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The nonequilibrium theory of strongly correlated systems is proposed theory which is grounded on the
generalized Wick theorem. This theorem is employed for calculation of the thermal averages of the contour
arranged products of electron operators by generalizing Keldysh formalism. Perturbation expansion is realized for
Anderson impurity model in which we consider the Coulomb interaction of the impurity electrons as a main
parameter of the model and the mixing interaction between impurity and conduction electrons as a perturbation. The
first two approximations are used and is obtained the value of the current between one of the leads and central
region of interacting electrons. The contribution of the strong correlations and of irreducible diagrams is analyzed.

PACS: 71.27.+a Strongly correlated electron systems; heavy fermions;

71.10.Fd Lattice fermion models.
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1. Introduction

We start with single Anderson impurity model con-
nected to two leads named left (L) and right (R) with
Hamiltonian

H=H+H;, )
HO = Y > aCioCiao + D edNds +Ungpng . ()
2=LR ko o
Hi= > > (ViadaCus +ViaCiaols), ©))
A=L,R ko

where d; and Cy,;, are the annihilation operators of the
dot and leads electrons, correspondingly, with spin o, €,
is the leads electron energy eigenvalues, ey is the dot’s
electron on site energy, U is the Coulomb repulsion, Vy; is
the mixing matrix elements which describe the couplings
between dot and leads, n; =dZd,.

We shall use the operators b, ; of the localized mode of
leads conduction electrons

brs = D Vio.Cioo 4)
K
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and investigate the influence of the localized electrons of
impurity on this collective mode of conduction electrons.
The chemical potentials of both leads are supposed to be
different and system is in nonequilibrium state. Therefore
we employ the Keldysh [1-3] formalism based on the con-
tour of the time evolution of the Fig. 1 and four local
Green’s functions for every of both subsystems of electrons:

Gogr (11) = ~i{Tdo (DA (1)),
Gog (L) =1(d5 ()5 1),
Gl (1t) = -i{d, )43 (1),

Gaar (01 = -i{Td, (0 1)),
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Fig. 1. The Keldysh contour of the time evolution.



The theory of nonequilibrium Anderson impurity model for strongly correlated electron systems

Gy (t.t) = =i (Th, OB (1)),
G (1) =1(b] ()b, 1),
G (t.t) = =i (b, OB (1)),
Gy (t.) = =i (Th, (Db (1)),

(6)

where T and T denote time-ordering and anti-time order-
ing of the Heisenberg operators d(t), ..., bg (t). We use
the notifications of [2]. For the brevity we use A instead
A,o in Egs. (6). Only two of four Green’s functions (5) and
(6) are independent because of the linearly dependence:

G T+G" =G +G™. (7

The analogous equations exist for the G Green’s func-
tions. The retarded and advanced Green’s functions are
given by

G'=GT"-G*, G*=GT -G,
G (t,t)) = —ie(t—t')<{d(t),d+(t’)}>, (®)
6wty =iow -v({aw.a*©)}),

where the curly brackets denote anticommutators.

2. Correlation function for Anderson impurity model

Because the unperturbed Hamiltonian (2) includes Cou-
lomb interaction the ordinary Wick theorem is inapplicable
and generalized Wick theorem (GWT) must be used [4-7].
GWT contains new diagrammatical elements named irre-
ducible Green’s functions, which have the structure of Ku-
bo comulants and contain all charge, spin and pairing fluc-
tuations. For example in simplest case we have

(Tdoy (0, ()0, (1907, (@) =

<Td(,1 (tl)d;4 (t4)>0 <Td62 (tz)d;3 (t3)>o -

_<Td(,1 ('El)d;3 (t3)>0 <Td62 (tz)d;zl (t4)>o ’

+ G o1, 05t | o3ty Gata] 9)

where Gl(o)'" is the two-particle irreducible Greens func-
tion which must be found. This question is the special
problem of strongly correlated electron system and has
been studied in many papers [8-17].

The pieces of the Hamiltonian describe the tunneling
coupling between the contacts and interacting central re-
gion. The current from left contact through the left barrier
to the central is [18-22]
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1 =—e<NL>=—%e<[H,NL]>,

X (10)
NL = z Ckkcsckkcf7
k,A=L,c
with result
ie *
IL = ; Z (kac <C[5\,Gd0>_vk}u6 <dgck}»c>) =
k,A=L,c
05 (b1, )~ (02820
h £ (<b7»c5d > <d0bk0> . (11)
(o)
Two Green’s functions are present
Gal (1) =1(Clh () (), o

Gl (1) =1{dg (1)Ciao ),

which must be calculated by using Keldysh formalism.

As a result of the existence of the irreducible Green’s
functions is the appearance of a new element of diagram-
matic theory of strongly correlated electron systems, the
so-called correlation function, which is the infinite sum of
strong connected irreducible Green’s functions. This quan-
tity marked by us with letter A determines the Dyson-type
equation of strongly correlated systems.

