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Quantum rotors in Pca21 lattice 
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Analytical calculations of the potential barrier hindering rotation of the hydrogen molecules in the molecular 
field of neighboring molecules are performed for molecular solid hydrogen. The calculations are made for 
the four-sublattice Pca21 lattice which minimizes the electrostatic energy of classical quadrupoles on an hcp lattice. 

PACS: 67.80.–s Quantum solids; 
64.70.kt Molecular crystals; 
67.80.F– Solids of hydrogen and isotopes. 
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1. Introduction

As a unique quantum molecular crystal, solid hydrogen 
has for a century of studies been a challenging subject of 
investigation and a source of new concepts in fundamental 
physics [1–4]. The large isotopic family of hydrogens (H2, 
HD, D2, HT, DT, T2) presents a unique possibility for study-
ing the diversity of quantum isotopic effects [1,3]. The be-
havior of the hydrogens at high pressures has been termed 
one of the “Key Problems of Physics and Astrophysics” [5]. 
Inspired by the search for the high-density metallic phase, 
there has been significant progress in recent years as a re-
sult of major advances in experimental high-pressure tech-
niques. In particular, diamond-anvil cell experiments have 
revealed that the phase diagram of the solid H2 is very rich 
and four phases have been clearly identified and studied 
[4,6–9]. Recently a new high-pressure high-temperature 
phase V was found [10]. These phases are related to rota-
tional ordering of the molecules and are accompanied by 
structural changes. The metallization of hydrogen remains 
an open question. 

Hydrogens at low temperature and pressure form the 
only molecular quantum solid in which both translational 
and rotational motions of molecules are quantum. By anal-
ogy with solid helium, which is an ultimate quantum solid 
at low pressures, it is generally believed that quantum ef-
fects become progressively less pronounced with increas-
ing pressure. In the case of solid hydrogen, this is true only 
for the translational motion of molecules. As for rotational 
motion, strictly speaking, it is not so. At small pressures 

the molecules in J-even solid hydrogens (para-H2 and 
ortho-D2) are virtually spherical. Such spheres crystallize 
into a perfect hcp structure with the ideal axial ratio 

/ = 8 / 3c a . A competition between the gain in the aniso-
tropic energy and a loss in that of the isotropic component 
determines the deviation = / 8 / 3c aδ −  from the ideal hcp 
value for given pressure and temperature. The orientational 
state of molecules in the distorted lattice is characterized 
by the orientational order parameter η. Thus, the state of 
the lattice can be described by two coupled order parame-
ters, ( , )P Tη  and ( , )P Tδ , which can be found by the minimi-
zation of free energy with respect to these parameters [11,12]. 

Knowledge of the lowest-energy structure is fundamental 
for clarifying the properties of compressed solid hydrogen 
at low temperatures. At low density, the orientation-depen-
dent energy comes mainly from the electric quadrupole-
quadrupole (EQQ) interactions. On a rigid cubic lattice the 
molecules are arranged in a high-symmetry Pa3 structure, 
in which each molecule is directed along a threefold sym-
metry axis (space diagonals of the cube) [1–3,13]. As was 
shown first by Kitaigorodskii and Mirskaya, the lowest 
energy structure for the classical EQQ system belongs to 
the Pca21 space group [14]. This structure (Fig. 1) may be 
obtained from hcp lattice with all molecules aligned along 
c axis (space group P63/mmc) by doubling the unit cell and 
tilting the four molecules in the unit cell from c axis by 
an angle ϑ and rotated by the azimuthal angles ,±ϕ π± ϕ. 
A more systematic studies of the arrangement of classical 
and quantum quadrupoles has been made by Felsteiner [15], 
Miyagi and Nakamura [16] and by James [17]. 
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The low-pressure phase I is considered as rotationally 
disordered hcp solid. Phase II, the so-called broken sym-
metry phase or BSP, is orientationally ordered. The crystal 
structure of high-pressure phases II and III has not been 
determined unambiguously. It is generally believed that 
centers of mass of the molecules form an hcp lattice. Optical 
(Raman and infrared) vibron modes which are observed in 
phase II in hydrogen and deuterium indicate an orienta-
tional ordering of four molecules per cell. The structure 
considered the most relevant for the high-pressure phases 
of hydrogen is the Pca21 (Fig. 1). This structure may be 
obtained from hcp lattice with all molecules are aligned 
parallel to c axis (space group P63/mmc) by doubling the 
unit cell and tilting the four molecules in the unit cell from 
c axis by an angle ϑ and rotated by the azimuthal angles 

