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We present a theory of spin dynamics caused by spin-orbit coupling for two-dimensional gases of cold atoms 
and other quasiparticles with pseudospin 1/2 moving in orbital gauge fields. Our approach is based on the gauge 
transformation in the form of a SU(2) rotation gauging out the spin-orbit coupling. As a result, the analysis of the 
spin dynamics is reduced to calculation of the density-related susceptibility of the system without spin-orbit cou-
pling at the wavevector determined by the spin-rotation length. This approach allows one to treat the spin dy-
namics in terms of the linear response theory for bosonic and fermionic ensembles. We study different regimes 
of irreversible spin relaxation and coherent spin dynamics in these systems. For bosonic gases the effects of low 
temperature are crucial due to accumulation of particles in the small-momentum subspace even if the Bose–
Einstein condensation does not occur due to the system low dimensionality. 

PACS: 03.75.Ss Degenerate Fermi gases; 
05.30.Fk Fermion systems and electron gas; 
67.85.–d Ultracold gases, trapped gases. 

Keywords: spin dynamics, spin-orbit coupling, fermions, bosons. 
 

 
1. Introduction 

Recently achieved abilities in producing strong coher-
ent interactions between light and matter led to discovery 
of a variety of fascinating new phenomena in solids [1] and 
cold atomic gases [2,3]. These phenomena are attributed to 
the properties of combined quasiparticles arising as a result 
of such a strong coherent coupling, that is produced by 
“dressing” of states of real particles or relatively simple 
quasiparticles (e.g., excitons) by interaction with the opti-
cal fields. One of the examples of these quasiparticles is 
given by polaritons which appear, e.g., as a result of light 
interaction with the optical interband electron transitions 
(exciton-polaritons) or with optical lattice vibrations. The 
latter were predicted by Tolpygo [4] as early as in 1950 
and became the first example of such combined states of 
two quasiparticles, here of optical phonons and photons. 
The exciton-polaritons based on the interband optical tran-
sitions in solids are very light quasiparticles and, as a result 

of their small effective mass, at achievable concentrations 
can undergo a Bose–Einstein condensation at relatively 
high temperatures of the order of 100 K. The Bose–Ein-
stein condensation of much heavier optically-cooled ultra-
cold alkali atoms, with low concentrations (of the order 
of 14 1510 –10  cm–3) occurs at much lower temperatures 
(of the order of a micro-Kelvin) [2] and can be done in 
a controllable way, in contrast to the textbook example 
of the Bose–Einstein condensation of liquid 4He. 

Many of these novel phenomena reveal the importance 
of a new quantum degree of freedom determined by the 
coherent light-matter interaction, that is the quasiparticle 
pseudospin. It happens that pseudospin 1/2 can be realized 
for exciton-polaritons in terms of the polarization of the 
light emitted by them [5] or for coherent exciton gases in 
terms of spin-orbit coupling for electrons and holes build-
ing the excitons [6]. Cold alkali atoms such as 87Rb iso-
tope, even having by themselves bosonic nature with zero 
total spin formed by the sum of the nuclear and electron 
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spins, acquire pseudospin 1/2 (related to the hyperfine 
structure of atomic levels) due to interaction with the reso-
nant highly coherent laser light. As soon as the pseudospin 
1/2 appears, one can produce optically a synthetic spin-
orbit coupling [7,8] having different forms, usually re-
ferred to as the Dresselhaus [9] and Rashba [10,11] ones. 
We emphasize that the physical origin of these synthetic 
couplings, being always relativistic in the nature, is com-
pletely different from their solid-state “analogues”. Recent-
ly, artificial spin-orbit coupling was produced optically in 
degenerate ultracold atomic Fermi gases such as 40K and 
6Li [12,13], demonstrating the general character if this 
effect. 

