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Toy model of superconductivity 
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The model of hypothetical superconductivity, where the energy gap asymptotically approaches zero as tem-
perature or magnetic field increases, has been proposed. Formally the critical temperature and the second critical 
field for such a superconductor is equal to infinity. Thus the material is in superconducting state always. 

PACS: 74.20.Fg BCS theory and its development; 
74.20.Mn Nonconventional mechanisms. 
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Critical temperature cT  and critical magnetic fields 
,cH  2cH  are most important characteristics of a super-

conductor. The critical parameters depends on an effective 
coupling constant with some collective excitations 

= 1Fg ν λ   (here Fν  is a density of states at Fermi lev-
el, λ  is an interaction constant), on the frequency of the 
collective excitations ω  and on the correlation length 

0.ξ  The larger coupling constant the larger the critical 
parameters. For example, for large values of g  we have 

cT g∝ ω  [1,2] (or cT g∝ ω  in BCS theory). Formally 
the critical temperature can be made arbitrarily large by 
increasing the electron–phonon coupling constant. How-
ever in order to reach room temperature such values of 
the coupling constant are necessary which are not possi-
ble in real materials. Moreover we can increase the fre-
quency ω  due nonphonon pairing mechanisms as pro-
posed in [2]. However with increasing of the frequency 
the coupling constant decreases as 1/ ,g ∝ ω  therefore 

( ) = 1.14 exp ( 1/ ) 0.cT gω→∞ ω − →  The second critical 
magnetic field can be enlarge due to the decrease of the 
correlation length in “dirty limit” 0= lξ ξ  [4], where l  is 
a free length. However the critical field is low near the 
critical temperature: 2 ( ) 0.c cH T T→ →  In a present work 
we generalize BCS model so that the problem of the criti-
cal parameters is removed due to the fact that a ratio be-
tween the gap and the critical temperature (2 / = 3–7cT∆  
for presently known materials) is changed to 2 / 0.cT∆ →  
We consider a system of fermions with Hamiltonian 
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where BCSH  is BCS Hamiltonian — kinetic energy + 
pairing interaction ( > 0),λ  energy ( ) (| | )F Fk kξ ≈ −kv  is 
counted from Fermy surface. The term extH  is the external 
pair potential, or “source term” [3]. Operators a a+ +

↑ − ↓k k
 and 

a a− ↓ ↑k k  are creation and annihilation of Cooper pair op-
erators [5], ∆  and +∆  are anomalous averages:  

= , = ,a a a a
V V

+ + +
− ↓ ↑↑ − ↓

λ λ
∆ ∆∑ ∑ p pp p

p p
 (2) 

which are the complex order parameter = | | e .iθ∆ ∆  The 
multipliers / | |∆ ∆  and / | |+∆ ∆  are introduced into extH
in order that the energy does not depend on the phase θ  

/2( e ,ia a θ→  /2e e ,i ia a+ + − θ θ→ ⇒∆→∆  e ).i+ + − θ∆ → ∆  
Thus both BCSH  and extH  is invariant under the (1)U
transformation unlike the source term in [3] where it has a 
noninvariant form 

.a a a a+ +
− ↓ ↑↑ − ↓

 υ + ∑ k kk k  

Hence υ  is the energy of a Cooper pair relative to uncou-
pled state of the electrons in the external pair potential 

ext .H  It should be noted that the energy gap | |∆  is the 
energy of a Cooper pair relative to uncoupled state of the 
electrons too. However the field ∆  is a self-consistent 
field as a consequence of attraction between electrons. The 
field υ  is the applied field to the system from the outside. 

Using the Fermi commutation relations and the anoma-
lous averages (2), Hamiltonian (1) can be rewritten in a form 
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Then normal G  and anomalous F  propagators have 
forms 
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where = (2 1)n T nε π +  [6]. From Eq. (2) we have self-
consistency condition for the order parameter  
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Solutions of Eq. (6) are shown in Fig. 1. If the external pair 
potential is absent, = 0,υ  we have usual self-consistency 
equation for the gap :∆  the gap is a function of tempera-
ture such that ( ) = 0.cT T∆ ≥  The larger coupling constant 

= Fg λν  the larger .cT  If > 0υ  then the pairing of 
quasiparticles results in increase of the system’s energy that 
suppresses superconductivity and first order phase transition 
takes place. If < 0υ  then the pairing results in decrease of 
the system’s energy. In this case a solution of Eq. (6) is such 
that the gap ∆  does not vanish at any temperature. At large 
temperature cT T>>  the gap is  

 | || ( ) |= .
2

gT
T

ω υ
∆ →∞  (7) 