In Matsubara theory of equilibrium systems this Dyson-
type equation has the form

G = A+AGyG, (13)

where G is the full renormalized Green’s function of
strong interacted localized electrons, A is the correlation
function and &, is the bare propagator of free itinerant
electrons.

Correlation function differs from mass operator of the
weak coupling field theory because this last quantity be-
gins and ends with zero order propagators, but A could
have not them.

In Keldysh formalism we use matrix Green’s functions
composed from different elements of time evolution in
contour space. We have the matrices

.~ [GT G ~ [ATT AT
G= , A= : (14)
Gt ott AT AT
and also such one for the free propagator .

Dyson-type equation for nonequilibrium strong corre-
lated electron systems has the form

G = A+AGyG. (15)
Besides the Eq. (7) we have the relations
AT +AT=AT AT,

(16)
G +% =G +G)
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and the definitions of retarded and advanced functions

Gl" =G——_G—+ :G+—_G++

Ga :G——_G+— :G—+_G++

G=% +% =-(G@ +%")

B =% +% =—(G% +%")

AI’ = A—— _A—+ = A+— _A++

A= AT AT = ATT AT (17)

The next section is devoted to nonequilibrium perturbative
theory of strongly correlated electron systems.

3. Nonequilibrium perturbative theory for Anderson
model

The nonequilibrium perturbative theory obtains the ther-
mal averages by assuming that we can know only the state at
t = —oo, because initially, at t = —oo, the system is equilib-
rium. The perturbation is turned on at t = —o0 and intro-
duced adiabatical as stationary nonequilibrium at t=0.
After that the perturbation is taken away adiabatically and
vanishes at t = co. The state at t = oo cannot be well defined
[23,24]. The time evolution is realized along real-time con-
tour which starts and ends at t = —oo as illustrated in Fig. 1.

The thermal average in the Heisenberg representation at
t =0 can be obtained in the form [2]

The expansions of these exponents give the forms [3]

Z Z n,ml[ j [%)midtl...zdtnzdtl’...

n=0m=0

.. jdt;n <{fl—Ti t)...H; (t;)}x

X{T|‘~|i(tr:r1_)-..|'~|i(tr"n_)A~(t_!t’+)}>’ (20)

(A1) =

where (---). = Tr(p(-)...) and operators with tilde H;

are in the interaction representation. Then the thermal ave-
rages are derived by using GWT.

We use Hamiltonian without time dependence because
the states are supposed stationary.

In the next part of the paper we shall use two forms of
operator A:

A (1) = b (1 )dg (1),

(21)
Ao (t,1) =idg (1) (1)
and determine the Green’s functions
Gahor (L) = (bl (1) (1)),
(22)

Grdor (L) =13 () (1)),

(At.t)) = ST AL)S ), (18)  We shall take the odd terms of perturbation Eqgs. (20) and
maintain the first two nonzero contributions. First of them is
where AD (¢, =
$ = S(e0,—0) = Texp(~i [ Hj (t)d), o N -
o = jolt1 iTH; (") ATt =T At ) Hi(tr) ), (23)
S1=g*= T~exp (i j I-Ti (t)dt). (19)  and the third contribution is
AG (t,t) = Ijjdtldtzdt3{( ) <T At 1) H; () H; (65) Hi (5 )>
. 2
i i i ~ ~ T e
WL <T Hi )T A0 Hi () Hi (5 )>+%(1—|)<T Hi () Fi () A ) i (g )>+
O <T Hi (6 Hi () Fi )T A t'+)>} (24)
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We have devided the pertubation operator H; in two parts

Hi =Hi+Hip, Hip = blsds, Hip =D dgbyg 29
Ao Ao

and obtain the more simple forms

oo}

—00

0

—00

A= | <if Hin (1) Ag (t7, 1) =iT Ap(t, U Hin (1)

and

AV )= | <if Hip (6) A () =T Kl(t—,t'+>ﬁiz(tf>>dt1,

(26)
dtl,

AP 1) = [ [ [ duydtpdty i {§<T Ayt 1) Hig (i) Hiz () H iz(t3>>—§<f Hia (6T A (U ) Hig () H iz<t3)>—

—<fl-|i2(t1+)T At 1) Hig () I-Tiz(ta)>+<fqi1(tf)Hi2(t§)gl(t,t'+) "Tiz(t3)>+

+§<T~ Hiz (6°) Hi ()T ALt 1) ﬁu(t§>>— §<f Hin (6 Hi2 (&) Hiz ()T A“1<tit’+)>} @

Analogous equations can be obtained for A§3) (t,t") by
changing indices 1 and 2 in (27).