The linear-in-the quasiparticle momentum spin-orbit 
coupling Hamiltonians can be presented as 

 ( )=D D x x y yH k kα σ − σ  (1) 

for the Dresselhaus and 

 ( )=R R x y y xH k kα σ − σ  (2) 

for the Rashba contributions, respectively. Here ik  are the 
Cartesian components of the momentum operator, iσ  are 
the Pauli matrices, and Dα  and Rα  are the corresponding 
coupling constants. (We use the units with 1≡ .) We men-
tion here that initially the Dresselhaus Hamiltonian [9] was 
obtained for bulk semiconductors without inversion ele-
ment in their symmetry group, and this coupling was 
shown to be proportional to 3k . The linear in-k  form of the 
Dresselhaus coupling is the result of projection of the bulk 
Hamiltonian onto two-dimensional states localized in the z 
direction [14]. 

It is important to mention that the relative strength of 
spin-orbit coupling compared to the kinetic energy in cold 
atoms is much larger than that in semiconductors. Indeed, 
the kinetic energy behaves as 2 / ,k M  where M  is the par-
ticle’s mass, while the spin-orbit coupling energy increases 
as kα  (where α is a characteristic value of the spin-orbit 
coupling constant) making the small-momentum systems 
with large mass more favorable for observation of novel 
effects of the spin-orbit coupling. 

In addition to the synthetic spin-coupling, orbital syn-
thetic gauge fields acting at the motion of particles can 
optically be produced for cold atoms [15]. These fields, 
where the orbital effect of the (pseudo)magnetic field pro-
duced by the Lorentz force provide a well-known example, 
qualitatively influence motion of the particles. Through the 
spin-orbit coupling, these fields determine the collective 
spin dynamics in the ensembles of particles. Thus, the abil-
ity to produce synthetic orbital gauge fields in spin-orbit 
coupled systems motivates studies of both coherent spin 
dephasing and irreversible spin relaxation in these systems. 
This analysis, based in the mapping of the spin dynamics 
onto the system susceptibility and linear response to an 
external field, will be presented in this paper. 

2. Spin dynamics and susceptibility 
for a macroscopic system 

The total Hamiltonian for a macroscopic spin-orbit 
coupled system which determines the spin dynamics can 
be expressed using two-component field operators †ψ  and 
ψ  as 

 ( ){ }22 † †
int

1ˆ ˆ= [ , ] ,
2

H d r k A H
M

ψ − ψ + ψ ψ∫      (3) 

where = ( , ).r x y  This Hamiltonian describes the linear in 
momentum spin-orbit coupling as a non-Abelian (general-
ly, with nonzero commutator of the Cartesian components 

,i jA A   determined by the Dα  and Rα  constants) spin-de-
pendent and momentum-independent gauge field. The inter-
actions between the particles and with an external potential, 
including either regular confinement or possible disorder, 
is described by †

int
ˆ [ , ]H ψ ψ  . 

We consider here a balanced Rashba–Dresselhaus cou-
pling with = ,D Rα ≡ α α  where the single-particle spin-
orbit coupling Hamiltonian acquires the form 

 ( )( )=so D R x y x yH H H k k≡ + α − σ + σ ≡  

 ( )( ) ,≡ α ⋅ ⋅k κ h σ  (4) 

where = 2 ,α α  and unit-length vectors are 
( )= 1, 1,0 / 2−κ  and ( )= 1,1,0 / 2.h  Here the spin-orbit 

coupling is characterized by a single direction h of the spin 
precession [16,17]. This coupling can be gauged away 
from the Hamiltonian by a coordinate-dependent SU(2) 
rotation [18–20] in the form 

 ( )( ) ( ) ( )= exp = exp .
2 so

i M i
L
⋅ 

α ⋅ ⋅ ⋅    
 

r κ
r κ σ h σ h  (5) 

The coupling here is characterized by the spin precession 
length = 1/ 2 ,soL Mα  that is the distance the particle should 
travel to rotate the spin due to the spin-orbit coupling. This 
rotation, being applied to the uniform spin density distribu-
tion [19], produces a nonuniform spin helix [21,22] state. 
It is interesting to note that both for electrons in semicon-
ductors and for cold atoms the spin rotation length soL  has 
the value of the order of 410−  cm although the coupling 
constants and masses are completely different. Indeed, large 
masses (of the order of 5

010 m , where 0m  is the free elec-
tron mass) and weak couplings ( 1α  cm/s) for atoms lead 
to the same order of magnitude result as the light effective 
masses ( 1

