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Phonon and electron spectra of metallic bigraphene are analyzed in the presence of step-edge crystal imperfec-
tion. Different geometries of step-edge are considered. The dynamic planar stability of the considered structure is 
proved for temperatures above the ambient. The number of phonon states is shown to grow near the K-point of the 
first Brillouin zone, compared to pristine graphene. It is found, that this type of defects causes substantially non-
uniform distribution of electron states and the pronounced increase in the number of states with energies close to 
Fermi energy can be expected in electron spectrum of the graphene-based compounds. The performed calculations 
are in good agreement with inelastic neutron, x-ray and Raman measurements. 

PACS: 63.22.–m Phonons or vibrational states in low-dimensional structures and nanoscale materials; 
73.22.–f Electronic structure of nanoscale materials and related systems; 
73.22.Pr Electronic structure of graphene. 

Keywords: quasiparticle spectrum, quasi-two-dimensional crystals, graphene, bigraphene. 

1. Introduction

In the structures of coherently stacked graphene mono-
layers (graphite as the end family-member) a honeycomb 
layers packing is remained, but Dirac singularity in elec-
tron spectrum is lost due to weak van der Waals coupling 
of the layers. The latter gives rise to normal-metal conduc-
tivity in such systems instead of zero-gap semiconducting 
(semimetal) behavior of monolayer graphene [1,2]. A 
growing interest to these systems is caused by their direct 
relevance to the manufacturing of the advanced, closed 

nanoarrangements of carbon (see, e.g., [3–6]), and those of 
transition-metal dichalcogenides [7,8]. 

The Dirac V-shape singularity of electron density of states 
(DOS) in the point of charge neutrality, coincident with Fer-
mi energy εF in graphene, makes the corresponding spectral 
characteristics and, eventually, transport properties highly 
sensitive to the type and content of crystal imperfections in 
graphene-based compounds [9–19]. The semiconducting 
[20]/superconducting [21,22] gaps opening, for instance, 
is assumed. Hence, the present study explores, how the 
step-edges of different chirality affect electron spectrum, 
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vibraional properties and their interplay in bigraphene, the 
simplest representative of such structures, which is frequently 
used as the model system. The quasiparticle local densities of 
states near the step-edge and their influence on spectral pro-
perties of Bernal-stacked bilayer graphene near Fε  are dis-
cussed in comparison with inelastic neutron [9–11], x-ray 
[23] and Raman [5,10,24] scattering measurements. The 
numerical calculations are performed using the Jacobi 
matrix technique [24–27], which provides the full set of 
eigenfunctions without taking the translational symmetry 
into account. The force constants and phonon DOS are 
taken from papers [8,14] as well as contribution of atomic 
displacements in principal crystallographic directions. 

2. The phonon spectra and mean square amplitudes 
of atomic vibrations near the step-edge 

of carbon nanofilm 

Similar to graphene monolayer, the honeycomb structure 
of basal layers in bigraphene is composed of the carbon 
close-packed triangles (Fig. 1(a)). These two graphene mono-
layers are coupled, similar to the bulk graphite, by van der 
Waals interaction. The interlayer spacing or film thickness is 

3.5 Å.h  In contrast to unit cell of graphite with two physi-
cally equivalent atoms, i.e., equal local Green functions and 
local densities of states, the unit cell of bigraphene consists of 
four atoms, with different interaction of atoms pertained to 
different sublattices in one layer with those pertained to an-
other layer. Their physical equivalence is, therefore, de-
stroyed (Fig. 1(a)), while the atoms of different layers are, 

naturally, equivalent. The corresponding Brillouin zone (BZ) 
with high-symmetry points is demonstrated in Fig. 1(b). 

Obviously, the in-plane properties are not much affect-
ed by interlayer interaction in graphene. Rather the out-of-
plane phonon displacements should be responsible for ob-
served specific vibrational properties in bigraphene. 