Then the critical temperature is =cT ∞  (in reality it lim-
ited by the melting of the substance). It should be noted 
that if = 0λ  then for any υ  a superconducting state does 
not exist ( = 0∆  always). This means electron–electron 
coupling is the cause of the transition to superconducting 
state only but not the external pair potential .υ  

For investigation of thermodynamic and electrodynamic 
properties of the system we should to find a free energy. 
Greatest interest is the case < 0υ  in a limit .T →∞  We 
can see in Fig. 1 that ∆  is small in this region. This means 
that as a starting point we can take the Landau expansion 
(in a momentum space) [4]: 

 2 4 2 2= | | | | | | ,
2s n
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q  is a momentum of a Cooper pair, 0ξ  is a coherence length 
at = 0,T  nF  is a free energy of a normal state. In a limit 

cT T>>  we can write a coefficient A  as = / > 0,cFA T Tν   

where cT  is an adjustable parameter now, and we should 
to add to the free energy a term ext .H〈 〉  Using the anoma-
lous averages (2) we can obtain 

ext
2= | | < 0.H υ

〈 〉 ∆
λ

  

Then the free energy has a form 

 2 2 2 2= | | | | | | .s nF F A q C υ
+ ∆ + ∆ + ∆

λ
 (10) 

A term 4| | /2B ∆ can be omitted due to the smallness of the 
gap. Minimization of the free energy with respect to | |∆  
(if = 0)q  gives 

 2
| | | | 2| | = = = ,

2 F

g TA
A T
υ ω υ

∆ ⇒
λ ν λ ω
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where we must suppose 2= /2cT g ω  in order to get Eq. (7). 
Difference of the free energy (8) from the free energy (11) 
is shown in Fig. 2. We can see that at < 0υ  a supercon-
ducting phase exists at any temperature. 

Fig. 1. Energy gaps ( )T∆  as solution of Eq. (6) for three values 
of the external pair potential .υ  

Fig. 2. Free energies Eq. (8) (dash line) and Eq. (10) (solid line) 
at < cT T  and > cT T  ( = 0).q   
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In coordinate space we can write Gibbs free energy as 
2= | | 2 | |s nG G a u+ Ψ + Ψ +  

 
2 2
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m c
 + − ∇ − Ψ + −  π π 

HH
A  (12) 

where H  is a microscopic magnetic field in each point of 
a superconductor, 0H  is a strength of an external homoge-
neous magnetic field, = rotA H  is a vector-potential. Co-
efficient a  is proportional to temperature = > 0,a Tα  
coefficient u  is proportional to the external pair potential 

= < 0.u ηυ  The Eq. (12) is valid at cT T>>  only. For 
regions cT T  and 0T →  we must replace 

( )cT T Tα → α −  and take into account a term 4/2 | | .b Ψ  
The free energy (12) can be made dimensionless:  
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Then Lagrange equations are  
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and a boundary condition are  
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Here ϕ  is a dimensionless order parameter and cH  is a 
critical magnetic field: 
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n  is a normal to superconductor’s surface, 0 = /c eΦ π  
is a magnetic flux quantum. Correlation length ,ξ  mag-
netic field penetration depth λ  and Ginzburg–Landau 
parameter χ  are  
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The proportionality of the penetration depth to the temper-
ature and the inverse proportionality to the external pair 
potential — Eq. (20) is the expected result. Greater atten-
tion should be given to a reduction of the correlation length 
with temperature — Eq. (19). We can see ξ  is determined 
by properties of a superconductor only (at ).cT T>>  We 
know that the correlation length depends on temperature as 

0= / |1 / |.cT Tξ ξ −  That is at < cT T  it increases with 
increasing temperature, at = cT T  it diverges, at > cT T  it 
decreases with increasing temperature as 1/T  (at large T). 
However above the critical temperature the correlation 
length has physical sense of the size of a superconducting 
phase nucleus in a normal conductor. Superconducting 
phase at > cT T  is energetically unfavorable and because it 
arises fluctuationally by bubble size .ξ  Switching of the 
field υ  changes the situation. The field holds fluctua-
tionally arisen superconducting phase nucleuses. This con-
tinues until the superconducting phase does not fill the 
entire volume of the metal. From Eq. (21) we can see the 
Ginzburg–Landau parameter increases with temperature 
as 3/2T  unlike usual superconductors where the parame-
ter is constant. This means that at large temperature all 
superconductors in the external pair field become type II 
superconductors. 