,±ϕ π± ϕ. This structure is known to minimize the electro-
static energy of classical quadrupoles on an hcp lattice, at 

55ϑ ≈  and 43ϕ ≈  [14]. The energy profile for the single-
particle movement of the hydrogen molecules was calcu-
lated in Ref. 18 in LDA approximation. Azimuthal and 
polar librations movements in this profile are quite differ-
ent: while polar librations in the relatively deep well are 
near harmonic, the azimuthal movement in the shallow 
well is strongly anharmonic [18] (Fig. 2). The influence of 
the orientational motion on the electronic band structure of 
molecular hydrogen was studied using different ab initio 
approaches in Refs. 19–22. 

In this paper we developed an analytical approach to 
calculate the potential well profile for the orientational 
movement of the hydrogen molecules in the four-sublattice 
Pca21 structure. This approach generalizes the approach 
developed by Felsteiner and Friedman for Pa3 lattice [13]. 

2. Energy of anisotropic interaction

Let us consider a system of symmetrical quantum rotors 
represented hydrogen molecules on a rigid lattice interact-

ing via anisotropic orientational forces. Molecular orienta-
tions relative the crystal frame are defined by unit vectors 

iΩ . The Hamiltonian of the rotor system can be written in 
the form  

kin
1= ( , , ),
2 ij ij i j

ij
V+ ∑ R Ω Ω   (1) 

where kin  is the rotor kinetic energy operator and ijV  
is the intermolecular interaction energy. Retaining in the 
equation for the two-particle interaction only terms with 
1 2= = 2l l , we get the anisotropic interaction energy in 
the form [1–3] 

2 23/2
1 2

1 2

( 1)( , , ) = 4 ( )
2 1

l
ij ij i j l l m m

l m m
V R C

l

µ

µ
µ

−
π α ε ×

+
∑ ∑R Ω Ω  

2 21 2
( ) ( ) ( ),m i m j l ijY Y Y µ× Ω Ω Ω  (2) 

where 2 2
2 2 0

lC  are Clebsch–Gordan coefficients, the coeffi-
cients 22 1

2 2 0= ( )l
l C −α  and functions ( )i Rε  characterize the

interaction of l -type and are defined by the type of the in-
termolecular interaction. The unit vector ijΩ  defines the 
orientation of the intermolecular axis and thus is a lattice 
vector. 

Equation (2) may be rewritten in the form 

2 21 2 1 2
1 2

4( , , ) = ( ) ( ),
5ij ij i j m m m i m j

m m
V R F Y Yπ ∑Ω Ω Ω Ω  (3) 

where 

2 2
1 2 1 2

( 1)= 5 4 ( ) ( )
2 1

l
m m l l l ijm m

l
F R C

l

µ

µµ
µ

−
π α ε

+
∑ ∑ Y Ω . 

(4) 

The anisotropic interaction energy can be expressed in terms 
of components of the molecular quadrupole moment qµ: 

( , , ) = ij i j
ij ij i jV q qµν µ ν

µν
∑R Ω Ω v . (5) 

Here iqµ is the µ-component of the quadrupole moment of
the molecule in the site i . The quantities iq  are defined by 

Fig. 1. Orientations of symmetry axes of molecular ground states. 
Arrows at vertices represent molecules in one of the hexagonal 
planes; arrows at the centers of triangles represent molecules in 
the hexagonal planes above or below. The unit cell is shown by 
dashed lines [17]. 

Fig. 2. Orientational dependence of the total energy of of Pca21 
hydrogen [18]. 
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the equilibrium orientations of the molecules described by 
the angles ( , )i iϑ ϕΩ :  

( )1/2
1 22 2, 2

1= 4 / 5 ( ) ( ) ;
2

q Y Y − π + Ω Ω  

( )1/2
2 20= 4 / 5 ( )q Yπ Ω ; 

( )1/2
3 21 2, 1

1= 4 / 5 ( ) ( )
2

q Y Y − π + Ω Ω ; (6) 

( )1/2
4 21 2, 1

1= 4 / 5 ( ) ( )
2

q Y Y − π − + Ω Ω ;

( )1/2
5 22 2, 2

1= 4 / 5 ( ) ( )
2

q Y Y − π − + Ω Ω .

