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Interaction energy between two point charges, WQQ′, or two point dipoles, WPP′, located in a medium with 
a constant dielectric permittivity near the plane surface of a metallic or semiconducting substrate with the 
spatial dispersion of its dielectric function has been revisited. The calculations were made on the basis of the 
Green's function method for layered systems. Long-range lateral asymptotics were found. The non-local char-
acter of screening in the substrates was shown to substantially modify the dependences of WQQ′ and WPP′ on 
the distance between the objects concerned. Thus, the purported conventional electrostatic interactions be-
tween adsorbed atoms and molecules (modeled by point charges and point dipoles) should be reconsidered 
making allowance for the substrate polarization. In particular, this factor may significantly influence the 
structure of electrostatic dipole lattices arising near the surfaces of solids, as well as the kinetics of charge or 
dipole motion over the surface. 

PACS: 73.20.–r Electron states at surfaces and interfaces; 
68.43.Fg Adsorbate structure (binding sites, geometry); 
71.10.Ca Electron gas, Fermi gas. 

Keywords: charge-charge interaction, dipole-dipole interaction, spatial dispersion of the dielectric permittivity, 
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1. Introduction

It is well known that adsorption on the solid surface is 
driven by several interaction mechanisms and, as a result, 
the adsorbed atoms or molecules look like “dressed” by the 
substrate [1–5]. When this is the so-called physical adsorp-
tion, the potential well, which determines the mean equi-
librium distance between the adsorbates and the substrate, 
is formed by the charge-fluctuation-induced Van der Waals 
attraction [6–8] and the Pauli repulsion between the elec-
tron shells of adsorbates and substrate atoms [5]. The term 
“Van der Waals forces” is also used to label other electro-
static contributions to adsorbate energies [9]. The most 

often, the interaction between the adsorbates and the sub-
strate is stronger and is called chemisorption [4,10–14]. 
The consideration of this phenomenon is based on the ac-
count of the Pauli repulsion and the covalent electron 
bonding near the substrate, as well as the purely electro-
static attraction at larger distances. The latter contribution 
is a result of the substrate polarization and can be approx-
imately treated in the framework of classical electrostatics 
[15,16] if the adsorbed object is a fixed charge Q  or a 
permanent dipole P . 

However, in the vicinity of a metal or semiconductor 
surface, classical electrostatics fails, and non-local electro-
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statics elaborated for layered structures has to be applied 
[17–33]. In other words, the spatial dispersion of the sub-
strate dielectric functions (i.e., the non-local character of 
charge and dipole screening in the medium) should be tak-
en into account. In particular, the indicated approach leads 
to the charge and dipole image forces that are finite near 
the interface. It is remarkable that even the crude descrip-
tion of molecules in the framework of classical electrostat-
ics as interacting point dipoles mirrored in the classical 
perfect-metal substrate mimics the complicated density-
functional quantum-mechanical picture successfully enough 
at large distances between them [34–36]. One should note 
that the non-local electrostatics turned out to be useful for 
bulk-condensed-matter problems as well [37,38]. 

Thus, the analysis of many-body image forces testifies 
that, for many purposes, adsorbed atoms and molecules 
can be represented to a high degree of accuracy as either 
constant charges or constant dipoles. Hence, it is also quite 
natural to consider their interactions as electrostatic 
charge-charge [17,21,22,39,40] or dipole-dipole ones 
[34,41–43]. Similarly to the case of polarization (image) 
forces, the proper electrostatics must be non-local and 
should take into account the quantum-mechanical nature of 
charge carriers. Of course, it cannot be the whole truth, and 
one should make allowance for other relevant interactions 
mediated through the solid-state substrate [44]. Various 
types of such interactions can be called “indirect” in the 
sense that they include a mediator [40,45–51]. 

We note that it is impossible to clearly separate Cou-
lomb (electrostatic) contributions and more complex quan-
tum-mechanical ones in the overall adsorbate-adsorbate 
interactions, since the electromagnetic forces dominate in 
the condensed matter and determine both apparently clas-
sical and quantum-mechanical phenomena [52,53], with 
the nuclear interaction being responsible only for definitely 
important but subtle effects [54,55]. Nevertheless, if the 
atomic or molecular objects concerned have no permanent 
charge or dipole, all fluctuation-induced van der Waals-like 
interactions are definitely of quantum-mechanical origin, 
and the resulting dipole-dipole attraction is rather weak [6–
8]. The famous Casimir interaction between mesoscopic and 
macroscopic bodies has a similar nature [56,57]. 

In this work, we restrict the consideration to a specific 
case, when the charges or dipole moments of adsorbed 
atoms (or molecules) can be considered as permanent, and 
neglect all fluctuation-induced phenomena, which are sub-
dominant against the electrostatic background. We briefly 
review the previous results obtained in the infinite-barrier 
interface model [17,18,21,22,58–61] with the specular re-
flection of the medium charge carriers for the interaction 
energy ( )QQW ′ r  between two point charges located near 
the condensed-matter substrate and separated by the vector 
r  when the substrate is characterized by the spatial disper-
sion of its dielectric function ( )ε k ; k  is the wave vector 
[17,21,39]. On this basis, we obtain general expressions for 

the electrostatic energy ( )PPW r′  between two point di-
poles (unfortunately, previous essential results concerning 
dipole-dipole correlations near condensed-matter sub-
strates are incomplete [41,42,62]). The substrate dielectric 
function ( )ε k  can describe either itinerant or bound elec-
trons and may reflect the quantum-mechanical peculiarities 
of the Coulomb-field screening. Specific calculations were 
carried out in the point-dipole approximation for classical 
electrostatics (dielectric constants instead of dielectric 
functions, which is a natural reference model [15,16]) and 
the simplest model for the metal substrate, namely, the 
quasi-classical Thomas–Fermi dielectric permittivity [63]. 

We show that while studying the interaction between 
electric charges and dipoles near the interfaces, one must 
take into account (i) the influence of the substrate, whatev-
er its screening properties, and (ii) the finite radius of 
screening, i.e. the spatial dispersion of the substrate dielec-
tric permittivity, ( )ε k . This is a first step in the considera-
tion of the substrate influence on the adsorption processes 
and the kinetics of adsorbate arrangement on the surface. 
Anyway, the dipole-dipole interaction is a main input to be 
used in the problems of surface dipole-lattice structures, 
which serve as models of adsorbate patterns on various 
substrates [34,43,64–72]. 

