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The molecular phase of hydrogen converts to the atomic metallic phase at high pressures estimated usually as 
300–500 GPa. We analyze the zero-temperature decay of metallic phase as the pressure is relieved below the 
transition one. The metallic state is expected to be in the metastable long-lived state down to about 10–20 GPa 
and decays instantly at the lower pressures. The pressure range of the long-lived metastable state is directly asso-
ciated with an impossibility to produce a stable hydrogen molecule immersed into the electron liquid of high 
density. For lower pressures, the nucleation of an electron-free cavity with the energetically favorable hydrogen 
molecule inside cannot be suppressed with the low ambient pressure. 

PACS: 67.80.ff Molecular hydrogen and isotopes; 
62.50.–p High pressure effects in solids and liquids; 
64.70.K– Solid-solid transitions; 
64.60.Q– Nucleation. 
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1. Introduction

Recent advances in experimental technique and numerical 
simulation have made it possible to study and explore various 
phases and properties of hydrogen under high pressure [1]. 

Considerable attention, both theoretical and experi-
mental, has currently been given to the study of the phase 
diagram of condensed hydrogen under high pressure at low 
temperatures [2–6]. At low pressures of about 10 GPa the 
condensed phase of hydrogen represents the molecular 
crystalline phase. For higher pressures of the order of 
70 GPa, the molecular phase runs a number of atomic insu-
lating and semiconducting phases in succession. The atom-
ic phase at about 500 GPa [5] is asserted to cross over to 
the metallic conducting state. As early as Ref. 7 the ques-
tion is envisioned how the atomic metallic phase behaves 
as the high pressure is released and whether the metallic 
state can stay in the unstable state at zero pressure for a 
long time. The latter aspect may be basic to make metallic 
hydrogen important for solving energy problems. 

The physical reason for a possibility of metastable state 
is the following. The point is that an existence of a hydro-
gen molecule in the bound state becomes energetically 
unfavorable provided the molecule is immersed into the 
high density electron environment, entailing the dissocia-
tion of the bound state of a hydrogen molecule. This also 

means a loss of about 4.7 eV in energy per molecule. On 
the other hand, this effect leads to a large magnitude of 
effective surface tension between the atomic metallic and 
molecular hydrogen phases, encouraging us in expectations 
of a long lifetime for the unstable metallic state at zero 
pressure. 

In principle, there are two pathways of releasing the 
high pressure. The first is a slow adiabatic release of the 
pressure and we expect the atomic metallic phase to run all 
the insulating and semiconducting phases in the reverse 
order. The other variant can be seen as an instant pressure 
release down to zero pressure or about 10 GPa at which the 
ordinary well-known molecular insulating phase is most 
energetically favorable and absolutely stable. Below we 
study the latter pathway as the most intriguing from our 
point of view. 

For the first time, the question on the transition of mo-
lecular hydrogen into metallic phase under pressure was 
apparently attempted by Wigner and Huntington [8]. Ac-
cording to a series of predictions, metallic hydrogen should 
have such properties as high-temperature superconductivi-
ty [9,10], possible metastability and liquid-like behavior in 
the limit of zero temperature [7,11,12]. The hydrogen melt-
ing line is predicted [13] and confirmed experimentally 
[14–17] to have an unusual dome shape with a 900T   K 
maximum. 
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In a great amount of papers the equation of state for the 
metallic state as well as the pressure of the transition into 
the atomic metallic state are analyzed. In addition, there 
has arisen a question whether the lifetime of metastable 
metallic phase could be macroscopically large in some 
pressure range below the metal-to-molecular phase transi-
tion. Here we attempt this problem at zero temperature. 

