “infinite” junction model 

at  = 1. With change of  the number of fluxons 

 
1

( ) = ( )
2

l

l

N p x dx
l

 (43) 

corresponding to the distribution 1  is conserved, i.e., 

/ 0.N  Here we have 1[ ] = 1N . Results of influence 

of second harmonic CPR in 0( )eh  were calculated in 

[70–72] and presented in Figs. 22, 23. Simulation results 

show that consideration of the second harmonic in CPR 

Fig. 21. Stability region as a function of anharmonicity parameter. 

Fig. 22. Dependence of 0(he) for 
1
 with increasing of 

anharmonicity parameter . 2l = 10,  = 0. 
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significantly changes the shape and stability properties of 

fluxon static distribution in long JJ. 

4. Qubits based on JJ with anharmonic CPR 

4.1. Qubits 

The great majority of Josephson and SQUID research 

since the beginning of the XXI century has focused on 

possible applications in the field of quantum computation 

[74,75]. In classical digital computation, the processor 

takes as its input ones and zeros (coded, in the case of sili-

con integrated circuits, as two distinct voltage levels) and 

derives an output by performing some kind of classical 

Boolean logical operation on this input. In contrast to it, in 

quantum computation the processor takes as its input a 

quantum coherent superposition of ones and zeros [74,75]. 

The quantum processor then performs a quantum mechani-

cal operation on this input state in order to derive an output 

which is also a quantum coherent superposition. The basic 

element of a quantum computer is known as a qubit. The 

state of the qubit, |  is a linear superposition of the two 

quantum basis states | 0  and |1  [74,75]. Realization of 

qubits based on JJ and their application requires the 

millikelvin temperature region. As follows from above 

presented discussion, the anharmonic character of CPR 

becomes important at this temperature and therefore 

anharmonicity must be taken into account in discussion of 

JJ qubits. This conclusion is also supported by investiga-

tions [44,76]. 

In order to analyze the qubits with JJ, one has to solve 

the corresponding stationary Schrödinger equation with an 

appropriate boundary condition 

 =H E , (44) 

where H  is the Hamiltonian operator,  is the 

wavefunction, and E  is the eigenenergy. Quantum dynam-

ics of an isolated JJ is described with the Mathieu–Bloch 

picture for a particle moving in a periodic potential, similar 

to the electronic solid state theory [4]. In this section, we 

shall describe the quantum dynamics of two types of 

qubits: phase and charge qubits. Such qubits have distinct 

limiting regimes: the phase regime ,j cE E  is analogous 

to the tight-binding approximation, and the charge regime, 

,j cE E  is analogous to the near-free particle approxi-

mation. At the end of this section, we also shall discuss a 

flux qubits using low inductance interferometer with an-

harmonic JJ [77,78,80,90]. 

As mentioned in previous studies (i.e., [4, 81,82]), the 

wavefunction should satisfy the periodic boundary condi-

tion ( ) = ( 2 ).  Therefore, the required boundary 

condition for solving Eq. (44) can be expressed as 

 ( ) = ( ),   ( ) = ( )a b a b ,  

where min=a  and min= 2b  are the lower and up-

per bounds such that a and b depend on the variation of bi  

as well as . Note that the value of a and b are different for 

phase and charge qubits. Additional details about a and b 

are given below. 

4.1.1. Phase qubit with anharmonic CPR. A circuit 

model of a phase qubit system using single JJ is shown in 

Fig. 24. Corresponding Hamiltonian of the system [81,83] 

associated with anharmonic CPR can be written as [82] 

 
2

2
= [ cos cos 2 ]

2
c j bH E E i , (45) 

where = /b b ci I I  is the ratio of the bias currents applied to 

the system,  denotes the phase difference, cE  is the elec-

trostatic energy, and jE  is the Josephson coupling energy. 

In some models suggested in [78] and [80], CPR of Joseph-

son junctions includes second and third harmonics. 