010 m−
 ) and stronger couplings 6( 10α  cm/s) 

for the electrons. 
For this kind of coupling the spin dynamics can be pre-

sented in the form related solely to the spin susceptibility 
of the system without the spin-orbit coupling [20]. Total 
spin projection at the ( )= / 2+h x y  axis remains con-
stant while the perpendicular component evolves with time 
in a conventional way, including oscillations and relaxa-
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tion. The evolution of the perpendicular to h component 
( )S t⊥  can be presented in terms of the spin diffusion (here 

we assume summation over repeated indices): 

 21 21 2( , ) = ( , ) ( ,0) ,S t t S d rσ σσ σ
⊥ ⊥′ ′ ′−∫r r r r  (6) 

where 1 2 ( , )tσ σ ′−r r  is the exact “spin diffusion” kernel 
for spin components 1σ  and 2.σ  In the weak interaction 
and weak disorder-limit this kernel describes the ballistic 
propagation of particles. It was shown in [20] that in the ab-
sence of spin-dependent ordering, its diagonal Fourier com-
ponents can be presented in the form 

 
( , )1( , ) = 1 ,
( ,0)
q

q
q

σσ σσ

σσ

 χ ω
ω − ω χ 

  (7) 

where ( , )qσσχ ω  is diagonal spin susceptibility in the sys-
tem without spin-orbit coupling taken at the wavevector 

= qq κ  determined by the spin precession length as 
1/ .soq L≡  Under these conditions, ( , ) ( , ) ,q qσσ σσχ ω ≡ χ ω δ  

and the time-dependence ( )S t⊥  is related to the local den-
sity response function ( , )qχ ω  as [20] 

 ( , ) e( ) = (0) 1 .
2 ( ,0)

i td qS t S
i q

∞ − ω

⊥ ⊥
−∞

 ω χ ω
− π χ ω ∫  (8) 

In the spatially uniform 0q →  limit, the static spatially 
uniform susceptibility ( 0,0)qχ →  is determined by deriva-
tive / ,n∂ ∂µ  where n is the particle concentration and µ is 
the chemical potential since it is given by the change in the 
particle’s concentration produced by a spatially smooth 
external potential. 

This equation for spin evolution is general, being valid 
for any system with spin-orbit coupling (4) and without 
a spin-dependent magnetism. Therefore, the analysis of 
the spin dynamics is reduced to the calculation of finite-
frequency finite-momentum susceptibility of a system in 
a magnetic field. For free particles the susceptibility can be 
presented as a conventional Lindhard function. For particles 
in gauge field, where closed trajectories are formed, this 
problem is more complicated as it will be discussed below. 

3. General approaches to susceptibility 

We consider ensembles of particles in a pseudomag-
netic field parallel to the z axis imposing a Lorentz force 
on a particle in the (xy) plane, thus, forming, in the classi-
cal mechanics and infinite momentum relaxation time the 
circular orbital motion or leading to the formation of the 
set of Landau–Fock states in the quantum regime. Here we 
present and compare two views on the spin dynamics. One 
approach is based on the full quantum treatment of the 
problem. The second one is based on the Boltzmann kinet-
ic equation including the Lorentz force produced by the 
gauge magnetic fields acting on the particles. 

3.1. Quantum mechanical susceptibility 

We begin with the quantum description of the suscepti-
bility [23] for the Landau–Fock levels. The eigenstates of a 
particle in a pseudomagnetic field in the Landau gauge are 

( )20 0
2

1( , ) = exp exp
2

y n
y

x x x x
x y ik y H

ll L l

 − −   ψ −        
, 

  (9) 

where 1/l B  is the magnetic oscillator length, yk  is the 
corresponding momentum component, 0x  is the center of 
magnetic oscillator position, ( )nH z  are the properly nor-
malized Hermitian polynomials, and yL  is the length of the 
system in the y direction. The susceptibility has the form of 
modified Lindhard function and can be presented for unit 
sample area as the sum over all allowed transitions as 

( ) ( )
( )