2. Electrostatic interaction of point charges near the 
interface 

The geometry of the problem is shown in Fig. 1. Name-
ly, two point charges Q and Q′ are located in a 
dispersionless medium with the dielectric constant 

0 = constε at the distances z  and z′, respectively, from the 
neutral substrate. They perturb the electron subsystem of 
the substrate ( < 0z ) and induce a non-uniform charge re-
distribution in it. In the classical electrostatics, the induced 
(polarization) charge is smeared over the surface and its 
point-like equivalent is called the image charge. In the 
non-local approach, when the substrate is characterized by 
the dielectric function ( , )ε ωk , where ω is the transferred 
frequency, it has a qualitatively different spatial distribu-

Fig. 1. Layout of interacting charges Q  and Q′  located in the 
insulator above the metallic (semiconducting) substrate (shaded) 
at the distances z  and z′ , respectively. 
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tion character — three-dimensional rather than two-
dimensional — depending on the nature of the substrate, as 
well as on its ability to response to external charges (to 
screen them). But the essence of the phenomenon remains 
the same [17–23,25–33]. Since we examine the interac-
tion between two charges, all interactions of each charge 
with its partner and the partner’s image charge have to be 
taken into consideration. On the contrary, the interaction 
of any charge with its own image has not to be taken into 
account, when calculating the interaction energy between 
the charges, ( )QQW ′ r , because it makes a contribution to 

another quantity, the polarization energy imageW . The lat-
ter, as was explained above, substantially contributes to 
the interaction of the species concerned with the sub-
strate, but not with each other. 

In the approximation of charge-carrier specular reflec-
tion from the plane interface between two plasma-like me-
dia, i.e. making allowance for screening effects, the elec-
trostatic interaction energy between two charges Q and Q′ 
located at the points R  and ′R , respectively, near the inter-
face is determined by the formula [17,21]:  

 ( )= 4 , ,QQW QQ D′ ′ ′− π R R  (1) 

where ( , )D ′R R  is a function, the form of which depends 
on the geometry of the problem. After required substitu-
tions, this equation can be rewritten in the form 

 ( ), , , =QQW z z′ ′ ′ρ ρ   

 
( )

( ) [ ]
2

24 , , exp ) ,
2

d qQQ D q z z i′ ′ ′− π −
π

∫ q(ρ ρ  (2) 

where ,ρ  ′ρ  are the horizontal (in the geometry of the prob-
lem) components of charge radius vectors. After the angu-
lar variable separation, it looks like 

 ( ), , =QQW z z L′ ′   

 ( ) ( )
2

2
0 0

14 , , exp cos .
4

QQ qdqD q z z d iqL
∞ π

′ ′− π ϕ ϕ
π ∫ ∫  (3) 

Here, the notation 
 = ,L ′−ρ ρ  (4) 

for the distance between the charges measured along the 
interface was introduced. 

In our particular case (see Fig. 1), when the charges are 
in the dispersionless medium with the dielectric constant 

0 ( )ε ω , ω is the transferred frequency, and , 0z z′ ≥ , the 
Romanov Green’s function takes the form 

 ( )
|| 0

1, , , =
2

D q z z
k

′ω ×
ε

  

 
( )
( )

0

0

1
exp( | |) exp ( | |) .

1
qa q

q z z q z z
qa q

 −ε ′ ′× − + − − − 
+ε  

 (5) 

On the other side of the interface, i.e., at < 0z , there is a me-
tallic or semiconducting half-space with the dielectric permit-
tivity ( , ) = ( , , )k⊥ε ω ε ωk q , = ⊥+k q k . The wave vector 

= ( , ,0)x yk kq  is the longitudinal (along the surface) compo-
nent of the wave vector k , whereas ⊥k  is its component di-
rected along the z -axis. All subsequent calculations are valid 
if the frequency dependence is retained in both Eq. (4) and 
the dependence 0 ( )ε ω . Nevertheless, we omit the argument ω 
below, ( , , , ) ( , = 0, , ) = ( , , )D q z z D q z z D q z z′ ′ ′ω → ω , be-
cause the temporal dispersion is not relevant in the static 
case considered here. If the substrate is a thin film, the 
generalized Green’s function can also be found 
[17,19,21,73]. But this situation goes beyond the scope of 
this article and will be treated elsewhere. 

We emphasize that the overall interaction energy (1) 
between two charges makes allowance for the image-
force component automatically if one starts from the 
Coulomb Green’s function (4) first obtained by Roma-
nov [73] and applied later to a number of surface sci-
ence problems [17,19,21,30] or any equivalent scheme 
[18,22,26,29,59,60,74]. Hence, ( )QQW ′ R  is the expression 
that needs no other electrostatic addenda. Other indirect 
terms of a different nature, which can contribute to the 
overall interaction between the two charges, are not taken 
into consideration by function (5). 

On the basis of the Jacoby–Anger formula [75] 

 ( ) ( ) ( )
=

=
exp cos = exp

n
n

n
n

iz i in J z
+∞

−∞
ϕ ϕ =∑   

 ( ) ( )
=

0
=1

= ( ) 2 cos ,
n

n
n

n
J z i n J z

+∞
+ ϕ∑   

where ( )nJ z  is the Bessel function of the first kind of the 
nth order, Eq. (2) is transformed as follows:  

 ( ) ( ) 0
0

, , = 2 , , ( )QQW z z L QQ qdqD q z z J qL
∞

′ ′ ′ ′− =∫   

 0
0 0

= ( )QQ dqJ qL
∞′

×
ε ∫   

 ( ) ( )
( )

0

0

1
exp ( | |) exp .

1
qa q

q z z q z z
qa q

 −ε ′ ′× − − − − +    + ε  
 (6) 

The first integral is tabular [76], and one has 

 ( ) ( )0

1, , =
,QQ

QQW z z L
s L z z′

′ ′ × − ′ε −
  

 ( ) ( )
( )

0
0

00

1
( )exp ,

1
qa q

dqJ qL q z z
qa q

∞ −ε ′− − +    + ε 
∫  (7) 

where the notation 2 2( , ) =s x y x y+  was introduced. 
Hence, the overall interaction is a sum of a trivial direct 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 8 843 



Alexander M. Gabovich and Alexander I. Voitenko 

Coulomb term and an additional interaction between the 
charges Q and Q′ induced by the substrate polarization. 