The presence of second harmonic in CPR leads to hump 

like shape of potential energy which seems to be very im-

portant for the manipulation with phase qubit. Figure 25 

illustrates the influence of second harmonic on the potential 

Fig. 23. Dependence of 0(he) for one fluxon states 
1
 and 

1*
 

with increasing of  anharmonicity parameter . 2 l = 10,  = 0. 

Fig. 24. Circuit model of a phase qubit. The crossed lines indicate 

the junction. Ib is the bias current source. 
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 ( ) = 1 cos( ) cos(2 )
2 2

U , (46) 

for various values of . For instance, the potential has a 

single minimum at = 0  for 0.5.  and double minima 

for > 0.5  in the ranges < < 0  and 0 < < ,  re-

spectively. The authors in [58] and [84] also discussed how 

( )U  changes from single potential well to double poten-

tial well in the case of  junctions (i.e., the junctions with 

negative critical current). 

After substituting Eq.(45) into the Schrödinger Equa-

tion (44), we can obtain Mathieu eigenvalue equation for 

zero bias current case: 

 
2

2
cos cos 2 = ,

2

j

c

Ed

Ed
 (47) 

where = / .cE E  Equation (47) is called the Mathieu ei-

genvalue equation, it describes the properties of phase 

qubit under the periodic boundary condition with lower 

bound = 0a  and upper bound = 2 .b  

4.1.2. Charge qubit with anharmonic CPR. A circuit 

model of a charge qubit system using single JJ is shown in 

Fig. 26. The Hamiltonian of the charge qubit system 

[81,83] with anharmonic CPR can be written as 

 
2ˆ= ( ) cos cos 2 ,

2
c g j bH E n n E i  (48) 

where 
2= /(2 )c gE Q C  is the electrostatic energy (Cooper 

pair charge energy) that depends on gate voltage gV  and the 

capacitor = ,g jC C C  and = /(2 )j cE I e  is the Joseph-

son coupling energy in terms of critical current of Josephson 

junction .cI  Introduced ˆ = ( / )n i  is the dimensionless 

momentum operator that refers to the number of Cooper-pair 

on the island and has a physical meaning of charge Q  ac-

cumulated on the junction capacitor jC  in the units of dou-

ble electronic charges (i.e., ˆ ˆ= 2 ).Q en  Furthermore, 

= / (2 )g g gn C V e  is the dimensionless charge number used 

to externally control the system [85]. Figure 26 illustrates a 

single Cooper pair box for a charge qubit including a gate 

voltage gV  and a gate capacitance .gC  

Using washboard potential from Eq. (46) for nonzero 

bias current as well as , we can determine the upper and 

lower bounds of the periodicity interval finding roots of 

equation  

 ( ) = = sin sin 2 = 0b
dU

f i
d

  

that sets condition for ( )U  stable minimum min . In this 

case, the interval for periodic boundary will be min=a  

and min= 2b . Periodical solutions in the case of non-

zero bias current were discussed in detail in [4] and [82] 

using wavepacket approach. 

After substituting Eq. (48) into the Schrödinger equa-

tion as in Eq. (44), we can obtain a Mathieu-type eigenval-

ue equation: 

 
2

2
= ,

d d
p q

dd
 (49) 

where = / ,cE E  the terms = 2 gp in  and 

 
2| |

( ) = cos cos 2
2 4

j
b

c

E p
q i

E
.  

Here, we will present the evaluation of expectation values 

of the supercurrent operator given in equation ˆ / =s cI I  

sin sin 2  and the number operator ˆ = ( / )n i  

within the interval [a,b] in the lowest band for the charge 

qubit. 