2
ˆ( , ) = , , ,

j j
y q y

j j

f f
q j k n j k

i
′σ σ

′σ σ

ε − ε
′ ′χ ω

ω− ε − ε + η
∑  (10) 

where each level is characterized by number j  and spin 
projection σ  and has the energy jσε  and filling ( ) ,jf σε  
ˆqn  is the corresponding density operator, and η is the Lan-
dau level width. As a result, one obtains [23] 

 
( )

2 2 2 2

2
=1

exp / 2 !( , ) =
! 22

k'

k j

q l j q lq
j kl

∞ −   χ ω ×  +π  
∑∑   

 
22 2 1 1 .

2
k
j

c c

q lL
k i k i

    
× −      ω− ω + η ω+ ω + η     

 (11) 

Here summation over j  is taken from ( )max 0, LN k−  to 
LN  where LN  is the highest occupied Landau level, k

jL  
stands for the Laguerre polynomial, and cω  is the cyclotron 
frequency. The susceptibility is a complicated function of 
momentum and frequency, evidently providing zero sus-
ceptibility at zero momentum due the gapped character of 
the spectrum formed by the orbital motion. 

3.2. Kinetic equation approach 

Here we consider another approach based on the classi-
cal kinetic Boltzmann equation in the simple τ-approx-
imation form. From this equation we find susceptibility as 
a response of a gas in a nonquantizing magnetic field in-
fluencing only the orbital motion of the particles to a weak 
coordinate- and time-dependent perturbation qV  at fre-
quency ω and wavevector .q  The knowledge of the suscep-
tibility allows one to obtain the spin evolution with Eq. (8). 

The corresponding collision integral has the form 

 1= pI f f f  δ − δ − δ   τp p p , (12) 

where the mean value is defined by angular averaging as 
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2

0

1
2pf f d

π

δ ≡ δ ϕ
π ∫ p  (13) 

with fδ p being the variation in the distribution function and 
ϕ  being the angle between p and q. The kinetic equation 
for the distribution functions has the form 

 cos c
i pqi f f

M
∂ ω+ − ϕ δ +ω δ = τ ∂ϕ 

p p   

 0 1= cos q p
fpqi V f

M
∂

ϕ − 〈δ 〉
∂ε τ

. (14) 

The solution can be presented as 

 
( ) ( )0= , ,q q

f
f V p

∂ ε
δ ψ ϕ

∂εp  (15) 

where function ( ),q pψ ϕ  is determined by self-consistent 
equation 

 ( ) ( )cos , ,q c q
i pqi p p

M
∂ ω+ − ϕ ψ ϕ −ω ψ ϕ = τ ∂ϕ 

  

 ( )= cos , .q
pq ii p
M

ϕ+ ψ ϕ
τ

 (16) 

The susceptibility is obtained by integrating over the mo-
menta of the particles: 

 ( ) ( ) ( )
( )

2
0

2, = , .
2

q
f d pq p
∂ ε

χ ω ψ ϕ
∂ε π

∫  (17) 

Using definition of Bessel function of the nth order 

 ( ) ( )
2

0

1= exp cos ,
2nJ z inz d

π

φ φ
π ∫  (18) 

and introducing functions 

 ( )
=

[ ] 2
0

=
,

/

n
p c

n
c cn

n pqq J
i n M

∞

−∞

 ω
ω ≡  ω+ τ − ω ω 

∑ , (19) 

 ( )
=

[ ] 2
1

=
,

/

n
p c

n
c cn

n pqq J
i n M

∞

−∞

 ω− ω
ω ≡  ω+ τ − ω ω 

∑  (20) 

we obtain with some algebra from Eq. (16) for the suscep-
tibility 

 ( ) ( ) ( )
( )

[ ]
0 0

[ ]
0 1

,
, = ,

,

p

p
qf

q d
q

∞ ω∂ ε
χ ω ν ε

∂ε ω∫



 (21) 

where = / 2Mν π is the energy-independent density of 
states per single spin component in a two-dimensional gas. 
The factor / cpq Mω  has simple geometrical meaning. 
Taking into account that / = ,c cp M Rω  where cR  is the 
cyclotron radius, we see that the dynamics is determined 
by a product ,cqR  that is by the ratio / .c soR L  We will use 
this fact in the analysis of the spin evolution. 

