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We study the electronic and magnetic properties of multilayer quantum dots (MQDs) of graphite in the near-

est-neighbor approximation of tight-binding model. We calculate the electronic density of states and orbital sus-

ceptibility of the system as function of the Fermi level location. We demonstrate that properties of MQD depend 

strongly on the shape of the system, on the parity of the layer number and on the form of the cluster edge. The 

special emphasis is given to reveal the new properties with respect to the monolayer graphene quantum dots. The 

most interesting results are obtained for the triangular MQD with zig-zag edge at near-zero energies. The asym-

metrically smeared multipeak feature is observed at Dirac point within the size-quantized energy gap region, 

where monolayer graphene flakes demonstrate the highly-degenerate zero-energy state. This feature, provided by 

the edge-localized electronic states results in the splash-wavelet behavior in diamagnetic orbital susceptibility as 

function of energy. 

PACS: 75.75.–c Magnetic properties of quantum dots; 

73.21.La Electron states and collective excitation in quantum dots. 

Keywords: multilayer quantum dots, tight-binding model, graphite. 

 

1. Introduction 

Rise of graphene certainly revived the interest to the 

classical graphite systems, presenting a wealth of not yet 

well understood electronic and magnetic properties. The 

challenge is related to the complicate semimetallic 

multibranch energy spectrum in the vicinity of the half-

field Fermi level, caused by splitting of the Dirac-cone 

graphene spectrum by the graphite-forming intercarbon-

layer coupling. The point of special interest is the crosso-

ver from graphene to graphite through the multilayer struc-

tures with few number of layers. It is well known that such 

systems may exhibit metallic or semiconductor behavior as 

a function of the number of layers and the stacking process 

[1–5], characteristic that makes them highly appealing for 

gated controlled electronic devices. 

The magnetic properties of few-layer structure are even 

more intriguing [6–10]. The orbital magnetism of the odd-

layer structures is reminiscent to that for the monolayer 

grapheme [6]. In particularly, a characteristic for graphene 

diamagnetic -function singularity of susceptibility [11,12] 

appears at the Dirac point at E = 0. For even number of 

layers the magnetic properties are more similar to those for 

bilayer graphene [6] and the diamagnetic response has the 

weaker logarithmic divergency. Such odd/even layer de-

composition can give the coexistence of Dirac and normal 

carriers, observed in the pure graphite [13–15]. 

Alongside, flake-like graphene quantum dots (GQD) 

have captured the substantial attention of nanotechnolo-

gy due to their unique optical and magnetic properties 

[16–29]. The new element here is the finite-size electron 

confinement, resulted in opening of the energy gap for the 

bulk delocalized electronic states in the vicinity of Dirac 

point [16–18,21,22,25]. This gap, however can be filled by 

the energy level of novel electronic states, localized in the 

vicinity of the sample boundary [16–18]. For nanoscopic 

and even for mesoscopic clusters these edge states can 

play the decisive role in electronic and magnetic proper-

ties of the flakes [18–20,28,29]. The situation can drasti-

cally depend on size and shape of the clusters. Even the 

geometrical structure of the edges (armchair vs zig-zag) 

plays the important role [16,17,25]. In general two types 

of edge states, located nearby the Dirac point can be dis-

cerned, the zero-energy states (ZES) that are degenerate 

and located exactly at E = 0 and the dispersed edge states 

(DES) that fill the low-energy spectra domain within the 

gap and are symmetrically distributed with respect to 

E = 0 [23–26]. 
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In this paper, we consider the electronic and magnetic 

properties of finite-size multilayer quantum dots (MQD) 

that should generalize the principal features of GQD in that 

sense as the described above extended multilayer systems 

grasp the properties of graphene. In particular we show 

that the edge state located close to E = 0 are again respon-

sible for the principal electronic properties, but the level 

arrangement inside the gap is more diverse as in GQD. To 

stress the most prominent aspects we consider the charac-

teristics examples of MQD of hexagonal and of triangular 

shape having zig-zag edges. For calculations we use the 

approach of tight-binding (TB) model in the nearest neigh-

bor (nn) approximation. For magnetic properties we are 

mostly concentrated on the orbital diamagnetic effects. The 

role of the spin-paramagnetic properties is briefly dis-

cussed in the conclusion and will be studied elsewhere. 