First of all, the expectation value of supercurrent [86] 

can be obtained from 

Fig. 25. Potential energy U( ) of anharmonic JJ. Fig. 26. Circuit model of a charge qubit. The crossed box indicates 

the combination of the tunnel element and the junction capacitor Cj 

connected parallel. The gate charge is Qg = 2eng = CgVg. 
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1ˆ= | / | = {sin sin 2 } .

b

s s c

a

i I I d
b a

 (50) 

Similarly, the expectation value of number operator n̂  can 

be determined as 

 
1

ˆ ˆ= | | =

b

a

n n d
b a

. (51) 

The Mathieu-type eigenvalue problems defined in 

Eqs. (47), (49) can be discretized using the finite difference 

approach discussed in [81] on a discrete lattice: 

 1 1 = , = 0,1,2,..., 1.j j j j je f e j N  

The problem is that we want to get rid of the upper and 

lower end wavefunctions 1 1( = N  and 0= )N  

in the form of boundary conditions given in Eq. (44). After 

that, through mathematical discretization of these equa-

tions we can approximate the continuum behavior of the 

system to obtain the eigenvalue problem of the form: 

 0 = , = 0,1,2,n n n nA , (52) 

where n  is an eigenfunction associated with eigenvalue 

n  for an arbitrary eigenstate n; and 0A  is a complex 

N N  periodic tridiagonal coefficient matrix, 

    

0

1

2

3

0 4

2

1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

= 0 0 0 0 0

0 0 0 0 0

0 0 0 0

N

N

f e e

e f e

e f e

e f e

e f

f e

e e f

A  (53) 

The coefficients of the periodic tridiagonal matrix in Eq. 

(53) are: 

 
2 2= 1 /2, = ( 2), = , = ,

1
j j

b a
e hp f h q h h

N
  

  (54) 

where e  is the complex conjugate and h  is the step size 

in the discretization scheme. 

Throughout this study, the numerical solution of Eq. (52) 

is calculated using the conventional LAPACK eigenvalue 

solver. Note that the coefficient matrix in Eq. (53) requires 

an N + 2 data storage space in its present form. In the litera-

ture ([87] and [88]) the linear system solution with a real 

symmetric periodic tridiagonal coefficient matrix is widely 

studied, but the eigenvalue problem [81] formulated in the 

present study requires an efficient design and stable algo-

rithm for finding the eigenvalues of such a matrix. The 

number of subintervals is preferred to be N = 3000 with suf-

ficient accuracy, the reason and preference of it will be ex-

plained. 

4.2. Influence of anharmonic CPR on qubit characteristics 

4.2.1. Phase qubit. The analysis in [78] was limited to 

asymptotical solutions of Mathieu equations. Here, we per-

formed a full numerical analysis of Mathieu equation (47) 

with inclusion of second harmonic in phase qubit regime 

(i.e., / 1).j cE E  As follows from the results, all energy 

levels split into two sub-levels = .i i i  Energy spec-

trum of Mathieu equations for = 0, 1i  evaluated using nu-

merical calculations presented in Fig. 27 coincides with the 

results in [78]. The ground ( = 0)i  and first ( =1)i  states of 

the energy spectrum were obtained and it is shown that split-

ting in the ground and first excited state depends on the 

anharmonicity parameter . For high values of energy scale 

/2 ,j cE E  the splitting between = 0  and 0  cases be-

comes large. On the other hand, it can be seen from the cal-

culations that the change in splitting of ground state is 

Fig. 27. (Color online) Splitting parameters versus anhar-

monicity  of the CPR. Splitting of the ground state (a), first 

excited state (b). 
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smaller than the change of the first level. This means that the 

first state is more sensitive to anharmonicity parameter . 

Furthermore, the numerical modeling is carried out to an-

alyze the influence of the control parameters on the splitting 

of energy states = .i i i  Figure 27 presents the behav-

ior of the splitting of energy states i  for various energy 

scales / .j cE E  The results for 0  are presented in Fig. 27(a) 

within the range 0 2.  As was mentioned before, the 

authors in [78,89] found similar results for dc-SQUID from 

an oscillatory model analytically. Unlike our results, their 

findings are limited to the range 0.5 1.5  for 0.  In 

contrast to [78,89], we observed fine structure in dependence 

of 0 ( )  for different /j cE E  values. For small anhar-

monicity parameter (i.e., < 0.65),  the splitting parameter 

i  decreases linearly with increasing . The results for i  

are in good agreement with findings of solid state theory. 