The above equations are exact in the τ-approximation 
being particle statistics-independent. They determine full 
frequency- and momentum-dependent susceptibility of 
a macroscopic system in a nonquantizing magnetic field 
and resulting spin evolution. The value of τ can have sev-
eral origins. First origin is related to the disorder, which 
always presents in solids and can be produced in cold 
atomic gases by random optical fields. This disorder leads 
to relaxation both in the total momentum and in the spin. 
However, in the context of spin dynamics, the relaxation 
can be caused by interparticle collisions, leading to the 
spin drag, not contributing into the total momentum relaxa-
tion [24,25]. Since these interparticle collisions are strong-
ly temperature-dependent, they can lead to a strong modi-
fication of the spin relaxation with the temperature, which 
can be qualitatively different for Fermi and Bose gases. 

4. Spin dynamics: irreversible and reversible 

Here we apply the susceptibility-based approach to sev-
eral regimes such as the irreversible spin relaxation due to 
collisions and reversible dephasing in clean gases. This 
approach is valid for electrons in two-dimensional semi-
conductors and for cold of two-dimensional fermionic and 
bosonic gases. We will see the importance of the /c soR L  
ratio in these regimes. 

4.1. Diffusion limit and irreversible relaxation 

We begin with the irreversible spin relaxation arising 
due to the collisions with the characteristic rate of 1/ .τ  
Here we explore the limit of low-frequencies and, corre-
spondingly, the long-time behavior of spin density corre-
sponding to 1/ ,ω τ  and cω ω . At long times, after 
many scatterings, the particle motion becomes diffusion 
with the displacement 2 ( ) ,r t Dt〈 〉   where D  is the diffu-
sion coefficient. Here the susceptibility is determined by 
the diffusion pole [26] in the system response, common for 
the Bose and Fermi statistics, presented in the form 

 ( )
( ) 2

1, = .q
D B q i

ω
− ω

  (22) 

By making expansion with small parameter ωτ in Eqs. (19) 
and (20) and using the small z  behavior ( ) ,n

nJ z z  we 
obtain that only the = 1n  and = 0n  terms contribute into 
the susceptibility in the nominator and denominator, re-
spectively, and the field-dependent diffusion coefficient 
becomes 

 ( ) ( )
2 2
0

= .
1 c

D
D B

+ω τ
 (23) 

Here ( )0D  is the diffusion coefficient in the absence of 
magnetic field, equal, e.g., 2 / 2F τv  for highly degenerate 
Fermi gas with the Fermi velocity Fv , and ( )D B  decreases 
as a result of the cyclotron motion, making in the strong-
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field limit 2 2 1cω τ   the cyclotron radius much smaller 
than the particle free part. Integrating over ω in Eq. (8), we 
obtain the conventional exponential Dyakonov–Perel’ spin 
relaxation [27] in the form of Refs. 28, 29: 

 ( ) ( ) ( )( )2= 0 expS t S D B q t⊥ ⊥ −  (24) 

as expected. The spin relaxation rate ( ) 2D B q  is propor-
tional to the momentum relaxation time included in ( )D B  
and square of the spin-orbit coupling constant in the 
wavevector q and suppressed by the circular motion. This 
formula can be seen as a long, taking time of the order of 

( )2 / ,soL D B  diffusive smearing of the particle’s density 
variation on the timescale of the order of the time neces-
sary for the particle, either a free one (at = 0B ) or per-
forming the cyclotron motion, to diffuse through the spatial 
domain of the characteristic spin-flip soL  size. Thus, the 
Dyakonov–Perel’ spin relaxation is directly mapped onto 
the particle diffusion in the real space. 