Besides the critical temperature important characteris-
tics of a superconductor are the first 1cH  and the second 

2cH  critical fields. The first critical field is half as much 
than a field of single vortex which can be determined from 
Eq. (15). Thus we have  

 
2

0
1 2 2= ln .

4
cH

T
Φ υ

χ
πλ

  (22) 

Hence critical current of emergence of resistance is  

 
2

1 1 2
1= ,
2c cI H cR

T
υ

  (23) 

where R  is the radius of a wire [7]. For calculation of 
2cH  we can use the method presented in Appendix A. 

Then Eq. (15) has a form  

 
22

2 2
2

0 0

2 2| | | | = 0.d i d HHx x
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  π π ξ ϕ − + + ϕ+ ϕ ϕ −ϕ Φ Φ   
  

  (24) 

We can consider the order parameter is real = +ϕ ϕ  and 
average it over the system so that ( , ) = const = > 0.x y〈ϕ 〉 ϕ  
Then we have  

 
2

4

0

2 1 = 0,H π
ξ ϕ+ ϕ− Φ 

 (25) 

and the order parameter is  

 
( )24
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We can see ϕ  decreases with increasing magnetic field, 
however the second critical field is infinity like the critical 
temperature. Superconductor phase exists at any magnetic 
field. The absence of a phase transition to the normal state 
with increasing magnetic field can be explained as follows. 
In Ginzburg–Landau theory transition to normal state takes 
place when average distance between vortexes becomes 
the order of the correlation length .ξ  A line in center of a 
vortex is normal. If distance between the centers of vortex-
es is ξ  hence the system is divided into the superconduct-
ing regions size of .ξ  However the correlation length is 
size of a normal phase nucleus arising fluctuationally in the 
superconductor. Thus the fluctuations destroy superconduct-
ing phase if distance between centers of vortexes is less than 

.ξ  As mentioned above switching of the field υ  changes the 
situation. The external pair potential holds superconducting 
phase regions of the size of ξ  given by Eq. (19). Thus the 
superconducting phase is stable at any concentration of the 
vortexes hence at any magnetic field intensity. 

Thus the proposed model of hypothetical superconduc-
tivity demonstrates the principal differences from results of 
BCS and Ginzburg–Landau theory due presence of the ex-
ternal pair potential. In a case of decreasing of Cooper pair's 
energy by the external field the energy gap tends to zero 
asymptotically with increasing temperature. The ratio be-
tween the gap and the critical temperature is 2 / = 0cT∆  
instead of a finite value in BCS theory. Moreover the energy 
gap tends to zero asymptotically with increasing magnetic 
field. Thus critical temperature and the second critical mag-
netic field are equal to infinity formally. Unlike BCS model 
the Ginzburg–Landau parameter is not constant and it in-
creases with temperature. This means that at large tempera-
ture all superconductors in the external pair field become 
type II superconductors. However the first critical magnetic 
field and maximal current of a thin wire are finite values and 
decrease with temperature. This model does not solve the 
problem of room-temperature superconductivity, however it 
allows to reformulate the problem. Possible practical realiza-
tion of the model is proposed in [8], where a source of the 
external pair potential has been constructed. 

Appendix A: Simple method of calculation of the 
second critical field 2cH  in Ginzburg–Landau theory 

Let a superconductor is in magnetic field .Oz↑↑H  It is 
convenient to choose a calibration = .yA Hx  Then 
Ginzburg–Landau equation has a form [7] 

 
22

2 2 2
2

0 0

2 2 | | = 0.d i d HHx x
dydx

  π π ξ − + + ϕ−ϕ+ ϕ ϕ Φ Φ   
  

  (A.1) 

Here unlike the standard method we retained a term 3.ϕ  
When the field strength is of about 2cH  superconductor 
are pierced by many vortices, so that the order parameter is 
strongly nonhomogeneous = ( , ),x yϕ ϕ  it varies over dis-
tances of the order of the coherence length .ξ  We can con-
sider the order parameter is real = +ϕ ϕ  and average it over 
the system so that ( , ) = = const > 0.x y〈ϕ 〉 ϕ  In addition, 
we can suppose 2 2= .x ξ  Then Eq. (A.1) takes the form 

 
2

4 3

0

2 = 0,H π
ξ ϕ−ϕ+ ϕ Φ 

 (A.2) 

and the order parameter is  

 
2

4

0

2= 1 .H π
ϕ − ξ  Φ 

 (A.3) 

We can see ϕ  decreases with increasing magnetic field. At 
the field  

 0
2 2= = 2

2
c cH H

Φ
χ

πξ
 (A.4) 

second order phase transition takes place 2( ) = 0.cHϕ  At 
2> cH H  superconducting phase is absent. 
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