The substrate screening properties enter Eqs. (5) and (7) 
through the function ( )a q , which is given by the formula 

 
( )2 2

1( ) = .
( , )

dka q
k q k

+∞
⊥

−∞ ⊥ ⊥
π + ε
∫

q
 (8) 

The combination 1[ ( )]qa q −  is usually called the surface 
dielectric function [59]. 

To obtain an insight, let us consider the simplest local 
electrostatic case, according to which ( ) = = constmε εk , so 
that ( ) =1/( )ma q qε . Then 

 ( )
0

, , =QQ
QQW z z L′

′
′ ×

ε
  

 
( ) ( )

0

0

1 1 .
, ,

m

ms L z z s L z z
  ε −ε × +  ′ ′− ε +ε +   

 (9) 

The second term reflects the appearance of the “image 
charges” at the interface and their interaction with real two 
charges. If both charges are located at the interface (in the 
adopted approach, this is an infinitely thin plane), so that 

= = 0z z′ , Eq. (9) gives 

 ( ) ( )0

20,0, = .QQ
m

QQW L
L′

′
ε + ε

 (10) 

We see that expression (10) contains both dielectric con-
stants on equal footing, which is correct of course, since 
now neither medium is preferential. When the distinction 
between the media disappears altogether ( 0 = =mε ε ε), we 
obtain the conventionally screened Coulomb interaction in 
the bulk 

 ( )= .QQ
QQW L

L′
′

ε
 (11) 

Surely, the classical electrostatics is a crude approxima-
tion for substrates with itinerant electrons (metals or de-
generate semiconductors). In this case, its predictions be-
come wrong due to the strong screening ability of mobile 
charge carriers. One can try to avoid the failure by going to 
the perfect conductor with mε →∞ . Then Eq. (9) leads to 

 ( ), , =QQW z z L′ ′   

 
( ) ( )0

1 1 .
, ,

QQ
s L z z s L z z

 ′  = − ′ ′ε − +  
 (12) 

In the practically important limiting case, when the both 
charges are arranged rather close to the interface in com-
parison with the distance between them ( ,z z L′ << ), one 
obtains 

 ( ) 3
0

2, , = ,QQ
QQ zzW z z L
L

′
′ ′

′
ε

 (13) 

i.e., the lateral interaction between the charges are dipole-
like rather than Coulomb. This is due to the partial charge 
neutralization by their images (polarization distributions at 
the perfect conductor surface). Hence, the effective-dipole 
arms are 2z  and 2z′, so that the numerator in Eq. (13) for 
real dipoles would have included the product 4zz′, alt-
hough the image charges in the substrate, being the con-
stituents of both dipoles, are actually only the descriptive 
interpretation of the interfacial charges induced by their 
real counterparts [16,31]. Nevertheless, the result is twice 
smaller. It can be explained as follows. The electric field 
value of the first dipole at the point ( , )z′ ′L  located far 
enough does indeed include factor 2 

 
3

0

2= .QzE
L ε

 (14) 

However, its electrostatic potential Φ  should be E  multi-
plied by z′ without such a factor, because the potential is 
reckoned from the perfect conductor surface. Therefore, 
the energy of the second charge Q′ is given by Eq. (13). 
Similar considerations were first applied to the dipoles ad-
sorbed on the metal surface [41]. The energy (13) becomes 
zero when both charges are located on the substrate, 

= = 0z z′ , in accordance with Eq. (10). It means that the 
screening by the perfect conductor is complete at its surface. 

The classical approach does not make allowance for the 
finite screening length inherent even to the best conduc-
tors. The proper account of the effect needs the knowledge 
of the spatial dispersion of the bulk dielectric permittivity 
( )ε k . Several adequate models have been proposed not 

only for plasma-like media (metals, doped semiconductors, 
electrolyte solutions) [29,37,53,77–79] but also for media 
with bound electrons (insulators, intrinsic semiconductors) 
[80–83]. The quantum-mechanical character of ( )ε k  
[84,85] was shown to be important in surface problems 
[25,27,32,33,86]. However, the main features of the non-
local electrostatics can be understood on the basis of the 
simple quasi-classical models based on the Pauli principle 
and applied to metals [78,87] or semiconductors [80,81]. 
Therefore, we will illustrate the role of ( )ε k -dispersion 
using the conventional Thomas–Fermi model for metals 
[88]. The corresponding expression, with an accuracy of 
notations, coincides with the Debye–Hückel formula for 
electrolyte solutions [89–91]. 

Namely, in the Thomas–Fermi approximation, 

 
2

2( ) = 1 ,TF m
k

 κ
ε ε +  

 
k  (15) 

so that 

 
2 2

1( ) = .TF
m

a q
qε + κ

 (16) 
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Strictly speaking, the constant mε  actually depends on q 
as well and tends to 1 for q→∞, i.e., at small distances from 
the screened charge ( 0r → ), being the source of the Cou-
lomb field. This limit must be achieved for the total dielec-
tric permittivity describing any material [37]. However, in 
the q-range, important for applications, the phenomenologi-
cal constant mε  in metals may be identified with the dielec-
tric constant = ( )∞ε ε ω→∞  in the metal electrodynamics 
[52,53], which is about or less than 2 [92,93]. 