4.2. Clean limit: geometry and reversible dephasing 

Here we consider clean systems (or short-term behav-
ior), where the scattering plays a negligible role, and the 
dephasing becomes reversible. Using integral representa-
tion of the Bessel function, one can obtain that for the ele-
ment of the distribution function with momentum p one 
can present the time-dependent spin component as 

 
( )
( )

,
0

,

2= sin .
0 2

p q c

p q c

s t tpqJ
s M

 ω
 ω 

 (25) 

This expression has a simple physical and geometrical 
meaning, corresponding to the dephasing of particles’ spins 
on circular path of the momentum p-dependent radius of 

( ).cR p  All particles start to move from the origin and re-
turn to it at the time of 2 / .cπ ω  Spin precession angle is 
proportional the displacement along the ( ) / 2−x y  axis, 
and summation of all spins leads to the above spin depend-
ence. This process is illustrated in Fig. 1. The resulting 
spin dephasing is given by averaging over the ensemble as 

 ( )
( )

( )
= ,

0 (0)
S t t
S
⊥

⊥




 (26) 

where 

 ( ) ( ) ( )0
0

0

= 2 sin ,
2
c

c
f t

t J R q d
∞ ∂ ε ω ε ν ε ∂ε  ∫  (27) 

and = 2 .p M ε  
Note that 

 ( ) ( )0
0

0

(0) = = 0 =
f nd f

∞ ∂ ε ∂
ν ε −ν −

∂ε ∂µ∫  (28) 

corresponds to the static uniform susceptibility of the system. 

In addition, we mention what happens in the weak-field 
limit where c soR L . Here, we can assume 1ctω   and 
obtain 

 ( ) ( )0
0

0

=
f pqt J t d

M

∞ ∂ ε  ν ε ∂ε  ∫  (29) 

that is oscillating behavior with slowly ( )1/ t  decreas-
ing amplitude, corresponding to spin dephasing in the ab-
sence of magnetic field. This dephasing occurs on the time 
scale of the reversible smearing of the density fluctuation 
of the order of / ,soL v  where v is the typical the particle 
velocity. 

5. Coherent spin dephasing: the role of statistics 

In this section we concentrate on the coherent reversible 
spin dephasing in cold two-dimensional fermionic and 
bosonic gases and show the qualitative role of the statistics 
in the spin dynamics. 

5.1. Cold  fermions 

Here we consider spin dephasing of highly degenerate 
clean Fermi gas described by distribution function: 

 
( )

1= .
exp / 1

f
Tε −µ +  

 (30) 

Fig. 1. (Color online) Two different circular path (A, B) in a mag-
netic field. Arrows show the displacement of the particles at time t . 
Although the displacements of particle at time t  are equal, 

( ) (0) = ( ) (0) ,A A B Bt t− −r r r r  their projections at the ( ) / 2−x y  
axis are different, resulting in different spin precession angles. 
The dephasing occurs when the difference in the displacements 
along the ( ) / 2−x y  axis is of the order of soL , corresponding 
to the spacial scale of the periodic inhomogeneity in the back-
ground of the figure. 
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Condition of low temperature can be formulated as 
= ,FT Eµ  and all the physics is related to the Fermi-

surface properties characterized by Fermi momentum 
= 2 .F Fp ME  We mention that the zero-frequency limit 

of the susceptibility is given by the density of states at the 
Fermi level ,ν  that is by the energy-independent particle 
mass .M  The condition of classical motion here is formu-
lated as .F cE ω  

In the collisionless limit we obtain oscillating time-
dependence (Fig. 2) 

 ( ) ( ) 0
2

= 0 sin
2
cF

c

tqS t S J⊥ ⊥
 ω
 ω 

v . (31) 

This can be understood as the reversible dephasing due to 
the regular circular motion and obtained on simple physi-
cal grounds of trajectories starting at the same point at 

= 0,t  as can be seen in Fig. 1. All particles participating in 
the dephasing have the same cyclotron radii /F cωv  and, 
therefore, move the same distance at given time .t  This 
means that the dephasing strongly depends on the cyclo-
tron radius common for all the trajectories of the particles 
with momentum Fp . Equation (31) clearly shows revivals 
in the spin after each cyclotron period 2 / cπ ω . If finite col-
lision rate is taken into account, amplitude of the revival 
peaks decays exponentially as 

 ( ) ( ) ( )0
2

= 0 sin exp / .
2
cF

c

tqS t S J t⊥ ⊥
 ω

− τ ω 

v  (32) 

We mention that for the degenerate Fermi gas τ is propor-
tional to 2 ,T −  and, therefore, in this limit occurs reversible 
ballistic, almost temperature-independent, spin dynamics, 
solely determined by the /c soR L  ratio. 