In paper [7] the structure of metallic hydrogen is stud-
ied in detail at zero temperature. It is shown in particular 
that the metallic hydrogen at zero pressure is energetically 
stable against the decay into separate atoms with the bind-
ing energy of about 1 eV per atom. As it concerns the de-
cay into molecules, metallic hydrogen is unstable and the 
energy of about 2.5 eV releases with escaping a molecule 
from the metal surface. The escape of hydrogen molecule 
from the surface of metallic hydrogen should occur via 
tunneling across a potential barrier. Thus, in general, the 
lifetime of metallic phase against this process may prove to 
be sufficiently large. On the other hand, this channel can 
be withdrawn provided the metallic hydrogen is confined 
with the corresponding walls. 

The formation of molecules is possible not only at the 
surface of a metal but also in its bulk. The latter process 
cannot be eliminated. For the formation of a molecule in-
side the bulk of metallic phase, it is necessary to have a 
cavity in which the metallic electron density is sufficiently 
small so that the molecule would be energetically favora-
ble. The inception of a cavity is always associated with 
increasing the total energy in the system due to extrusion 
of a metal from the cavity. In order to place a molecule 
into the cavity, the latter should have a size of several in-
teratomic distances. In general, the energy gain resulted 
from the formation of a single molecule cannot compen-
sate an increase of the total energy in the system. In any 
case this occurs in the pressure region near the molecular 
phase-metal phase transition point since the chemical po-
tentials per atom in the metallic and molecular phases are 
close to each other. Thus the nucleation of the molecular 
phase with the large number of molecules in the critical 
nucleus becomes necessary. The large number of particles 
in the critical nucleus results inevitably in a drastic reduc-
tion of the nucleation probability of such nuclei because 
this process is a tunneling overcoming of a potential barrier 
and the tunneling probability depends exponentially on the 
number of particles. 

In the present work we study in what pressure range be-
low the transition pressure the macroscopic description of 
the nucleus dynamics is possible and how this range de-
pends on the approximations chosen. As we will see later, 
the lifetime of metallic phase is macroscopically large and 
practically infinite so long as the macroscopic considera-
tion is possible. 

In the opposite case when the critical nucleus is not 
large and contains a few molecules, the lifetime of the me-
tallic phase is small. This can be estimated as follows. The 

probability 0W  for nucleating the critical nucleus as large 
as a single molecule in a specific site of a bulk is always 
small 

 0 exp( )./D eW m mω −α  (1) 

The point is that there is a large factor in the exponent, 
i.e., square root of a ratio of atom mass m  to electron mass 

em . Here Dω  is a frequency of about Debye frequency in 
metallic hydrogen 14 1( 10 s )D

−ω   and α  is the quantity 
associated with the tunneling motion of hydrogen atoms in 
the metallic phase in the course of nucleating a molecule. 
We estimate 1α   since the typical energy barriers for the 
motion of nuclei is about 1 eV and distances are of order of 
10–20 nm. However, the total probability Wν  is large for 
the inception of a single nucleus in the bulk containing 

2210ν   atoms 

 0.W Wν ν  (2) 

This gives a short lifetime for a metallic hydrogen sample 
with the large 2210ν   number of atoms. 

Note that the same estimate for the small-sized particles 
of about 610ν   atoms yields a sufficiently large lifetime. 
For the process as an escape of molecules from the surface, 
the lifetime may also prove to be large since 1510ν   in 
this case. In addition, for the evaporation it is essential not 
the probability of a single event for the formation of a mol-
ecule but the evaporation rate determined by escaping the 
large number of molecules. 

To describe a macroscopic nucleus, we employ the 
Lifshitz–Kagan approach [18]. As a main variable in this 
approach, we take the density of the phases, i.e., stable 
(molecular) and metastable (metallic) ones. The potential 
energy of the system as a function of the nucleus radius R  
has a typical shape given in Fig. 1. The growth of potential 
U  at small radius R  is determined by the effective inter-
phase surface tension and proportional to the radius-
squared, i.e., 2( )U R R  as 0.R →  In the case of the 
junction between the metallic and molecular phases the 

Fig. 1. The potential energy U versus nucleus radius R at ambient 
pressure P = 40 GPa. The critical radius is Rc = 11 a.u. The num-
ber of particles in the critical nucleus is Nc = 190. 
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effective surface tension is mainly associated with the elec-
tron liquid outflow from the metal and with the decrease of 
the binding energy of a molecule in the electron liquid. 