The result of calculation Al(l) and Aél) can be present-
ed as a sum of two contributions depicted on the Fig. 2:

AV = [dy Y| Gony (LG 5 ()

—0 Moy

—+ ++ /
-Gl WG bt )},

A (t,t) = fdt1 > [g{;km (t,tl)G;;(tl,t')_

—0 7&161
—+ ++ ’
_ M’klcl(t,tl)GGlU(tl,t)] (28)
@) -y, — ooy,
ot (1A o't ot Gl o't
- - + - + +
b)---<¢--—e— — i
At Mty c't At Mt o't
- - + - + +

Fig. 2. Diagrams of first order of perturbation theory: for Al(l) @)
and for Agl) (b). Thin solid line is G propagator and dashed line
is G propagator.
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In matrix representation determined by Egs. (14) we
have

1 A - —+
AD )= [dy Y (Gccl (tvt1)33gxlcl,xc(t1vt')) :
—+

Aél) (t’t,) = j dtl Z (ékq klcl(tltl)63éclc (tl't')) )

—o Moy

where o3 is the Pauli matrix. The third order of perturba-
tion theory contains the iteration of these last formulas
and some more contributions obliged to the existence of
the correlation function. The iterative contributions of
this order are

Z (éccsl (t, t1)63 x

7»161...7\.363

AP ) = [ [ [ dudtydty

X G0y, 190y (11:12)53C 555 (t2,13)63G 40 11 (13:1))

AN = [ [ [dydtpdty D (Grgige 153 %
—0 }\1(51}\.363

% Gy (11:12)63G) 509, 1305 (12:13)53C 550 (13,1)) 7, (30)

and the irreducible contribution for the Ai(s) has the form
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AT (1) =I_J' [dudtdty > {<Tdc(t_)dcl(t1_ )dg, (t2)d; (t5 )>ir [gkzcz 140y (2 1) G050 JW)}—

Irr
- <T o ()dg, (607, ()4, (t§)> [ s s RS I
Irr
+<Td;2<t2+>TdG(t—)dcl(tf>d;3<t§)> =010y G )G G )|
+<T ! (6)Tdg()dey () (t2)> Gt 6 )0 100, (G |-
N irr . L
- (185, (602, )T, () [T G000 61D+
+<fd01 (tf)dgz (tE)Tdc(t_)d(}; (t3 )> g)‘ZGZ )‘161( )gk o3 X'G'(t3 ,t'+):|—

- <fd61 (tf)d(-:S (tg)TdG(t_)d;—Z (t2 )> }”262 Moy (t2 t1 ) x36 Ao '(t3 t'+):|

+<folcl(t1+ ) (t2)dg (t3 )dc(t)> [gx ogriqor 2 )97 o W(tg,t'*)] : (31)

The contributions which belong Al(3)i” and A(23)irr are depicted on the upper and lower parts of Fig. 3, correspondingly.

- — - + + — + +
Gltlz*\‘cztz Gltll/)'\‘cztz Gltl‘¢9'\‘62t2 61[],’).\‘ 62t2
e ¢ — <4 e < b— <
{ + - - + -
®“— <o € - -0 “— <o |- < - -0 — o |- <€ - -0 — <o € - -0
'y N4 % N
ot oy T o %fh  F o o3 t ot oy
— — — + + — + +
Gl >\ Oy Gl.>. Ool ol . > Oty Gyt,. > Oty
— < — < b— b b— }
2
“« <ol €-- “ <ol <-- o <o | <--o “— <ot < -~
!Zd Ly !Zd !t!
ot O3l3 + ot Ci:;tg, - ot O3l3 + ot Ci__),t:s +
- — - + + — + +
62t2¢9‘~ 5.1‘3 Gztzz*x Gzt3 62t2/>\ 0313 621‘2,9-\ 63t3
— < — <« b— <« b— <«
{ + - - + -
- - € - — <o — - € 1 e c— <o — — & 4 0c— <o — — € <o
M G,f "t A (<IV} t Mt ol t M ot t
(e} () (e} (e}
011 0, SUl i Jr1 1 0 1] 1 I
Gyly - > O3l3 Oyly - > 0sl5 Oyl - >~ Ojly Oyly - >« Osl;
— < — b be— <« be— b
. . N - §
— - < - e— <o — - & 10— <o = - € 1 @c— <o — — € -0 c— <o
At A by M ;M '
(A o't (S o't o o't o4 o't
+ + + + + + + +

Fig. 3. In the upper part are depicted irreducible diagrams which belong to the A1(3)'" and in the lower part are the diagrams which
belong to A2 N The rectangles depict irreducible Green’s functions and thin dashed lines depict G Green’s functions.
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4, Conclusions

The nonequilibrium theory of the strongly correlated
electron systems is proposed. We take into account non-
applicability of the ordinary Wick theorem for strongly
correlated systems and use the new generalized Wick theo-
rem, which is used to obtain the termal averages of the
product of fermion operators. GWT takes into account the
additional contribution of the Kubo cumulants.

We use the Keldysh formalism of contour time evolu-
tion with additional number of the one particle Green’s
functions and obtain the current from left contact through
the left barrier to the central interactions region.

New elements of diagrammatic theory of our strongly
correlated systems are the irreducible Green’s functions or
Kubo cumulants.

We develop the perturbation theory about the small hy-
bridization matrix element and obtain the correction for the
current value.
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