The components of the quadrupole moment satisfy the 
normalization condition: 

5
2

=1
= 1i

i
q∑ . (7) 

Comparing Eqs. (2) and (5) we get the relations be-
tween elements of the interaction matrices µνv  and 

1 2m mF .
Performing summations in Eq. (4), we obtain elements of 
the interaction matrix µνv  expressed in terms of parameters 
of the intermolecular potential 0 2,ε ε , and 4ε  and Cartesian 
coordinates of the molecules in the lattice:  

2 4 2
11 0 2

4 2 2 4
4

5 5= 5 (3 1) [(35 30 3)
2 8

35( 6 )] ;

z z z

x x y y

n n n

n n n n

ε + − ε + − + +

+ − + ε

v

2 2 2 2 2
12 2 4

5 3 5= [( ) ( )(7 1) ]
2 2x y x y zn n n n n− ε + − − εv ; 

2 2 2
13 2 4

5 5= {3 [ (7 3) 7 (3 )] };
2 2y z y z z y z x yn n n n n n n n nε + − + − εv  

2 2 2
14 2 4

5 5= {3 [ (7 3) 7 (3 )] };
2 2x z x z z x z y xn n n n n n n n n− ε + − + − εv

2 2
15 4

175= ( )
2 x y x yn n n n− εv ;

2 4 2
22 0 2 4

5 15= 5 (3 1) (35 30 3)
2 4z z zn n nε − − ε + − + εv ; 

2 2 2
33 0 2

4 2 2 2 2
4

5= 5 [(3 1) 3( )]
4

5 [(35 30 3) 5( )(7 3)] ;
2

z x y

z z x y z

n n n

n n n n n

ε − − − − ε +

+ − + + − − ε

v

2 2 2
44 0 2

4 2 2 2 2
4

5= 5 [(3 1) 3( )]
4
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2

z x y
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2
55 0 2

4 2 4 2 2 4
4
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2
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8

z
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n
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ε + − ε +
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v

2
23 2 4

5 3= [ 5 (7 3) ]
2 y z y z zn n n n nε − − εv ; 

2
24 2 4

5 3= [ 5 (7 3) ];
2 x z x z zn n n n n− ε + − εv  

2
25 2 4

5= 5 3[ (7 1) ];
2x y x y zn n n n nε + − εv

2
34 2 4

15= 25 (7 1) ;
2 x y x y zn n n n n− ε + − εv  

2 2 2
35 2 4

15 25= [ (7 3) 7 ( 3 )] ;
2 4x z x z z x z x yn n n n n n n n n− ε − − + − εv

2 2 2
45 2 4

15 25= [ (7 3) 7 (3 )] .
2 4y z x z z y z x yn n n n n n n n n− ε − − − − εv  

(8) 
In the molecular-field approximation the single-particle 

anisotropic energy can be written in the form 

0 = ij i j

j
U q qµν µ ν

µν
〈 〉∑∑v , (9) 

where jqµ〈 〉  are the thermal average of jqµ  calculated self-
consistently with the Hamiltonian Eq. (1) taken in the mo-
lecular-field approximation (orientational order parame-
ters). Assuming that the molecular field is uniform and the 
sublattices are equivalent we have 

0 = ij i

j
U qµν µ

µν
η∑∑v . (10) 

This quantity plays the role of the molecular-field con-
stant for the single-particle Shrödinger equation describing 
orientational behavior of the hydrogen molecule. Specific 
form of the function 1 2 3 4 5( , , , , )i i i i iU q q q q q  is defined by the
crystal structure. Studying properties of the BSP phase of 
solid hydrogens one needs to consider only fcc-based (Pa3) 
and hcp-based models. 

3. Calculation of the molecular field constant U0
for Pa3 lattice 

In this lattice, which consists of four sublattices the 
molecule centers of gravity lie on fcc cites that are centers 
of inversion, and the molecular axes are directed along a 
body diagonal of the cube The sublattice structure (the 
interrelation between the coordinates of the molecules and 
their orientations) for Pa3 lattice is shown in Table 1. 