2. The model 

Graphene is formed by a two-dimensional honeycomb 

lattice of carbon atoms in which the conducting -band 

electrons can be described within the TB model as 

 † † †
= ( )i i ij j ji ii i j

i ij

H c c t c c t c c , (1) 

where 
†
ic  and ic  are the creation and annihilation electron 

operators, ijt  are the intersite electron hopping elements and 

i  is the on-site electron energy. The Hamiltonian (1) can be 

extended for the multilayer systems by taking into account 

the nn hopping between the adjacent layers. Five interlayer 

coupling parameters 1 5  were introduced by Slon-

czewski, Weiss and McClure [11,12] as the hopping param-

eters for the graphite structure (Fig. 1(a)). Parameter 

1  0.39 eV represents the coupling between the vertically 

aligned BN and AN+1 atoms (subscript index means the 

number of plane, shift 1N N  permutes A and B), pa-

rameter 3  0.315 eV describes the coupling between the 

shifted AN and BN+1 atoms and parameter 4  0.44 eV 

corresponds to the coupling between the AN and AN+1 and 

between the BN and BN+1 atoms. Another two parameters, 

2  and 5  represent the coupling between the next-nearest 

neighboring (nnn) layers. Parameter 5  0.04 eV connects 

atoms BN and BN+2 belonging to the same vertical line as 

atoms connected by parameter 1  whereas parameter 2  

 –0.02 eV corresponds to another vertically aligned atoms 

AN and AN+2, with no intermediate atom between them. In 

addition, the on-site electron energies i  of A and B atoms 

in layers of MQD become different and described by the gap 

parameters i  where i = 0 for AN and BN+1 atoms, i =1 

for AN+1 and BN atoms and  = 0.047 eV [5] alternately. 

We use the TB Hamiltonian (1) to study the MQD of 

triangular and hexagonal shape with zig-zag termination. 

We assume that graphene layers are arranged in the graph-

ite-type ABA stacking as shown in Fig. 1. The electronic 

energy levels of MQD, ,nE  and corresponding DOS are 

found from the TB Hamiltonian (1) with interlayer hop-

ping. In current article we consider mostly the nn layer 

coupling, neglecting the effects of 2 , 5  and .  The 

effect of a c-directed magnetic field is accounted by using 

the Peierls substitution for the hopping matrix elements ijt  

between atomic sites ir  and :jr  

 = exp

j
P

ij ij ij

i

e
t t t d

c

r

r

A l . (2) 

Here = (0, ,0)BxA  is the vector potential of the magnetic 

field. 

Direct numerical diagonalization of Hamiltonian (1) 

gives the field-dependent energy levels ( )nE B  of electron-

ic states and corresponding on-site amplitudes of the wave 

function , .n i  The orbital magnetic energy of the electron-

ic state at = 0T  can be found as function of the chemical 

potential  and magnetic field B  by assumption that all 

the energy levels below  are double-filled by spin-up and 

spin-down electrons: 

 

<

( , ) = 2 ( )

En

n

n

U B E B . (3) 

The corresponding orbital susceptibility per unit area 

and per one layer is calculated as 

 

2

2
=0

1 ( , )
( ) = ,

B

U B

N B
 (4) 

where N  is the total number of layers and 2= 3 /4a n  

is the area of a flake containing n  carbon atoms. 

3. Graphene quantum dots 

Before consider multilayer clusters we describe the 

principal electronic and magnetic properties of single-layer 

clusters with zig-zag edges, studied in [16–29]. 

The DOSs of triangular and hexagonal GQDs with total 

number of atoms n = 526 and 1014, obtained by diago-

Fig. 1. (Color online) Coupling parameters for multilayer ABA 

carbon stacking (a). Top view of the multilayer structure (b). The 

carbon atoms belonging to sublattices AN and BN are shown by 

blue and red colors. 
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nalization of TB Hamiltonian (1) are shown in Figs. 2 

and 3. In general, they repeat the DOS of the infinite 

graphene layer [30] smeared by the finite-quantization 

noise, that vanishes when size of the cluster increases. The 

particle-hole symmetry of DOS, 1 1( ) = ( )D E D E  is con-

served. 

Figure 4 shows the orbital magnetic susceptibility, ob-

tained from the magnetic field variation of the energy lev-

els by the method, described in Sec. 2. The magnetic field 

was varied between 0 and 4 T where the susceptibility was 

checked to be almost field-independent. Again, at large 

energy scale both the dependencies ( )E  are similar and 

are represented by series of jumps between paramagnetic 

and diamagnetic values, provided by the almost-equi-

probable up- and downward displacement of the size-

quantized states as function of magnetic field. As cluster 

size increases, the magnetic susceptibility for all nano-

structures, disregarding their shape and edge-termination 

tends to the bulk limit characterized by a diamagnetic    

-function singularity at = 0E  [11]. 