The step-edge in bigraphene originates from stacking-
misfit boundary between the graphene layers of different 
size. Here the typical case of half-planes filled with bigra-
phene and graphene are considered. Possible configura-
tions of step-edge atoms distribution are shown in 
Fig. 1(c)–(e). Though it was demonstrated before [8,14] 
that bigraphene and graphene keep plane geometry at tem-
peratures much above the ambient one, the stability limits 
of step-edge atoms with dangling bonds remains unex-
plored. For straightforward estimation of the stability lim-
its for step-edge atoms, the structure of the type “trigra-
phene step-edge” can be chosen, when another graphene 
monolayer represents the substrate. It is absolutely clear, 
that real substrates of macroscopic thickness would pro-
vide even less values of mean-square amplitudes of atomic 
displacements and, eventually, the broader temperature 
ranges of structure stability. 

Phonon spectrum and vibrational properties of the 
boundary are strongly dependent on its configuration. 
Those of two types, “armchair” (Fig. 1(c)) and “zig-zag” 
(Fig. 1(d)–(e)), are considered. For the latter, two cases are 
studied, either with a single dangling bond on the atom 
pertained to lattice A  1(d)), or that for sublattice 
B  1(e)). 

Fig. 1. (Color online) Crystal structure (a), Brave lattice and first BZ of bigraphene (b); step-edge configurations under study (c)–(e). 
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The phonon densities of state, originated from displace-
ments in c-axis direction of the atoms pertained to both 
sublattices of bulk graphite and those of carbon nanofilms, 
are featured by a deep minimum at ( )Kω = ω  (Fig. 2(a) — 
green (3) and wine (2) dependences, respectively). This min-
imum resembles the Dirac V-singularity in electron density 
of grahene and similarly is responsible imperfection induced 
quasilocal states with frequencies close to ( )Kω  [14,28]. 
Note, that namely the polarized normal to graphene layers 
(quasiflexural) vibrations [29] should play a crucial role in, 
say, the Cooper pairing at superconducting transition. In 
Fig. 2(a) blue curve 1 is the phonon spectral density, set by 
normal to the layer displacement of the boundary atom of 
step-edge zig-zag A. The quasilocal maximum is clearly 
seen in a frequency range slightly below ( ) ( ) /E K K e≡ ω  
(e is the electron charge), as well as a pronounced growth of 
the number of phonon states at ( ).E E K=  It matches the 
observed phonon spectrum transformations at the supercon-
ducting transition in a number of metal-intercalated graphite 

systems [9–13]. Thus, in paper [12], substantial increase of 
phonon number near ( )E K  is evidenced by inelastic neu-
tron measurements for CaC6-intercalated graphite. In [12], a 
perfect agreement of this result with ab initio calculations 
[30,31] is demonstrated. Interestingly, the same result was 
derived [14,28] within a trivial lattice dynamics approach 
(red curve 4) notwithstanding the perfect crystal structure 
consideration which inevitably sharpers the resonances in 
spectral densities. The role of the number of phonon states at 

( )E E K=  is also proved by observations [12] and relevant 
calculations [14,28] of the transition temperature Tc decrease 
with weakening of intercalation effect on the phonon DOS 
of graphite near ( ),E K  e.g., Tc = 11.5  for CaC6, com-
pared to 6.5  for YbC6. Note, that above considered meas-
urements did not show much difference in occupancy 
growth near Fε  at doping with Ca and Yb. It is also worth 
noting here, that in graphite intercalated with lithium, which 
is more than twice lighter than carbon, cT = 1.9 K [32]. The 
reason is that the light atom vibrations weakly affect the 
phonon spectrum of graphite near ( ),E E K=  being rather 
concentrated in the higher-frequency region. 

The temperature dependence of root-mean-square devia-
tion (rmsd) displacements of atom s in a crystallographic 
direction i relates to corresponding spectral density as 

 ( )
( ) 2 ( )[ ] cth

22
s

Ti s BD
u d

k Tm

⎛ ⎞ρ ω ω
= ω⎜ ⎟ω ⎝ ⎠

〈 〉 ∫ . (1) 

Calculations of rmsd amplitudes of atomic displacements 
( ) 2[ ]s

Tiu〈 〉  for atoms of free-stand, epitaxial bigraphene 
(the trigraphene here) and their interfaces of various con-
figurations (Fig. 2(b)) yield a weak variation of rmsd in ab 
plane without any significant difference from a bulk 
graphene nanofilm. At the same time rmsd along the c axis 
show a pronounced growth with decreasing the number of 
layers (in Fig. 2(b): 2c labels bigraphene; 3c and 3c′ edge 
and middle layers of trigraphene, respectively; c∞  bulk 
graphite). The MSD of step atoms are seen to locate be-
tween curves 3c and 2c not approaching the meaning 