Substituting Eq. (16) into Eq. (7), we obtain 

 ( ) ( )0

1, , =
,QQ

QQW z z L
s L z z′

′ ′ × − ′ε −
  

( )
2 2

0
0 2 2

0 0

( )exp .m

m

q q
dqJ qL q z z

q q

∞ ε + κ −ε ′− − +   
ε + κ +ε 

∫  (17) 

This expression is rather cumbersome and cannot be treat-
ed analytically for arbitrary values of system parameters. 
In Appendix, we develop a regular method for calculating 
such expressions numerically and obtaining their 
asymptotics of any order. But it is instructive here to con-
sider another method for the simplest particular case of 
lateral interaction between the charges located at the inter-
face ( = = 0z z′ ): 

 ( ) ( )0

20, 0, =QQ
m

QQW L′
×

×
ε +ε

  

 
2 2

0 2 2
0 0

1 ( )m
m

q q
dqJ qL

L q q

∞ + κ − × −ε ≡ 
 ε + κ +ε 

∫   

 
( ) ( )0

0

2 , , , .m
m

QQ I L
L

′
≡ − κ ε ε

ε +ε
 (18) 

When the distance between the charges is short ( 1Lκ << ), 
the Thomas–Fermi screening in the substrate constitutes 
only a small correction to the direct Coulomb interaction 

 ( ) ( )0 0

20,0, = 1
( )

m
QQ

m m

LQQW L
L′

′ κ ε
+ ×

ε +ε ε −ε
  

 
2 2
0 00

2 2 2 2
0 0 0

1 ln .
2

m

m m

 ε −ε −εε  × +  ε −ε ε −ε +ε  

 (19) 

If the “pure” Thomas–Fermi model of the metal ( =1mε ) is 
applied and the upper medium is the vacuum ( 0 =1ε ), 
Equation (19) is simplified  

 ( ) 20,0, = 1 .
3QQ

QQW L L
L′
′  − κ 
 

 (20) 

One sees that in this case the substrate polarization reduces 
the direct interaction insignificantly, as it should be for 
short distances between the charges. 

Before calculating the integral 0( , , , )mI L κ ε ε  in 
Eq. (18) in the opposite case 1Lκ >> , we emphasize that 
the first term in the I -expansion in 1( )L −κ  does not depend 
on κ  and equals 1L−− . Hence, 12 (0, 0, ) 0W L ≈ , which 
means that the interaction between the charges is com-
pletely screened at large enough distances. The next ap-
proximation should give the law of the 12 (0, 0, )W L  de-
crease with L . To the second order in 1( )L −κ , we obtain 

 0
0

0 0
0

1= ( ) =

m

m

m
I dqJ qL

L q

∞
ε κ + κ ε ε −
ε κε  + ε 

∫   

 
2

0 02
0 0 00

2
.

2
m m m me L L

N
L

    ε ε κ ε κ ε κπ
= − −    ε ε εε      

H  (21) 

Here, 0 ( )xH  and 0 ( )N x  are the Struve and Neumann func-
tions, respectively [75]. For large arguments, 1x >> , the 
difference in brackets has the following asymptotics: 

 ( ) ( )0 0 21
2 11 .

1
2

xx N x
xx

>>
 

− → −        πΓ 
 

H   

Therefore, substituting Eq. (21) into Eq. (18), we arrive at 
the final result 

 ( ) 0
2 2 3

2
1 .QQ

m

QQ
W L

L
′

′ε
κ >> ≈

ε κ
 (22) 

Thus, we obtained the dipole-dipole residual interac-
tion instead of the parent Coulomb one. It is easy to veri-
fy that the method expounded in Appendix brings about 
the same result in this ( )Lκ -expansion order. It is of no 
wonder, because the incomplete screening by the itinerant 
electrons in the substrate produces dipoles composed of 
the external charges and their images, although the 
charges are located at the interface ( = = 0z z′ ). Indeed, 
the effective dipole arms are of the order of 1−κ . The die-
lectric constant 0ε  of the upper half-space increases the 
magnitude of the dipole-dipole interaction (repulsion for 
like adsorbates), which is appropriate only to the asymp-
totic region [see Eq. (10) for comparison]. One should also 
mention that result (22) resembles the Thomas–Fermi 
screening behavior in two-dimensional sheets, i.e., the 
screening becomes weaker there than in the bulk. Name-
ly, the power-law spatial decrease rather than the expo-
nential decay must be observed in thin films, because 
there are not enough mobile charge carriers to completely 
screen the applied electric field [94]. 

At the same time, we should emphasize that the method 
applied above for obtaining large-( )Lκ  asymptotics allows 
the correct expansions with an accuracy not higher than to 
the 5( )L −κ -order to be obtained. It is so because the ap-
proximation used for the integrand in Eq. (18) is correct 
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only to the 3( )L −κ -order. For the majority of calculations, 
this order is enough to obtain required asymptotics. Other-
wise, the regular expansion method (see Appendix) should 
be applied. 

In the case of 0z z′≠ ≠  and the Thomas–Fermi dielectric 
function (15), the analysis of Eq. (17) demonstrates that the 
answer depends on the ratio between zz′  and 0 / mε κε : 

 
3

0

2( 1) =QQ
QQW L

L
′

′
κ >> ×

ε
  

 

2
0 0

2 2

0

if
.

if

mm

m

L zz

zz L zz

ε ε

ε


 ′>> >> κεκ ε×


′ ′>> >>
κε

 (23) 

Expectedly, the result described by the first row coincides 
with Eq. (22), whereas the second row is nothing else but 
the classical dipole-dipole interaction (13), which replaces 
the Coulomb interaction due to the substrate polarization. 

If one turns from the quasi-classical [88] to the quan-
tum-mechanical [84,85] dielectric permittivity with spatial 
dispersion, the existence of a steep Fermi surface and it 
specific form [95,96] become crucial for the surface elec-
trostatics [17,21,39]. In particular, in isotropic conductors, 
the weak ( )ε k  Lindhard–Kohn anomaly at = 2 Fk k , where 

Fk  is the Fermi wave vector, leads to the Friedel oscilla-
tions of the charge-charge interaction energy along the 
metallic substrate surface, [22,97,98] 

 
( )

3
cos 2

( ) ,F
QQ

k L
W L

L
′   (24) 

which have the same form as their conventional bulk coun-
terparts [99]. On the other hand, for quasi-two- and quasi-
one-dimensional metals, the ( )ε k -anomalies are much 
stronger [100]. Therefore, the 12 ( )W L  oscillations become 
long-range ones [17,21,39]: 

 
( ) ( )2 1

2
cos 2 cos 2

( ) , ( ) ,F FD D
QQ QQ

k L k x
W L W x

xL
′ ′   (25) 

where the coordinate x  is reckoned perpendicularly to the 
Fermi surface sheets. This long-range behavior may be 
especially important for adsorbates on the surfaces of 
superconductors with the nested sections on their Fermi 
surfaces [101,102], because possible regular surface 
structures of adsorbed atoms may melt below the super-
conducting critical temperature [103]. This phenomenon 
is driven by the disappearance of the sharp Fermi surface 
edge in the superconducting state due to the development 
of the energy gap ∆ [104,105]. Hence, Friedel oscilla-
tions decay in the real space as exp ( 2 / )FR v− ∆   [104]. 
Here,  is the Planck constant, and Fv  the Fermi velocity 
of the electron gas. 