Fixing the amplitude of first harmonic by negative sign of 

second harmonic leads to an approximate linear decreasing 

of 0 ( ) (1 )jE  [90]. Similar behavior of linear de-

creasing in 0  is obtained in our numerical results presented 

in Fig. 27(a). However, compared to approximate result, the 

vanishing point of 0  is located in the range 0.6 < < 0.9  

for various energy scales. This is because numerical results 

are more precise than the results obtained from preceding 

approximate expression. In addition, ( , )U  in Fig. 25 has 

a single minimum for 0.5  while it has two minima for 

> 0.5.  

As discussed before for Fig. 25, the shape of the potential 

was switched from a single well to a double well structure 

for > 0.5.  For higher values of energy scale such as 

/ 9,j cE E  the behavior of 0 ( )  illustrates different 

tendencies. For instance, 0 ( )  keeps decreasing from 

= 0.5  to cr=  until it vanishes. The values of cr  are 

determined from our calculation (see Fig. 27(a)) as 0.6231, 

0.6007, 0.5784, and 0.5634 for energy scales 9, 15, 30, and 

50, respectively. The “hump” of the double well potential is 

not so high in this region and the energy levels are strongly 

coupled. Such behavior corresponds to two-level crossing. 

On the other hand, for cr max<  where max  is giv-

en in Table 2, 0 ( )  has an increasing tendency as shown 

in Fig. 27(a). For max>  the “hump” of the double well 

increases so the energy levels become weakly coupled. Con-

sequently, the second harmonic in Eq. (46) becomes domi-

nant and leads to a two-level crossing. 

For large values of anharmonicity parameter (0.65 < ), 

we obtain results similar to those in [78]. The maximum 

values of 0( ) peaks at different energy scales are given in 

Table 2. 

Table 2. Changing of the maximum of 0( ) peaks 

EJ/EC  max  0 max 

9  1.350  0.0045 

15  1.125  0.0054 

30  0.950  0.0072 

50  0.875  0.0090  

As also shown in Fig. 27, the peak position of 0  de-

pends on the energy scale / .j cE E  Besides, the width of the 

peak grows with decreasing energy scale /j cE E  in phase 

qubit regime. With decreasing / ,j cE E  the peak value of 

0 ( )  is also suppressed. As shown in the inset of Fig. 

27(a), 0 ( )  only reveals tendency for growth when 

/ < 3j cE E  for charge qubit regime. Figure 27(b) illus-

trates similar results for 1.  As can be seen from this fig-

ure, 1( )  reveals monotonic decreasing behavior with an 

increase in the anharmonicity parameter  for all / .j cE E  

The influence of the energy scale /j cE E  on splitting of 

energy state i  for fixed value of anharmonicity parame-

ter  is presented in Fig. 28. This plot clearly illustrates an 

upward trend of i  for / > 50.j cE E  The reason for re-

stricting /j cE E  up to 50  is related to technological 

achievement in the realization of JJ with a very small ca-

pacitances (at a level of femto Farad (fF)) [85]. The energy 

splitting in ground state 0  increases for energy scale 

/ > 3.j cE E  The partial derivative of 0  with respect to 

energy scale for various  is plotted in Fig. 29. As follows 

from Fig. 28 and Fig. 29, high slope corresponds to the 

Fig. 28. (Color online) Splitting versus energy scale. Splitting 

of the ground state (inset shows behavior of 0 for the range  

0  Ej/Ec  4) (a). Splitting of the first excited state (inset 

shows behavior of 1 for the range 0  Ej/Ec  4) (b). 
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case of harmonic CPR ( = 0).  Increasing  up to 2 re-

sults in fall of the slope down to zero. 