( 3000 K)c T∞ =  even at ambient temperatures (the melt-
ing temperature of graphite is ~ 4000  K). Therefore the 
step-edge in epitaxial bigraphene with the most rigid con-
dition of the trigraphene-surface configuration meets the 
stability requirements for further investigation of electron 
spectrum. The bilayer graphene with steps of different chi-
rality synthesized on Si-graphite is stable at much higher 
temperature (above 1000 K) [33]. 

3. The step-edge effect on electron spectrum of 
bigraphene 

3.1. Electron spectrum of metallic bigraphene 

Electron spectrum of bigraphene is similar to that of 
grapheme and can be described within a tight-binding ap-
proximation. Hamiltonian based on the Wannier represen-
tation can be expressed as (see, e.g., [8]) 

Fig. 2. (Color online) Spectral phonon properties originated by
step-edge imperfection compared to graphene and its derivatives:
(a) displacement along the c axis of the atom in step-edge zig-zag
A (1); clean bigraphene (2), graphite (3), Ca-intercalated graphite
[5,19] (4). Inset: symbols are neutron measurements of phonon
densities for CaC6, solid line ab simulations [21]. (b) RMS atom-
ic displacements along different crystallographic directions in
bigraphene, trigraphene and different configurations of a bigra-
phene–trigraphene interface. 
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,

ˆ | | | |i ij
i i j

H i i J i j= ε 〉〈 − 〉〈∑ ∑ , (2) 

where i  and j  denote the neighboring sites on the lattice 

iε  is the on-site energy, and ijJ  is the nearest hopping 
energy. In assumption that, similar to graphene, the in-
layer electron hopping is possible only for nearest neigh-
bors 2.8 3.1ijJ J= ≈ −  eV (see, e.g., [33]). The interlayer 
electron hopping is also assumed possible only between 
the nearest neighbors from different layers, i.e., those sepa-
rated by distance h. The relevant hopping integral is desig-
nated .J ′  It should be noted, that such neighbors exist for 

half of bigraphene atoms, pertained to sublattices IA  and 
IIA  (see Fig. 1(a)). The atoms of sublattices IB  and IIB  

miss such the neighbors because their nearest neighbors 

from adjacent layers are set at the distance 2 2 .h a+  Here 
1.415a ≈  Å is the in-plane nearest neighbors separation. 

Though it exceeds h for less than 10%, the interaction with 
atoms of sublattices IB  and IIB  is omitted, as it does not 
qualitatively affect the behavior of spectral characteristics 
near Fε  (see, e.g., [5]). 

The electron spectrum of graphene (see, e.g., [1,2]) is 
known to pertain two branches. The corresponding disper-
sion relations 0 ( )ε k  in tight-binding approximation 
(TBA) read 

____________________________________________________ 

 1 2 1 2 1 20
– –( ) 1 4cos cos cos
2 2 2

J ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ε = ± + ⋅ ⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

a a a a a ak k k k
+ , (3) 

___________________________________________ 

where 

 1
3 3, , 0
2 2
a a⎛ ⎞= ⎜ ⎟⎝ ⎠

a ,      2
3 3, , 0
2 2
a a⎛ ⎞= −⎜ ⎟⎝ ⎠

a   

are the two-dimensional lattice vectors and a  being the 
nearest-neighbor separation (see Fig. 1(b)). In (3), the ener-
gy is counted from the reference Fermi level and vanishes 
only in the K-points of the first BZ: 

4 2 2 2 20, , 0 , , 0 , , 0 .
3 3 3 3 3 3 3 3a a a a a
π π π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞Κ = ± ∪ ± ± ∪ ±⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

Four atoms in the elementary cell of bigraphene yield 
dispersion relations with four branches of its electron spec-
trum  which are written in TBA as 

 
2 22 2

01,2 0( )( ) ( )2 4
J JJ′ ′ε + − ′ε = ± ε +kk k ,  

  (4) 

 
2 22 2

03,4 0( )( ) ,( )2 4
J JJ′ ′ε + + ′ε = ± ε +kk k   

where the 0 ( )ε k  function is given by Eq. (3). In the K-point 
of first BZ, the Brillouin function 1,2 ( )ε k  vanish, in contrast 
to function 3,4 ( ),ε k  which means that in these modes Fermi 
level takes place within the energy gap. 