As was emphasized above, the spatial dispersion of die-
lectric permittivity in a semiconducting substrate influ-
ences the charge-charge interaction in the adjacent medium 
[22,23], although not so severely, because the screening by 
bound electrons is more gentle [19,25,37, 80–83,106]. The 
more general case of the charge-charge (ion–ion, in this 
case) interaction in the electrolyte solution near the metal-
lic electrode [22,23] is also of importance, although it is 
more difficult to be measured directly in experiments. The 
Romanov method or its equivalent versions may be applied 
to such a situation as well [22,107,108], but the physical 
problems of adsorption treated here can be solved without 
the corresponding generalization. 

3. Electrostatic interaction of dipoles near the interface 

Dipoles with the permanent dipole moment are a good 
model for a lot of kinds of adsorbed molecules [109–112]. In 
order to describe the electrostatic interaction between them, it 
is reasonable to start from the consideration of two pairs of 
opposite charges, i.e., from two extended dipoles. For large 
distances between those dipoles, the latter can be regarded as 
point ones. The planar and perpendicular arrangements of 
dipoles near the surface are the most natural and experimen-
tally observable ones, although tilted configurations can also 
be possible [34]. Therefore, only those two configurations will 
be considered in this work (see Fig. 2). 

Fig. 2. Layout of interacting dipoles P  and ′P  located in the 
insulator above the metallic (semiconducting) substrate (shaded) 
at the distance =z z′ . The dipoles are perpendicular (a) and par-
allel to the interface (b). 
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Let the dipole P be composed of two point charges, Q 
and Q− , separated by the distance d  (the dipole arm), and 
the dipole ′P  by two point charges, Q′ and Q′− , separated 
by the distance d ′. Following the discussion presented at 
the beginning of section 2, the expression for the Coulomb 
interaction energy of two dipole should include only the 
cross terms (1) between the charges belonging to different 
dipoles, 
 

= ,
= ,

= .PP qq
q Q Q

q Q Q

W W′ ′
−

′ ′ ′−

∑  (26) 

All other possible qq′-combinations give us the interaction 
energy between the constituents within the same dipoles, 
as well as the dipole image force energies, which was con-
sidered earlier [32,33,113]. 

Each term in Eq. (26) is given by Eq. (6), in which the 
specific parameters L , z , and z′ correspond to the specific 
charge pair ( ,q q′). For simplicity, let us further assume 
that the adsorbed dipoles are located at the same distance 
from the substrate, so that =z z′ (Fig. 2). In the case of 
planar orientation (Fig. 2(b)), the both dipole vectors can 
be rotated by the corresponding angle (α for P and ′α  for 
′P ) in the plane perpendicular to the OZ axis. Since we are 

interested in the spatial asymptotics of the dipole-dipole 
interaction energy, all results will be formulated for point 
dipoles only ( ,d z L<< ). In this case, four parameters 
( , , , )Q d Q d′ ′  are reduced to only two ( , )P P . 

First, let us look at the pair of vertical dipoles. Similarly 
to what was done for two charges in the previous Section, 
we will begin with the classical electrostatics, e.g., exam-
ine two media with the dielectric constants 0ε  and mε . 
Then all components from Eq. (26) have the form of Eq. (9). 
The sum of all four terms in the point-dipole limit gives the 
following result [42] 

 ( )vert,class , =PPW L z′   

 
( )

( ) ( ) ( )

2
0

3 3 2
0 0

1 121 .
,2 ,2

m

m

PP z
L s L z s L z

  ε −ε′
  = + −

 ε  ε + ε   
 (27) 

The second term in Eq. (27) describes the influence of sub-
strate polarization. The classical repulsion of identical par-
allel dipoles can be reduced or increased by the dipole im-
ages, depending on the sign of the difference 0( )mε −ε . If 
the distance of the molecule (dipole) from the substrate z  
is much smaller than the distance L  between the mole-
cules, one obtains from Eq. (27) that  

( )
( )

( ) 2
vert,class 0

3 2
0 0

92
, = 1 .mm

PP
m

zPP
W L z

L L′

 ε −ε′ε
 +
 ε ε +ε  

 (28) 

If the second term in Eq. (28) is neglected as a small cor-
rection, we obtain the dipole repulsion at the interface 
screened by both media on the same footing. Furthermore, 
if both media are identical, the classical interaction energy 

[16] of parallel dipoles in the insulator with the permittivi-
ty 0= = mε ε ε  is recovered. 

In the general case, it is possible to unite all terms in 
Eq. (26) using the following approximation in the integrand  

 ( ) 21 e e e .dq d q d d q dd q′ ′− − − + ′− − + ≈  (29) 
Then, isolating the classical term (27), we arrive at the 
general expression for the interaction energy of two point 
dipoles, which is formally valid for any dielectric function 
of the substrate, 

 ( )
( ) ( )

2
vert,gen

3 3 5
0

2, 1 24
,2 ,2PP

PP zW L z
L s L z s L z′

 ′
 = + − +
 ε  

  

 ( )
( )

3
2

0
00

2 ( )e .
1

qz q a q
PP dqJ qL

qa q

∞
−′+

+ε∫  (30) 

The exponential factor 2e qz−  in Eq. (30) ensures the inte-
gral convergence. However, when the molecule is located 
at the interface ( = 0z ), the convergence at the upper limit 
becomes dependent on the behavior of the dielectric func-
tion ( )ε k  and, consequently, on the function ( )a q . Such 
models as the Thomas–Fermi one (or its Inkson analog for 
bound electrons [80,106]) lead to the dependence 

2 2( ) 1 ( / )kε ≈ + κk  for k →∞ (here, κ  is a certain momen-

tum inherent to the specific model) , so that 1( )a q q−  at 

q→∞ (the limit is important to identify vert,gen ( , )PPW L z′  at 
small distances L). This power exponent is not enough to 
compensate the factor 3q  in the integrand of Eq. (30), mak-
ing the whole formula useless in the case = 0z . 