As follows from the inset of Fig. 28(a), at small 

/ < 3,j cE E  0  sharply decreases with an increase in 

/ .j cE E  Another peculiarity of this region is related to non-

sensitivity of results to changing of amplitude of second 

harmonic . The influence of the energy scale parameter 

/j cE E  on splitting of energy state 1  for fixed  value is 

presented in Fig. 28(b). The splitting of first state 

1( / )j cE E  reveals behavior similar to the case 0 ( / ).j cE E  

The inset in Fig. 28(b) shows that at small / < 3,j cE E  1  

decreases sharply with an increase in /j cE E  similar to 0.  

Notice that differential plots for the first level also resemble 

those shown in Fig. 29. 

4.2.2. Charge qubits. As mentioned before, the energy 

scale / < 1j cE E  corresponds to the single Cooper box 

(SCB) charge qubit limit. In this limit, energy spectrum 

can be described at quasi-charge approach [4,81] similar to 

quasi-momentum representation in solid-state theory [90] 

(see also inset Fig. 20(a). Energy gap 0  dependence on 

anharmonicity parameter  presented in Fig. 30(a) resem-

bles the phase qubit case in Fig. 27. Similarly to 0  which 

is the difference between 1  and 0  at = 0.5gn , the “sec-

ondary energy gap” 1  is the difference between 2  and 

1  at = 1gn . The detailed description can be found in 

[81]. Notice that i  refers to energy gap in charge qubit 

whereas it refers to splitting of energy states in phase qubit. 

In Fig. 30(b), the dependence of gap parameters i  on 

energy scale /j cE E  is illustrated. This result qualitatively 

is also in good agreement with Fig. 28. However, in case 

of SCB the growth of i  with /j cE E  has revealed a non-

linear behavior. 

The expectation value of number operator n̂  given in 

Eq. (51) is plotted with respect to gate number gn  in 

Fig. 31 at small bias current = 0.1bi . The n̂  vs gn  is 

experimentally observed for SCB in [91] for junction pa-

rameters = 0.215 meVcE  and / = 0.16.j cE E  As follows 

from Fig. 31 dependence of n̂  vs gn  is not sensitive 

to . The expectation value of supercurrent ˆ= /s ci I I  

versus gn  is illustrated in Fig. 32 for different an-

harmonicity parameters . The positions of the peaks in si  

vs gn  relation is the same as the peaks for = 0  in [81]. 

Note that the supercurrent is equal to zero when the bias 

current bi  is set to zero. The peaks at half-integer gn  val-

ues correspond to the tunneling of Cooper pairs from one 

Fig. 29. (Color online) Differential plot for the splitting parame-

ters in the ground state. 

Fig. 30. (Color online) Results for the charge qubit obtained at 

ng = 0.5. 

Fig. 31. (Color online) n  versus ng for ib = 0.1. 
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electrode to another. When we compare Fig. 32(a) and 

32(b), the increasing of bi  leads to an increase in the mag-

nitude of si  while the increasing of anharmonicity parame-

ter  leads to a decrease in the magnitude of .si  

It was shown in [54] that the anharmonicity of the CPR 

is equivalent to the introduction of an effective inductance 

connected in series to the JJ. The value of effective induct-

ance is proportional to the magnitude of the anharmonicity 

parameter. This implies that such additional inductance 

leads to an increase in the impedance of the circuit for 

charge qubit. For that reason, the amplitude of the expecta-

tion value of supercurrent si  in Fig. 32 is suppressed with 

increasing . 