The dispersion curves of bigraphene along the high-
symmetry directions ΓΚ , ΓΜ  and ΚΜ  for the case of 

0.1J J=′  are illustrated by Fig. 3(a). In the figure, there 

are pointed out the energy values in high-symmetry 
points Γ, M and K of the first BZ (for their location 
see Fig. 1(b)): 
 1,2 3,4(K) 0; (K) ;Jε = ε = ± ′   

 2 2 2 2
1,2 /2( ) ;/4J J J J J+ −′ ′ε Μ = ± + ′   

 2 2 2 2
3,4 /2( ) ;/4J J J J J+ +′ ′ε Μ = ± + ′  (5) 

 2 2 2 2
1,2 9 /2( ) ;9 /4J J J J J+ −′ε Γ = ± +′ ′   

 2 2 2 2
3,4 9 /2( ) 9 /4J J J J J+ +′ε Γ = ± +′ ′ .  

In the inset of Fig. 3(a), the K-point area is shown at 
magnified scale. The same inset demonstrates the disper-
sion relations of graphene (3). The quasirelativistic charac-
ter of electron spectrum of graphene is clearly seen, as well 
as the «common» square-law run of the dispersion curve 

1,2 ( )ε k  close to K-point. The spectral branches 
3,4 ( ) ( , ).J Jε ∉ − ′ ′k  

The dispersion relations (4) are in good agreement with 
the Raman measurements. 

In fact, for ,∈ΓΚk  0 ( ) (1 2cos ( 3/2))k akε = ± +  and, 
if = +k Κ κ  (K is the radius-vector of K-point in k space, 
κ << 1), then 0 ( ) 3 /2,aε + ≈ κΚ κ  is obtained which fol-
lows the linear (relativistic) dispersion law. The electron 
modes of bigraphene 1,2 ( )ε k  near the K-point with 

0 ( )k Jε << ′  are written as 

____________________________________________________ 

 
22 2 2

2 2 2 4 21 1 1
1,2 0 0 0 0( ) ( ) ( ) ( ) ( )

2 2 2
J J J⎛ ⎞

ε + ≈ + ε + − + ε + − ε + ≈ + ε + −⎜ ⎟
⎝ ⎠

Κ κ Κ κ Κ κ Κ κ Κ κ   

 
4 42 4 4 4

2 0 01
0 2 2 2 22 2 1 0 11 0

( ) ( ) 81( ) 1
2 2 ( ) 162 /2 ( )

J J a
J JJ

⎧ ⎫
⎡ ⎤ ε + ε + κ⎪ ⎪− + ε + − = ≈⎢ ⎥ ⎨ ⎬

+ ε +⎢ ⎥ ⎡ ⎤⎪ ⎪⎣ ⎦ + ε +⎣ ⎦⎩ ⎭

Κ κ Κ κ
Κ κ

Κ κΚ κ
, (6) 
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the trivial square law of dispersion is thus obtained 

 
2 2 2

2
1,2

1

9( ) ( ) .
4

J a o
J

⎡ ⎤κ
ε + ≈ ± − κ⎢ ⎥

⎢ ⎥⎣ ⎦
Κ κ  (7) 

The effective electron mass, derived from equation 
2 *( ) /2mε = κ  for considered branches, appears to be 

equal to 

 
2

*
2 2

2
9

Jm
J a

′= . (8) 

For the considered case of 0.1J J=′ , the effective elec-
tron mass is 32* 2.75 10 kg ,m −≈ ⋅  at J J→′  it approaches 
the value close to the order of magnitude of the free elec-
tron mass 319 10 kg.em −≈ ⋅  As * ~ ,m J ′  the interlayer 
hopping integral variation, e.g., by strain, allows one to 
change effective mass of charge carriers by the orders of 
magnitude. It should be noted then, that notwithstanding 