The negativity of potential energy U  at large radius R  
is due to unfavorable difference in energies of metastable 
metallic and stable molecular phases, i.e., 3( ) ,U R R−∆µ  
where ∆µ  is a difference in the chemical potentials of the 
both phases. The transition from metastable state = 0R  to 
stable state R → ∞  occurs via tunneling under potential 
barrier (Fig. 1) due to kinetic energy ( , )T R R  depending on 
both radius ( )R t  and growth rate ( )R t  

 2( , ) = ( ) /2.T R R M R R   (3) 

The mass ( )M R  in the kinetic energy is associated with a 
difference in the densities of the metastable and stable 
phases and results from the outflow or inflow of the sub-
stance during the formation of a nucleus. 

Besides the various densities the phase transition can be 
characterized with a number of other internal variables inde-
pendent of density, e.g., spacing between the nuclei in the 
course of nucleating a molecule. These internal variables are 
characterized with the corresponding potential barriers and 
kinetic energies. Below we suppose that the setting in equi-
librium in these variables is the faster process and we take 
the optimum magnitudes of those variables. In the next sec-
tion we elucidate the procedure in detail. 

As will be shown below, such macroscopic approach, 
associated with the nucleus dynamics governed with the 
different phase densities, is possible in a wide range of 
pressures below the critical one cP   300–500 GPa down 
to 10–20 GPa. Within this pressure range the critical nuclei 
have a large number of particles, resulting in a long-lived 
stability of metallic hydrogen. Note that we underrate the 
pressure range, neglecting a series of effects which should 
certainly lead to increasing the lifetime of metallic phase. 

2. Problem statement 

Let spherical molecular nucleus of radius R  be in the 
metallic hydrogen at the ambient pressure P . The poten-
tial energy ( )U R  of a nucleus can be written as (A.1) 

 2
0

0
( ) = 4 ( , )[( ( ( , ), ) ( )]

R
U R n r R n r R R r P r drπ ε − − µ +∫   

 3 2(4 /3) 4 .PR R+ π + πσ  (4) 

Here 0 ( )Pµ  is the chemical potential of metallic hydro-
gen, ( , )n r R  is the density of the molecular phase at point 
r  of the nucleus with radius R , ( ( , ), )n r R R rε −  is the 
energy density of the molecular phase, and ( )Pσ  is the 
surface tension of the interface. 

 The magnitude of surface tension σ  and the behavior 
of energy density ( ( , ), )n r R R rε − , as a function of the 
distance from the boundary with the metal, are determined 

with extending the electron liquid outside the metal into 
the near-surface region of about Wigner–Seitz radius sr  in 
size [19]. For the energy density ε  of molecular phase, 
depending on the molecular phase density n  and the dis-
tance from the metallic hydrogen boundary, we employ 
simplest approximation 

 ( , ) = ( ) ( ).n x n h xε ε +  (5) 

The first term here corresponds to the energy density of 
molecular phase for the given density n  in the lack of the 
metal electron density. The second term ( )h x  implies that 
the energy of a molecule beside the metal boundary differs 
significantly from energy 4.7 eV in vacuum taken from the 
energy of two separate atoms due to dipping a molecule 
into electron liquid of a metal. The term ( )h x  can be rep-
resented as an external potential affecting the molecule as a 
result of extending the electron liquid outside the metal 
into the boundary region of about sr  in size. Thus, poten-
tial ( )h x  as well as surface tension σ  depend on the Wig-
ner–Seitz radius sr  or, correspondingly, on the pressure P  
inside the metal. 

In addition, these both quantities, σ  and ( )h x , depend 
on the nucleus size R  as well. We will neglect this de-
pendence since we are interested in the macroscopic 

sR r  nuclei and the dependence of σ  and ( )h x  on radi-
us R  becomes insignificant as sR r . 