Table 1. Molecular positions, j = ja +R n t , and orientations, 

jΩ  for the Pa3 lattice. ( jn  is the radius vector of the center of 
mass of a molecule on the j th sublattice, t is the translation vec-
tor, i, j, k are unit vectors of the cubic lattice; jΩ  is the equilibri-
um orientation of a molecule on the jth sublattice) 

Sublattice number 
Molecular 

orientation jΩ  j 

1 (1,1,1) 0 

2 (1,1,–1) 
1 ( )
2

+j k

3 (1,–1,1) 
1 ( )
2

+i j

4 (–1,1,1) 
1 ( )
2

+i k
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Taking into account ony the interaction with the nearest 
neighbors from Eq. (5) we have: 

 0 5533 44 34
II

1= [( ) 2 ]
3

ij ij ij ij

j
U

∈

 − − + − +

∑ v v v v   

 5533 44 35
III

[( ) 2 ]ij ij ij ij

j∈
+ − + − − +∑ v v v v   

 5533 44 45
IV

[( ) 2 ]ij ij ij ij

j∈

+ − − − 


∑ v v v v . (11) 

Substituting µνv  from Eq. (8) into Eq. (11) and sum-
ming over the sublattices we obtain for the molecular field 
constant the following expression: 

 ( )(1) (1) (1)
0 0 2 4= 5 4 2 19U ε − ε + ε . (12) 

The upper index at the quantities lε  shows that the respec-
tive contribution is calculated for the distance to the near-
est neighbors = / 2R a . 

4. Calculation of the molecular field constant U0 
for Pca21 lattice 

In this section we will perform calculations of the mo-
lecular field constant for the quadrupolar orthorhombic 
structure Pca21, which was considered as a possible candi-
date for the BSP phase in Refs. 18–22. In this structure 

which consists of four sublattices, the molecular centers of 
gravity lie on of hcp lattice. The Pca21 structure consists of 
four sublattices with the molecules aligned along four di-
rections close to the respective combinations of angles 
cos = 1/ 3,ϑ ±  cos = 1/ 2ϕ ± , where the polar angle ϑ 
is taken off c-axis and the azimuthal angle ϕ is counted off 
the line to the nearest neighbor in the ab-plane. 

The interrelation between the coordinates of the mole-
cules and their orientations are shown in Table 2. 

Table 2. Sublattice structure of Pca21 lattice (a, b, c are trans-
lation vectors which generate the lattice, 1n , 2n , 3n  are arbi-
trary integers) 

Sublattice 
number 

a b c Molecular orientation 

I 1n  2n  3n  I 0 0= ( , )Ω ϑ ϕ  

II 1
1
2

n +  2
1
2

n +  3n  II 0 0= ( , )Ω ϑ π − ϕ  

III 1
1
2

n +  2
1
6

n +  3
1
2

n +  III 0 0= ( , )Ω ϑ π + ϕ  

IV 1n  2
1
3

n −  3
1
2

n +  IV 0 0= ( ,2 )Ω ϑ π − ϕ  

Taking into account equilibrium orientations of the mo-
lecules in the sublattices we obtain the following relations 
between components of the quadrupole moment of the mo-
lecules belonging to the different sublattices:

 ___________________________________________________   

I 2 2 2
1 0 0 0

3= ( );sin cos sin
2

q ϑ ϕ − ϕ  II III IV I
1 1 1 1= = = ;q q q q   

I 2
2 0

3 1= ;cos
2 2

q  ϑ − 
 

 II III IV I
2 2 2 2= = = ;q q q q  

I
3 0 0 0= 3 cos sin sin ;q ϑ ϑ ϕ  II I

3 3= ;q q  III I
3 3= ;q q−  IV I

3 3= ;q q−  
I
4 0 0 0= 3 cos sin cos ;q ϑ ϑ ϕ  

II I
4 4= ;q q−  

III I
4 4= ;q q−  

IV I
4 4= ;q q−  

I 2
5 0 0 0= 3 sin cos ;sinq ϑ ϕ ϕ  II I

5 5= ;q q−  III I
5 5= ;q q  IV I

5 5= .q q−  (13) 