However, the apparent divergence is not an indispensa-
ble property of the dipole-dipole interaction energy. In-
deed, the true quantum-mechanical dielectric permittivity 
of non-interacting three-dimensional electron gas described 
by the Lindhard formula [84] gives the following 
asymptotics at k →∞: 

 
2 2

4
4

( ) 1 .
3

Fk
k
κ

ε → +k  (31) 

The same behavior preserves for the dielectric function 
( )ε k  of the electron liquid, when many-body correlations 

are taken into account [114]. Moreover, a similar behavior 
should be appropriate for bound electrons [81], because the 
screening response of the bound electrons at small enough 
distances from the perturbing charge tends to that of their 
itinerant counterparts. That is why, strictly speaking, any 
dielectric constant ε in the non-local electrostatics is 
somewhat artificial. Actually, it is a function of k  and 
should tend to unity at k →∞ [27,29,37]. The raised issue 
of convergence due to the quantum-mechanical nature of 
screening is similar to that concerning the dipole image 
force energy saturation at the interface, which was consid-
ered earlier [32,33]. 
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Thus, the problems of the integral convergence at large 
q’s is extremely significant for the screening behavior at 
short distances from the Coulomb field source. The proper 
choice for the dielectric function in Eq. (30) will remove 
any divergences in vert,gen ( , )PPW L z′  in the whole range of L  
and z . However, this can be done at the expense of making 
the treatment numerical. On the other hand, if one wants to 
gain an insight into the essence of the problem and obtain 
an analytical asymptotics for large L , which is the only 
needed information in the majority of cases, we can restrict 
ourselves to simple model dielectric functions ( )ε k  and 
calculate the sought asymptotics using our simple method 
outlined in Appendix. We emphasize that the quantum-
mechanical Lindhard function tends to the Thomas–Fermi 
quasi-classical limit (15) for small k  (of course, the back-
ground constant mε  must be equal to 1 for the electron 
gas). Therefore, the large-L  Thomas–Fermi asymptotics 
tends to that for the “true” quantum-mechanical one, so that 
it will give a good solution to the problem if we are limited 
to the monotonic part of the dependence vert,gen ( , )PPW L z′ . Of 
course, to uncover the long-range Friedel oscillations like 
Eqs. (24) and (25), which are a consequence of the sharp 
Fermi-surface, the form of the metal dielectric function 
( )ε k  with an exact singularity at = 2 Fk k  should be pre-

served. In this case, another kind of asymptotics extraction 
should be used, e.g., which is based on the Lighthill analysis 
[115]. Hereafter, the Friedel oscillations are totally ignored. 

Returning to our specific problem, which consists in the 
determination of the spatial characteristics of the dipole-
dipole interaction near the substrate surface, we apply the 
approach described in Appendix, obtain the proper 
asymptotics of all terms from Eq. (26) in the Thomas–Fermi 
approximation, and sum them up. The transition to the 
point-dipole limit, when , 0d d ′ → , is made after all as-
ymptotic terms are combined. In the case of the normal 
dipole orientation with respect to the substrate (Fig. 2(a)), 
the asymptotic result for 1,L −>> κ  z is as follows: 

 ( )2vert,TF,asymp
03 2 2 5

0 0

2 18( , ) .mPP
m

PP PPW L z z
L L′
′ ′

≈ − ε + κ ε
ε ε ε κ

  

  (32) 

The main 3L− -term in this expression coincides with that 
in Eq. (28) only in the limit 0mε >> ε , i.e., for the ex-
tremely strong screening in the substrate (the perfect-
conductor model). Since, actually, the screening ability of 
the Thomas–Fermi metal is weaker than that of the perfect 
conductor, a correction term with the opposite sign appears 
in asymptotics (32). We emphasize that in the general case 
of arbitrary constants mε  and 0ε , the dipole-dipole interac-
tion substantially differs from the classical case. However, 
the qualitative spatial behavior of vert,class,asymp

PPW ′  and 
vert,TF,asymp
PPW ′  is similar, contrary to the case of the 

charge-to-charge interaction [Eq. (22)]. When the mole-

cules are located at the interface ( = 0z ), the asymptotics 
becomes 

 vert,TF,asymp 0
3 2 2 5

0

182( , = 0) .PP
m

PPPPW L z
L L′

′′ ε
≈ −
ε ε κ

 (33) 

Another important pattern is a pair of planar dipoles lo-
cated above the substrate surface (Fig. 2(b)). The angles 
between the vectors P  and ′P , on the one hand, and the 
x -axis, on the other hand, will be denoted as α  and ′α , 
respectively. The classical electrostatics leads to the fol-
lowing result for the lateral dipole-dipole interaction  

 ( )planar, class
3

0
, =PP

PPW L z
L′
′

− ×
ε

  

 ( ) ( ) ( )
( ) ( )

5
0

5
0

1 3cos cos
2 ,2
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s L z

ε −ε ′ ′× α+α + α−α + ×    ε +ε
  

 ( ) ( ) ( )
2

2
4 3 1cos cos cos .

2 2
z

L

 
′ ′ ′× α−α − α+α − α−α 

  
 (34) 

For the small ratio 2 2/z L , Eq. (34) can be simplified 

 ( )
( )

planar, class
3

0
,PP

m

PPW L z
L′

′
≈ − ×

ε +ε
  

 ( ) ( ){cos 3cos′ ′× α−α + α+α +   

 
( ) ( ) ( )

2
0

2
0

3
3cos 5cosmz

L

ε −ε ′ ′+ α−α + α+α  
ε 

. (35) 

One sees that, if the dipoles are arranged head-to-tail along 
the x-axis ( = = 0′α α ), they attract each other. On the other 
hand, if they are oriented head-to-head ( = 0, =′α α π), the 
attraction is transformed into repulsion, which is also 
qualitatively understood. 