Relation (5) corresponds to the gas approximation in 
the density of molecular phase, meaning a possibility to 
neglect dependence of ( )h x  on density n. The approxima-
tion can be used while the density of molecular phase at 
the boundary is much smaller than the density of the adja-
cent metal phase. The point is that potential ( )h x  is gov-
erned with the outflow of electron liquid from the metal, 
which is almost independent of the strongly localized elec-
tron density at the molecule [20,21]. In the near-surface 
region, where the magnitude ( )h x  is large, the density of 
molecular phase takes the smaller value compared with 
that at the nucleus center since such density distribution 
corresponds to the minimum of potential energy ( )U R . At 
low 100P   GPa pressures there appears a gap of about 

sr  between the molecular and metallic phases. Inside the 
gap the density of hydrogen atoms vanishes. For the higher 
pressures, it is impossible to assert that the density of mo-
lecular phase beside the nucleus boundary is much smaller 
than the density of metallic phase. However, even near the 
molecular phase-to-metallic phase transition point cP  the 
density of molecular phase differs from that of metallic 
phase by a factor of 2. In the next section we discuss func-
tion ( )h x  in detail since this quantity governs mainly the 
nucleation probability. 

Due to the same reason we will neglect the dependence 
of surface tension σ  on the molecular phase density at the 
nucleus boundary, i.e., we put the surface tension equal to 
its magnitude for the vacuum-metal boundary. For the de-
pendence of the energy density of molecular phase ( )nε  
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upon n, we apply the local approximation = ( ( , ))n r Rε ε  
since the involvement of, e.g., density gradient in ( ),nε  
corresponds to considering the quantities in such scale 
which we neglect in describing the potential ( )h x . This is 
also associated with the smallness of density gradient in 
the nucleus due to large nucleus radius sR r . 

The expression (4) for the potential energy of a nucleus 
assumes that the internal energy of the system depends on 
the densities of phases alone. On the whole, this implies the 
liquid-like description of the both phases. The involvement 
that the both phase are the crystalline ones increases the po-
tential energy. The liquid-like description of the system 
means neglecting the shear energy compared with the ener-
gy of the bulk compressibility which is completely taken 
into account in Eq. (4). (See Appendix A.) Such neglect in 
metallic hydrogen is always justified since the shear modu-
lus is small as compared with the bulk modulus [7,11]. In 
molecular hydrogen under low 10 GPaP   pressures the 
both energies, bulk compressibility energy and shear energy, 
are small compared with the energy of formation of mole-
cules and are inessential in the expression for potential ener-
gy. For larger 10P   GPa pressures, there occurs the same 
situation as in metallic hydrogen. The shear energy is small 
compared with the bulk compressibility energy and can be 
neglected as before. 

We will suppose that the nucleus grows slowly, namely, 
the growth rate R  of nucleus boundary is much less than 
the sound velocity s  

 .R s

   

In the case of such quasistationary nucleus growth there is 
a sufficient time to set the mechanical equilibrium in the 
bulk of the both phases. An existence of mechanical equi-
librium in the metastable metallic phase is taken in Eq. (4) 
into account since the metallic density n0 as well as pres-
sure P are assumed to be constant in the derivation of 
Eq. (4). As it concerns a nucleus, the equilibrium over the 
nucleus corresponds to constancy of the total chemical 
potential 

 ( ( , )) ( ) = .n r R h R r Cµ + −  (6) 

Here C  is a constant to be determined with the conditions 
at the nucleus boundary. 

Equation (6) can be obtained with varying the potential 
energy ( )U R  over nucleus density ( , )n r R  in (4). On the 
other hand, this equation is a result of the hydrodynamical 
Euler equation [22] 

 
1( ) = .P h

t n
∂

+ ∇ − ∇ − ∇
∂
v v v  (7) 

Putting 0→v , we arrive at Eq. (6) since / =P n∇
( / )n n= ∇ ε + ∂ε ∂  resulted from relation 2= /P n n∂ε ∂ . Be-

sides Eq. (6) the minimum in energy U  can also be asso-
ciated with 0n ≡  in some region of a nucleus due to con-
dition 0n ≥ . 