The most important details, distinguishing triangular 

and hexagonal GQDs are concentrated at nearly-zero ener-

gies when orbital susceptibility is diamagnetic. 

The DOS of triangular GQDs (Fig. 2) reveals the re-

markable feature: a large number of degenerate states is 

observed exactly at E = 0 and is manifested by the huge 

central peak of zero-energy states located inside the energy 

gap. This property is explained by the considerable imbal-

ance of atoms in cluster sublattices A  and B  [18,21] that 

leads to degeneracy 

 1 = 3 3.n  (5) 

The wave functions of ZES are localized mainly at the 

edges of the flake [26]. 

Absence of electronic states inside the near-zero energy 

gap results in the field-independent diamagnetic plato in 

( )E  at E  0 (Fig. 4(a)). Importantly, the degenerate 

states from the central peak do not contribute to suscepti-

bility since, they don’t move from their location at = 0E  

when magnetic field is applied. 

The level distribution at E = 0 in hexagonal GQDs is 

qualitatively different (see Fig. 3). The localized edge 

states are not gathered exactly at E = 0, but are mostly dis-

tributed nearby, inside the band, corresponded to the gap 

for triangular clusters. In strike contrast to the triangular 

case, these dispersed states give the considerable contribu-

tion to the orbital diamagnetism [26,29], demonstrating the 

broad diamagnetic peak at E  0 in the orbital diamagnetic 

susceptibility (Fig. 4(b)). In general, the diamagnetic re-

sponse is larger in hexagonal GQDs as compare to triangu-

lar GQDs. 

4. Electronic properties of multilayer quantum dots 

We turn now to multilayer clusters with layer number 

N = 2–5. The DOSs of triangular MQDs with zig-zag   

edges are shown in Fig. 5. Similar to the single-layer case 

the energy gap with the interior central peak in DOS is 

observed. The difference however is that, these states are 

not located exactly at the Dirac point = 0E  but smeared 

around it with formation of N  peaks of approximately the 

same amplitude (Fig. 5(b)). The total number of the near-

zero energy states (NZES) is just the multiple of ZES in 

each graphene layer, 1= .N N  

To reveal the detailed structure of NZES we plot the 

eigenstate index vs its energy for different N  (Fig. 6) and 

do observe the energy eigenlevel cumulation at the loca-

tions of the split peaks. Importantly, they are not complete-

ly degenerate except the states appeared in the odd-layer 

clusters exactly at E = 0. Another new property is the elec-

tron–hole asymmetry of DOS with respect to the Dirac 

Fig. 2. (Color online) Large-energy scale of DOS of triangular 

GQD (a), ZES levels (b) and zoom of DOS (c) within the gap 

region. 

Fig. 3. (Color online) DOS of hexagonal GQD (a), the energy 

levels (b) and the corresponding DOS in the near-zero-energy re-

gion, E  0 (c). The levels corresponded to localized edge-states are 

noted by red color. 

Fig. 4. Orbital magnetic susceptibility of triangular GQD (a) and 

of hexagonal GQD (b). 
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point, ( ) ( ).N ND E D E  To examine the origin of these 

new features we tested the variation of DOS under conse-

cutive variation of the coupling parameters i  and found 

that this is the coupling 4  which is responsible for both 

effects. Inset to Fig. 5(b) shows that the central peak is 

unsplit at 4 = 0.  

Note that ( )ND E  for MQDs with > 2N  can be recon-

structed from DOSs of bilayer clusters of the same shape if 

the dependence of 2 ( )D E  is known as function of the 

coupling parameters 1,  3  and 4 . Generalizing the band 

decomposition method, proposed for infinite systems in [6] 

we present ( )ND E  as 

 2 , 1,3,4
1

( ) = ( , ),
2

N N m

m

D E D E  (6) 

with = ( 1), ( 2), , 1m N N N  and with -renor-

malizing scaling factors 

 ,
| |

= 2sin
2( 1)

N m
m

N
. (7) 

Importantly, the term with = 0m  and ,0 = 0N  exists 

only for the odd number of layers. It corresponds to the 

contribution from the uncoupled graphene layer, that pro-

vides the degenerate ZES observed in Fig. 6. This residual 

degeneracy however is removed when the nnn couplings 

2  and 5  are taken into account. For even number of 

layers only two-layers states contribute to ( )ND E  and no 

peaks in DOS appear within the size-quantization gap that 

vanishes with increasing of the cluster size [31]. 