In the terms of the component of the quadrupole moments Eq. (4) molecular field constant for the Pca21 lattice takes 
the form: 

 ( )0 1 11 12 13 14 15
I II III IV I II I IV I III

= = ij ij ij ij iji

j j j j
U U q

∈ + + + ∈ + ∈ + ∈ +

 
 − + + + + +
  

∑ ∑ ∑ ∑v v v v v   

 ( )2 12 22 23 24 25
I II III IV I II I IV I III

ij ij ij ij ij

j j j j
q

∈ + + + ∈ + ∈ + ∈ +

 
 + + + + + +
  

∑ ∑ ∑ ∑v v v v v   

 ( )3 13 23 33 33 34 34 35 35
I II I II III IV I III I IV

ij ij ij ij ij ij ij ij

j j j j j j j
q

∈ + ∈ + ∈ + ∈ ∈ ∈ ∈

      
      + + + − + − + − +

            
∑ ∑ ∑ ∑ ∑ ∑ ∑v v v v v v v v   

 ( )4 14 24 44 44 34 34 45 45
I IV I IV II III I III I II

ij ij ij ij ij ij ij ij

j j j j j j j
q

∈ + ∈ + ∈ + ∈ ∈ ∈ ∈

      
      + + + − + − + − +

            
∑ ∑ ∑ ∑ ∑ ∑ ∑v v v v v v v v   

 ( )5 55 5515 25
I III I III II IV

ij ij ij ij

j j j
q

∈ + ∈ + ∈ +

  
  + + + −

   
∑ ∑ ∑v v v v 35 35 45 45

I IV I II
.ij ij ij ij

j j j j∈ ∈ ∈ ∈

   
   + − + −

      
∑ ∑ ∑ ∑v v v v  (14) 
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Finally, we have  

 0 1 2 0 3 4 5 2= 60( ) 5(3 2 2 )U q q q q qη + ε + − + ε +
  

 ( )1 2 3 4 5 4
5 21 126 240 616 300

18
q q q q q + + + − − ε 

. (15) 

There is the following correspondence between the en-
ergetic parameters 0 2 4, ,ε ε ε  and parameters of the Kohin 
potential used in literature devoted to systems with 
quasiquadrupole intermolecular orientational forces [3]:  

 1 4
525= ;

4
V ε  2

15= ;
2

V −  3 0 2 4
15= ( ).
2

V ε + ε + ε  

The parameters of the potential 1 2 3, ,V V V  depend on the 
molecular and lattice constants. 

5. Concluding remarks 

In phase I both η and δ  are small and negative. The ne-
gative δ  means that the lattice is slightly flattened com-
pared to the ideal one; the negative η means that the mo-
lecules precess around the c axis with the molecular axis 
inclined to the c axis by the angle slightly over 

1
0 = (1/ 3) 54 44cos− ′〈ϑ 〉 ≈  . With increasing pressure, η 

decreases monotonically (the limiting value = 1/ 2η −  means 
that the molecules classically precess around the c-axis 
with the precession angle = / 2ϑ π ). At large molar vol-
umes (~18 cm3/mol) the deviation of the molecular ground 
state from the pure spherical one is very small. This devia-
tion is characterized by the orientational order parameter 

4= 3.3 10−η − ⋅  for p-H2 and 5= 1 10−η − ⋅  for o-D2. 
The characteristics of the rotational motion of mole-

cules in p-H2 and o-D2 can be compared with those ob-
tained with the results of density functional theory (DFT) 
with a path-integral molecular dynamics (PIMD) [23]. For 
the latter, the authors used the orientational order parame-
ter ( 1 2

20= [ 4 / 5 ( )]N
i iiN Y−η π ⋅∑ Ω u  where iΩ  is a unit 

vector specifying the equilibrium orientation of the mole-
cule at the site i , and iu  is a site-specific unit vector which 
defines the orientational structure), which excludes nega-
tive values of the order parameter. Nonetheless, the pres-
sure evolutions of the order parameters in the both ap-
proaches are similar. 

In memory of Kirill Borisovich Tolpygo, a remarkable 
physicist, and more — a great person, nonconformist. 
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