0J →′  at such the boundary transition from bigraphene 

to two noninteracting graphene monolayers and the effec-
tive mass * 0,m →  the Eqs. (7) and (8) become invalid 
here as obtained in assumption of 0 ( ) .k Jε << ′  

Electron density of states (DOS) at energies close to 
Fε  is determined by the branches 1ε  and 2ε  only (elec-

tron modes 3ε  and 4 ,ε  reveal a gap in this range), and (4) 
yields 1 2( ) ( ).g gε = −ε  Then 

 1,20
2

1,2( )
( )

| / |(2 )

dl
g

ε =ε

Σ
ε =

∂ε ∂π ∫
κ

κ
, (9) 

where 2
0 3 3/2aΣ =  is the square of the planar unit cell. 

Integration is performed over the closed isoenergetic line 
( ) .ε = εκ  At 0ε =  (Fermi level) this line shrinks to point 

and near Fε  to the circumferential contour of integration. 
Using (8), we can write 

  
2

0
1,2 2 2

1,20
( ) lim const

| / |(2 ) 2 3F
F

d Jg
J

π

ε→ε

Σ κ ϕ ′ε = = =
∂ε ∂π π∫ κ

.  

  (10) 

It means that at 0ε =  DOS has a finite constant value. 
Moreover, according to (9), near the Fermi energy DOS is 
analytical function with minimum at 0ε =  approaching 

2( ) ~g ε ε  at .Fε  
The integral electron DOS can be described by the 

arithmetic mean value of two local densities of states 
(LDOS) ( ),sρ ε  apt to atoms from sublattices A and B 
(which follows from the above mentioned physical 
equivalency of atoms pertained to different bigraphene 
layers) I II( ) ( ) ( );A A Aρ ε = ρ ε ≡ ρ ε  I II( ) ( ) ( );B B Bρ ε = ρ ε ≡ ρ ε  

( ) [ ( ) ( )]/2.A Bg ε = ρ ε + ρ ε  The LDOS for each of ideal 
sublattices can be represented as 

 
2

0
2

1 ( )

| ( , ) |
( )

| ( ) |(2 )

q
s

s F dlα
αα= ε =ε

Σ ψ α
ρ ε ≈

∇ επ
∑ ∫

k
kkκ

. (11) 

In (11) subscripts s and α  refer to sublattices and branch-
es, respectively, ( , )sψ α k  are mean eigenfunctions of at-
oms from each sublattice. The LDOSs, calculated by 
Jacoby matrix technique [25–27] for each of the 
bigraphene sublattices, are illustrated by Fig. 3(b). The 
two-dimensional van Hove singularities at energy values 
corresponding to Γ- and M-points of the first BZ are clear-
ly seen. The inset presents the same dependences at magni-
fied scale for energy range in the vicinity of .Fε  It shows, 
that near Fermi level, LDOS, as well as integral DOS, are 
analytical and their dependence on energy is sufficiently 
nonlinear (in contrast to DOS of graphene presented for a 
comparison in the inset). Moreover, the LDOS ( )Aρ ε  con-
trary to ( )Bρ ε  and integral DOS vanishes at 0.ε →  It is 
worth noting that near 0,ε =  the dependence ( )Aρ ε  is 
very smooth, much smoother than ( ),Bρ ε  and the energy 
spectrum behavior for atoms of sublattice is a gap-like one. 

Fig. 3. (Color online) Dispersion of bigraphene: (a) along the
high-symmetry directions. Inset: magnified area near the -point
of the first BZ, the dashed line is the graphene. (b) Local DOS of
atoms pertained to diferrent lattices of bigraphene. Inset: magni-
fied area around εi(K). 
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It means, that electron energy spectrum of sublattices BI 
and BII has a metallic character with effective mass of 
charge carriers (8), and that of sublattices AI and AII are 
the semiconducting one of finite, though small width. 