Hexagonal MQDs, in contrast to triangular MQDs 

demonstrate practically the same structure of DOS as the 

single-layer GQD with near-zero-energy dispersed elec-

tronic states (Fig. 7). The only tiny difference is the elect-

ron–hole asymmetry, provided by the nn coupling para-

meter 4.  

5. Magnetic properties of multilayer quantum dots 

The large-energy scale plot of magnetic susceptibility 

for triangular MQDs with N = 2–5 demonstrates the ran-

dom oscillations between diamagnetic and paramagnetic 

states (Fig. 8), similarly to what was observed for the sin-

gle-layer case. Typically, the absolute values of suscepti-

bility for the odd-layer MQD are always higher than those 

Fig. 6. Energy levels for triangular MQD with N = 2–5 layers 

inside the gap region. 

Fig. 7. DOS of hexagonal MQD with N = 2–5 layers in the near-

zero-energy region. 

Fig. 5. DOS of triangular MQD with N = 2–5 layers (a) and its 

zoom at the near-zero energies (b). The nn coupling parameters 

are indicated in the text. The inset shows the unsplit central 

peak at 4 = 0. 
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for the even-layer MQDs that can be explained by contri-

bution of one decoupled single-layer, whose susceptibility 

is remarkably higher [6]. However at E  0 the prominent 

asymmetric splash is revealed in the gap region, where for 

the =1N  case only the flat energy-independent plato was 

observed (Fig. 4(a)). This feature is provided by the field-

dependent splitting of the central peak due 4-coupling. 

The structure of ( )E  for hexagonal MQD (Fig. 9) is 

approximately the same as for hexagonal GQD, albeit 

some asymmetry of the broad diamagnetic peak at E  0 

appears. 

6. Discussion 

In this paper we studied the electronic and magnetic 

properties of MQD with zig-zag edges in nn TB approxima-

tion as function of the Fermi energy and their relation with 

similar properties of GQD. The behavior of electronic DOS 

and of orbital magnetic susceptibility in the near-zero-

energy region in vicinity of Dirac point is found to be pro-

vided by the edge-localized electronic states. The details 

substantially depend on shape of MQD and on parity of lay-

er number. In hexagonal MQD the situation is practically the 

same as in GQD, previously studied in [26]: the quasi-

continuum distribution of edge-localized levels is observed 

at E  0 that provides the broad diamagnetic peak in the 

orbital susceptibility. In contrast, in triangular MQD the 

qualitatively new feature appears. The highly-degenerate 

ZES states, centered in the near-zero-energy gap region of 

triangular GQD, are split by the interlayer coupling parame-

ter 4  onto the narrow multipeak band. This gives the 

nontypical splash-wavelet feature in the orbital diamagnetic 

susceptibility at Dirac point, absent for GQD. 

In our work we were focused on susceptibility arising 

from the orbital electronic properties whereas the spin-

paramagnetic effects were not taken into account. Mean-

while their role can be decisive in case of highly-

degenerate electronic states at = 0E  in the half-field tri-

angular GQD with zig-zag edges. The smearing of ZES 

into near-zero-energy band in MQD removes such degen-

eracy and one can assume that the spin-paramagnetic ef-

fects will be less pronounced there. Meanwhile, this ques-

tion is less trivial when the Hubbard-U Coulomb 

interaction and temperature-induced intraband electron 

jumps are properly taken into account. Therefore study of 

the competition between the temperature-independent or-

bital-diamagnetic and temperature-dependent spin-para-

magnetic properties in MQD posses the challenging prob-

lem for many-body statistical physics. These effects can be 

discerned experimentally, basing on the temperature de-

pendence of susceptibility. 

Another interesting property that we observed is the 

electron–hole asymmetry with respect to the level with 

E = 0, provided by the same interlayer coupling parame-

ter 4.  Being of the same origin as asymmetric semi-

metallic multibranch spectrum of electron–hole carriers 

in graphite this feature can result in the non-zero location 

of Fermi level in the half-field MQD. Oscillation of finite 

DOS at Fermi level as function of magnetic field can give 

the quasi-de Haas–van Alphen oscillations similar to 

those observed in the bulk graphite. Study of their charac-

ter and comparison with graphite presents another chal-

lenging problem. 

This work was supported by the Egyptian mission sec-

tor and by the European mobility FP7 Marie Curie pro-

grams IRSES-SIMTECH and ITN-NOTEDEV. 
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