Starting from Eq. (26) and expanding it in qd  and qd ′, 
it is easy to obtain a general formula for the lateral dipole-
dipole interaction energy in the framework of the non-local 
electrostatics for planar dipoles: 

 ( )planar,gen , =PPW L z′   

 ( ) ( )planar,gen planar,gen
,0 ,1, , ,PP PPW L z W L z′ ′+  (36) 

where 

 ( )planar,gen
,0 3

0
, =PP

PPW L z
L′
′
×

ε
  

 ( ) ( ) ( )
( )

3

3
3 1cos cos cos
2 2 ,2

' L
s L z
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 ( ) ( )
( )

5
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3 cos cos ,
2 ,2

L
s L z
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 (37) 
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 ( ) ( )
planar,gen 2

,1
0 00

2, = e
1

qz
PP

PP qW L z dq
qa q

∞
−

′
′

− ×
ε +ε∫   

 ( ) ( ) ( )0
1 cos cos
2

qJ Lq ′ ′× α+α + α−α −   
  

 ( ) ( )1
1 cos .J Lq
L

′− α+α 


 (38) 

Expression (36) for planar,gen ( , )PPW L z′  converges with any 
proper quantum-mechanical dielectric function ( )ε k  used to 
calculate ( )a q  in Eq. (38) due to the same reasons as those 
indicated above while analyzing the validity of Eq. (30). 

The large-L asymptotics of Eqs. (36)–(38) was calculat-
ed for the Thomas–Fermi model of the metal substrate die-
lectric function using the expansion method described in 
Appendix: 

 planar,TF,asymp ( )PPW z′ ≈   

 planar,TF,asymp
2 2 5

0

3 ( ),PP
m

PP w z
L ′
′

≈ −
ε ε κ

 (39) 

where 

 ( )2planar,TF,asymp
0( ) = mPPw z z′ ε + κ ε ×   

 ( ) ( )5cos 3cos .′ ′× α + α + α −α    (40) 

One sees that, in the general case of planar dipoles, the 
classical 3L− -asymptotics is transformed into a more se-
verely decreasing one ( 5L− ) under the influence of the ad-
jacent metal substrate with its strong (although not per-
fect!) screening, contrary to the situation for the dipoles 
perpendicular to the interface (cf. Eq. (32)), when the clas-
sical dipole-dipole interaction survived the metallic sub-
strate impact. 

It is remarkable that the angular dependence of the 
asymptotics (39) does not depend on the dipole-substrate 
distance z . This is not the case in the classical model, as 
can be seen from Eqs. (34) and (36). On the other hand, the 
classical angular dependence for negligibly small ratios 

/z L  is different from the universal one in Eq. (39). Hence, 
an analysis of the planar dipole-lattice configurations (see, 
e.g. the article [34]) can reveal the substrate effect. 

The weakening of the dipole-dipole interaction by the 
extra 2L−  factor in Eq. (39) as compared to the charge-
charge counterpart, Eq. (22), can be qualitatively understood 
as a consequence of the extra 2q -factor in Eqs. (29) and 
(38). We note that the obtained power-law asymptotics of 
the charge-charge and dipole-dipole interactions near the 
metal surface differs much from the exponential screening 
in the bulk of the Thomas–Fermi metal: exp ( )L−κ  [88]. 
The strong modification of conventional electrostatic re-
sults by non-local effects is analogous to that found for the 
interaction of helical molecules in biological systems 
[116–118]. 

4. Conclusions 

In this work, we presented an analysis of non-local 
electrostatic effects revealed by charge-charge and dipole-
dipole interactions in a dispersionless medium (the vacuum 
or a vapour phase) near the surface of a metallic or semi-
conducting substrates with the spatial dispersion of its die-
lectric permittivity ( )ε k . It was shown that the electrostatic 
component of the interaction between the permanent 
charges or dipoles, which are often considered as adequate 
models for adsorbed atoms and molecules, may drastically 
differ from the classical Coulomb or dipole-dipole interac-
tions in the bulk medium, both with the dispersion and 
dispersionless. In particular, the charge-charge interaction 
is no longer the Coulomb one, which is inherent to classi-
cal insulators. On the other hand, it does not demonstrate 
the exponential dependence typical of the screening by 
itinerant electrons in the bulk. Instead, the asymptotic lat-
eral dependence of the interaction becomes a dipole-dipole 
one determined by the Thomas–Fermi screening radius. At 
the same time, the dipole-dipole interaction between planar 
dipoles near the interface is weakened and becomes pro-
portional to 5L− . 

The pairwise interaction considered here can serve as 
an input in the calculations of possible electric-dipole lat-
tice structures [34,43,66,68,71,72]. Therefore, the whole 
procedure of such calculations should take into account the 
substrate-induced distortion of lateral interactions. Alt-
hough this viewpoint is not new [39], the substrate electro-
static effects are mostly overlooked in the existing treat-
ments, perhaps due to the cumbersome mathematics. 
Nevertheless, as we have showed here, the interaction 
asymptotics are very simple to handle, so that in many im-
portant cases, when the dipole lattices are rather loose, 
those asymptotics can be easily incorporated into consider-
ation. Of course, such a generalization should substantially 
improve the applicability of calculation results to real 
adsorbate systems. 
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Appendix A: 

In the considered model, the problem of calculating the 
electrostatic interaction between two charges Q and Q′ 
located in a dispersionless medium near the interface with 
a medium, where the dispersion of its dielectric permittivi-
ty has to be taken into account, and, in particular, evaluat-
ing its asymptotics at large distances between those charg-
es, is reduced to the calculation of the integral 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 8 849 



Alexander M. Gabovich and Alexander I. Voitenko 

 2 0
0

= ( )exp( ) ( ) ,W J Lq Zq F q dq
∞

−∫  (A.1) 

where the constants > 0L  and 0Z ≥ , and ( )F q  is a finite 
smooth function. If ( ) = constF q , the integral is easily cal-
culated using the tabular expression [76]: 

 0 2 2
0

1( , ) = ( )exp( ) = .I L Z J Lq Zq dq
L Z

∞
−

+
∫  (A.2) 

However, if ( ) constF q ≠ , the evaluation of this integral 
faces difficulties. In particular, we cannot expand the func-
tion ( )F q  in a power series of q, because the integral  

 0
0

= ( )exp( ) n
nI J Lq Zq q dq

∞
−∫  (A.3) 

diverges at 2n≥ , and even at =1n  if 0Z → . At the same 
time, unlike the power function nq , the functions ( )F q  that 
are dealt with in our case are finite in the whole integration 
interval 0, )q∈ ∞ . In particular, they have the finite limiting 
values 0( = 0) =F q F  and 0( ) = < .F q F F∞→∞  