Indeed, the substitution of zero eigenvalue in the equa-
tion for eigenfunctions of Hamiltonian (1), yields 

2
I II~ ( ),A A Oψ ψ = κ  and I II~ ~ 1.B Bψ ψ  Then at the 

Fermi level 2( ) ~ ( ).A Bρ ε ε ρ ε  The features in both of the 
LDOS at 0.1J Jε ≈ ± = ± ′  are attributed to contributions 
of the modes 3,4ε . For the latter, the interval [ , ]J Jε ∈ − ′ ′  
is the gap, and the features at 0.05Jε ≈ ±  are caused by 
anisotropy of the isofrequency lines, which becomes no-
ticeable starting just at these energy values. 

3.2. The electron LDOS for atoms around step-edges  
of different chiralities 

It was shown earlier [5,11] that imperfections favor the 
occurrence of quasilocal states in electron spectra of car-
bon nanofilm. The presence of vacancies in graphite causes 
the appearance of sharp resonance in electron density of 
states near  Fε = ε , and in [19] the similar effect was pre-
dicted for bigraphene. Similar to vacancy, the considered 
imperfection is due to breaking the atomic bonds, and the 
same effect on electron spectrum can be expected here, at 
least for particular configurations. 

The Fig. 4 presents electron LDOS for the atoms, locat-
ed near bigraphene step-edge of the armchair type. It is 
seen, that the most pronounced LDOS transformations 
occur for the atoms located in the plane of the edge (layer 
1 on the top plane step). LDOS of the atoms on the bottom 
plane approach rather rapidly that of graphene or 
bigraphene, from the either occupied side of the step. In 
the case of armchair no of the LDOS reveal resonances 
near .Fε = ε  The LDOS behavior near Fε = ε  for atoms 
of sublattice B, located at the boundary (upper left frag-
ment, brown and blue curves), indicates higher, than for 
clean bigraphene (orange curve in inset), value of effective 
electron mass. 

Even the more intriguing behavior is observed for LDOS 
of atoms, located near the step-edge zig-zag A, presented by 
Fig. 5. The LDOS of atoms from sublattices AΙ  (with a sin-
gle dangling bond due to step formation), of those from BΙΙ  
reveal sharp resonances at Fε = ε  (the heights of atoms ,AΙ  
for several orders of magnitude exceed those of ).BΙΙ  The 
maximum heights are decreased quite slowly with going 
away from the boundary inside bigraphene, and disappear 
immediately at the «graphene» side of step-edge (layer II). 
At the bigraphene side of step the Fermi-level of atoms be-
longing to sublattices AΙΙ  and BΙ  appears in the gap of 
width .J ′  At the «graphene» side of step-edge, the LDOS 

Fig. 4. (Color online) Atomic LDOS for the armchair step at the surface of bigraphene. The upper right  part of each panel demonstrates
the corresponding atoms distribution nearby step-edge (labels and color of the atoms are the same for their LDOS); at the left-hand the
magnified portions of corresponding LDOS are presented near ε = εF. 
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correspond to those of ideal bigraphene, but their tendency 
towards LDOS of graphene  is manifested immediately apart 
from the step-edge. The same behavior is manifested by 
LDOS in the case of step-edge zig-zag B. Similar to the 
previos case, the somewhat weaker resonance should be 
found in LDOS ( )AΙρ ε  and ( ),BΙΙρ ε  though in this case, 
the bonds are broken on atoms .BΙ  

Conclusions 

Each of the bigraphene layers is considered as 2D su-
perstructure arranged by metallic and semiconducting tri-
angular lattices. 

The numerical calculations compared with spectral 
measurements have shown that 

i) Spatial distribution of electron states on the step at-
oms with dangling bonds and their neighbors is nonuni-
form and depends on step-edge chirality. 

ii) The integral DOS of clean bigraphene and that with 
step-edge differ near Fermi level, mainly: semiconducting 
gap opens for armchair configuration and the density of 
state increases for the zig-zag. 

iii) The phonon spectral density grows at ω = ω(K) for 
armchair, similar to interstitials, which facilitate a rather 
high-temperature superconductivity. The dynamical planar 
stability still remains up to temperatures about 300–400 K. 

We thank G.E. Grechnev and K.A. Chishko for useful 
discussions. 

 
 

Fig. 5. (Color online) Atomic LDOS for the zig-zag step at the surface of bigraphene A (the same designations as in Fig. 4). 
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