4.2.3. Silent qubit. The silent qubit is just a low-

inductive two-junction interferometer based on JJ with 

anharmonic CPR and does not require application of half-

flux quantum. Such a qubit is called “silent” because of 

both its high protection against external magnetic field 

impact and the absence of any state-dependent sponta-

neous circular currents. The potential energy of such 

quantum-mechanical system was described in the papers 

[66,78,79,80]. As shown in this work and mentionened in 

section 2, presence of second harmonic in CPR of JJ 

leads to a two-hump potential 

____________________________________________________ 

 0 1 0 21 2( , ) = cos( ) cos( 2 ) cos( ) cos( 2 )
2 2 2 2 2 2

c cI I
U , (55) 

_______________________________________________ 

where 1 2  is difference of the JJ phases,  

1 2( )/2,  0= 2 ( / )e  are normalized external 

fluxes. In the absence of external magnetic field one can 

easily obtain the conditions leading to the double-well en-

ergy potential formation (see above). If both junctions 

(with the same CPR) are of the same size, the energy po-

tential remains always symmetric and any state-

dependent current is impossible even if an external mag-

netic field is applied. However, at different sizes of the 

junction (different critical currents) the external magnetic 

field always breaks the potential symmetry and produces 

a state-dependent current in the loop. In papers 

[66,77,79,80] influence of external magnetic field on the 

splitting of energy levels was investigated. It was shown 

that the ratio /J QE E  also has influence on splitting of 

energy levels. The value of external magnetic field ,e  

in which splitting parameter remains unchangeable was 

found. In these papers examples of some logic operations 

using silent qubit are also considered. 

5. Conclusions 

Results of theoretical and experimental investigations 

of different JJ with anisotropic and multiband supercon-

Fig. 32. (Color online) Expectation value of supercurrent I/Ic . 

ib =0.05 (a), ib = 0.1 (b). Fig. 33. Energy spectrum of silent qubit. 
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ductors show that in the general case CPR has anharmonic 

character. However, up to present time simple sinusoidal 

CPR was used to study the dynamics and ultimate perfor-

mance of superconducting devices based on JJ. The main 

subject of this review is the investigation of dynamical 

properties of JJ with anharmonic CPR. Firstly, numerically 

calculated I–V characteristics of externally shunted JJ with 

anharmonic CPR were discussed. We conclude that the 

second harmonic in the CPR has a strong influence on the 

I–V curve of the JJ. Inclusion of anharmonicity parameters 

leads to an increase in the critical current and an enhance-

ment of hysteresis in the I–V curves. We confirm that the 

shunt inductance in the range of 15L  also affects the 

dynamics considerably. 

Result of calculations of the plasma frequency of JJ 

with anharmonic CPR as function of anharmonicity pa-

rameter  was presented. Comparison of calculated plas-

ma frequency with experimental data was conducted. Gen-

eralizing formulas for both harmonic and sub-harmonic 

Shapiro steps in the presence of nonzero junction capaci-

tance and second harmonic in current-phase relation are 

discussed. Experimental results related to Shapiro steps in 

YBCO-based JJ are in good agreement with the theory. 

Simulations show that consideration of the second harmon-

ic in CPR significantly changes the shape and stability 

properties of fluxon static distribution in long JJ. 

We conclude that second harmonic in CPR has strong 

influence on the characteristics of phase qubits based on 

Josephson junctions, which operate at very low tempera-

tures. In contrast to phase qubits, in the limit of charge 

qubits no considerable effects of anharmonicity are ob-

served in the characteristic number of Cooper pair n̂  

versus gate number .gn  It was observed that the influences 

of anharmonicity parameter  and the bias current bi  on 

the expectation value of supercurrent si  in charge qubit are 

opposite. It was demonstrated that splitting of energy lev-

els in phase qubit as well as energy gap in charge qubit 

reveals similar behavior with energy scale. Characteristics 

and operations of silent qubit using JJ with anharmonic 

CPR were also briefly discussed. Finally, we confirm that 

anharmonic current-phase relation must be taken into ac-

count in the experimental realizations of Josephson junc-

tion circuits and superconducting qubits. 
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