Without loss of generality, let us introduce a new variable  

 = exp ,qx
K

 − 
 

 (A.4) 

which is confined to the finite interval 0,1]x∈ . In princi-
ple, the positive parameter K  can be taken arbitrary, but in 
our specific case of a medium with the spatial dispersion of 
the dielectric permittivity, it is associated with the inverse 
screening length. Using the new variable, let us introduce 
the function ( )f x  by the formula 

 ( ) = ( ),F q F f x∞ +  (A.5) 

where x  and q are related by Eq. (A.4). It is easy to verify 
that ( = 0) = 0f x  and 0( =1) =f x F F∞− . Let us expanded 

( )f x  in a power series in the vicinity of the point =1x : 

 ( )
=1=0

1( ) = ( ) ( 1) .
!

k k
x xk

f x f x x
k
  − ∑  (A.6) 

Substituting this formula into expression (A.5), using the 
binomial expansion for ( 1)kx− , we obtain 

( )
=1=0 0

1 !( ) = ( ) ( 1) .
! !( )!

k
k i k i

x xk i

kf x f x x
k i k i

−

=

  −  −∑ ∑  (A.7) 

In essence, this is a series expansion of the function ( )f x  
near the point = 0x , but with the expansion coefficients 
calculated at the point =1x . A significant advantage of 
expansion (A.7) is the fact that all its terms of the order 

> 0k  equal zero at = 0x . Substituting this formula into 
Eq. (A.5) and using relation (A.4), we obtain  

 ( ) =F q F∞ +  

 ( )
=1=0 =0

( 1)( ) exp .
!( )!

k ik
k

x xk i

iqf x
i k i K

−−   + −   −  
∑ ∑  (A.8) 

Now it becomes evident that the procedure described 
above is no more than the expansion of the function ( )F q  
in a series of exponential functions. This expansion allows 
integral (A.1) to be represented as a series of tabular ones 
[76], each of which giving a simple inverse square root of 
type (A.2). Really, substituting Eq. (A.8) into expression 
(A.1) and applying relation (A.2), we obtain 

 ( )
2 2 2 =1=0

= ( ) ,k
k x xk

FW C f x
L Z
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∑  (A.9) 

where  
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In this formula, the behavior of the function ( )F q , which 
contains the specific features of charge screening in the 

substrate, are hidden in the derivatives ( )
=1

( )k
x

f x 
   and 

the constant F∞, whereas the “coefficients” kC  are univer-
sal and depend only on the geometrical parameters of the 
problem (we recall that K  can be selected arbitrarily, with-
out any relationship to the substrate parameters). The itera-
tive calculation of the derivative ( ) ( )k

xf x  in Eq. (A.9) is 
simple, but cumbersome: 
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k k k
xf x f x f x

x q qx x x

−− −

− −

    ∂ ∂ ∂ ∂ ∂ ∂
=       ∂ ∂ ∂∂ ∂ ∂    

  

 
1

1= exp ( ) ,
k

k
qK f x
K q x

−

−

 ∂ ∂ −     ∂  ∂ 
 (A.11) 

so that 

 ( )
=1

=0

( ) = exp ( ) ,
k

k
x x

q

qf x K f x
K q

  ∂    −    ∂    
(A.12) 

where (see Eq. (A.5)) 

 ( ) = ( ) .f x F q F∞−  (A.13) 

Series (A.9) converges rather rapidly, being much more 
convenient for calculations than the initial integral (A.1) of 
an oscillating function over the semi-infinite interval 

0, )q∈ ∞ . 
If we are interested in the long-range (L→∞) asymp-

totic of 2W , expression (A.9) can be strongly simplified. 
Using the formula 

 ( ) 1/2
2
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(2 )!1 = ( 1) ,
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j j
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jx x
j
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we obtain 
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Now, applying the binomial formula to the multiplier 
21 jiZ

L K
  +  

  
, we have 
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Changing the summation order, this formula reads 
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The most important feature of the last sum in Eq. (A.17), 
which can be rewritten in the form 
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ik
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is that [76]  

 
0 if < 0

( , ) = 0 if 0, = 0
1 if = 0, = 0

n k
s k n n k

n k

≠
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 (A.19) 

Therefore, in Eq. (A.17), all sums over i  with > 2m j k−  
equal zero, and the summation over m can be truncated to 

2
=0
j k

m
−∑ . However, in the new sum, for at least the first 

( = 0)m  summand to exist, there must be 2 >j k . In expres-
sion (A.17) for the coefficient kC , the summation over j  
begins from the summand of the [ /2]k -th order, where the 
notation [ ]  means the integer part of the bracketed num-
ber. As a result, the principal term in this expansion is 

( 1)( )kO L− + . It means that, if we are interested in the 

asymptotics of the ( )NO L− -order for 2W , we may break off 
the summation in Eq. (A.9) after the ( )=k N -summand. 

In order to obtain the final asymptotic formula for 2W , 
we should make some additional transformations. First, let 
us extract the zero-order term from the sum in Eq. (A.9). 
Together with the first summand in the right hand side of 

this formula, it gives 2 2
0 /F L Z+  (see Eq. (A.13)), which 

has to be expanded in a series up to the ( )NO L− -term (see 
below). Then, in the second summand, we may sum up 
over i  in formula (A.17) from =1i  (rather than 0) to k . 
Omitting the ( )No L− -terms in the both summands, we 
obtain 
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with making allowance for Eq. (A.12). 
Thus, expressions presented above comprise a solution 

of the long-range asymptotics problem. It depends on two 
intrinsic small dimensionless parameters: KL  and /Z L . 
From the basic solid-state physics, it is known that, for 
typical metals, the screening parameter K  is about 1 Å–1 
[63]. Hence, the smallness of the former parameter is en-
sured at 1 L >> Å. It is appropriate for loose adsorbate 
structures [17,21,22,34,39–43]. At the same time, the pa-
rameter Z  is the sum of the charges’ distances from the 
substrate, z z′+  (see Eq. (5)). The spacing z  from the sub-
strate to the adsorbed charge (molecule) is determined by 
the covalent-bond length and is also equal to about 1 Å [5]. 
Therefore, the latter parameter can be regarded small at 

2L >>  Å. One can see that the both estimates are practical-
ly equivalent. 
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