5.2. Cold bosons 

The Bose statistics, where the equilibrium distribution 
function has the form 

 ( )
( )0

1=
exp / 1

f
T

ε
ε −µ −  

, (33) 

leads to a qualitatively different spin dynamics. Since there 
is no Bose–Einstein condensation of free two-dimensional 
bosons, we assume that at any temperature < 0,µ  and the 
condition of high degeneracy can be formulated as .Tµ   
This allows us to present the distribution function in the 
form 

 ( )0 = Tf ε
ε + µ

 (34) 

describing the particles accumulation at low energies in the 
absence of Bose–Einstein condensation at the energy inter-
val Tε . Temperature behavior of chemical potential at 
low T  is given by: = exp ( / ) ,gT T T Tµ −   where 

= /gT n M  is the degeneracy temperature where the classi-
cal gas becomes a quantum one. Although the chemical 
potential does not drop to zero at any finite T , it is expo-
nentially small in a large interval of temperatures gT T . 
The condition of classical motion in the magnetic field is 

.cT ω  
To describe spin dynamics we introduce characteristic 

cyclotron radius [ ] / /T
c cR T M≡ ω  and note that it satis-

fies condition [ ] min 1/ .T
c c cR R M≡ ω  The resulting 

evolution of the spin in the Bose gas presented in Fig. 3 

Fig. 2. (Color online) Spin dephasing for fermions. This plot 
presents functions ( )0 2 sin( / 2)c cJ R q tω  for different values of 

cR q  as marked near the plots, where 2 /c ct ≡ π ω . Same result 
was obtained in Ref. 30 by direct solution of the kinetic equation 
in the presence of spin-orbit coupling. 

Fig. 3. (Color online) Reversible spin dephasing for bosons. The 
plot presents time-dependence of spin for different parameters 

[ ]T
cR q . The values of chemical potential are taken as = 0.1Tµ −  

for a highly degenerate Bose gas. Note that, in contrast to the 
Fermi gas in Fig. 2, the ( ) / (0)S t S  dependence does not show 
oscillations since the width of thermal distribution in the cyclo-
tron radii / /c cR T M ω  is of the order of its mean value. As 
a result, the spin dephasing and revivals occur without oscilla-
tions. 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 5 511 



I.V. Tokatly and E.Ya. Sherman 

strongly depends on the temperature and does not show 
oscillations due to a broad distribution of the cyclotron 
radii ( )cR ε , produced by a broad energy distribution. For 
any temperature, we see general revivals at time ,ct  when 
all the particles return to their initial positions. At 

( )2> ,so cT M L ω  total spin decreases almost to zero at a 

short time 0 /sot L M T  and then restores after the cy-

clotron period. If min <c soR L , the effect of spin dephasing 
becomes small as the gas is cooled down. Otherwise, the 
dephasing is strong in the entire semiclassical region of 
temperatures. 

6. Conclusions 

We presented a theory of spin dynamics in Fermi and 
Bose gases based on the SU(2) coordinate-dependent spin 
rotation, which allowed us to gauge out the spin-orbit cou-
pling and to reduce the analysis to the properties of suscep-
tibility of a system without spin-orbit coupling. We ob-
tained that the spin dynamics can be expressed in terms of 
the ratio of characteristic cyclotron radius determined by 
the system parameters such as the magnetic field, concen-
tration, and the temperature to the spin-precession length 
determined solely by the fundamental parameters such as 
the particle mass and the spin-orbit coupling constant. We 
found the Dyakonov–Perel’ and reversible dephasing re-
gimes of spin dynamics. In addition, we have clearly seen 
that the spin dynamics of the Bose gas is suppressed at low 
temperatures as the mean energy of particle decreases even 
if the Bose–Einstein condensation does not occur. 
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