Equation (6) and = 0n  allow us to determine the den-
sity distribution ( , )n r R  in the nucleus bulk. Constant C  
in (6) can be found using the condition of mechanical equi-
librium between the nucleus and the metastable phase. The 
condition of mechanical equilibrium between the phases is 
obtained with varying the potential energy U  in the nu-
cleus radius R  under invariant total number N  of parti-
cles in the nucleus 

 ( / ) = 0,NU R∂ ∂  (8) 

 2

0
= 4 ( , ) .

R
N n r R r drπ∫  (9) 

Equation (8) means the following. As the nucleus radius 
varies, the system keeps the state of the minimum potential 
energy but has no sufficient time to perform the transition of 
particles from one phase to the other. Emphasize that this 
condition holds due to assumption about the quasistationary 
nucleus growth when the growth rate is small compared 
with the sound velocity s. The latter velocity characterizes 
the rate of setting the mechanical equilibrium. Equation (8) 
determines the relation between constant C (6) and pressure 
P in the metallic phase (Appendix B) 

 2
2

0

2 ( ) 1= ( ) ( )
RPP n r h R r r dr

R R
σ

− − − +′∫   

 ( )[ ( ( )) (0)].n R C n R h+ − ε −  (10) 

Here ( ) = ( , )n r n r R  and ( ) = ( , ).n R n R R  
Equations (6), (10) and = 0n  determine the density 

distribution ( , )n r R  in the nucleus at the ambient pressure 
P. If we substitute the above distribution into Eqs. (4) and 
(9), we obtain the dependence of energy U  and particle 
number N  upon nucleus radius R. The typical behavior of 
energy U  as a function of radius R  is given in Fig. 1. The 
point cR  at which ( ) = 0cU R  corresponds to the critical 
nucleus radius. 

The role of temperature in the quantum transition from 
the metastable phase with = 0R  to the state of overcritical 
nucleus with > cR R  is replaced with the kinetic energy in 
variables R  and R  resulting from the different densities 
of the phases and outflow of a matter from the nucleus 
[18]. The kinetic energy of a nucleus is given by 

 1 2= ,T T T+  (11) 

 2 2
1

0
= 4 ( , ) ( )

2

RmT n r R r r drπ∫ v ,  

 2 2
2 0 0= 4 ( ) ( )

2 R

mT n P r r dr
∞

π∫ v .  

Here m  is the hydrogen atom mass, kinetic energy 1T  is 
associated with the motion of particles in the nucleus, and 
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2T  is due to the motion of the mass in the metallic phase. 
Velocity ( )rv  inside the nucleus is determined by the con-
tinuity equation 

 2
2

( , ) 1 ( ( ) ( , )) = 0.n r R r r n r R
t rr

∂ ∂
+

∂ ∂
v  (12) 

Remind that density n  depends on time t  via variable 
= ( )R R t  alone and r  is a running coordinate. Thus, we 

have 

 = .n n R
t R

∂ ∂
∂ ∂

  (13) 

The solution of the above two equations for velocity ( )rv  
at a given distribution ( , )n r R  can be written as 

 2
2

0

( , )( ) = .
( , )

rR n r Rr r dr
Rr n r R

∂ ′
′ ′

∂∫


v  (14) 

The substitution of Eq. (14) into (7) shows that the left-
hand side of Eq. (7) is small on the scale of a ratio 

/ 1.R s   So, we have a quasistationary growth of a nucle-
us and, at first, we can find distribution ( , )n r R  obeying 
(6). Then, we substitute the distribution obtained into 
Eq. (14) to find the velocity distribution ( )rv  and avoid 
the combined solution of the Euler equation (7) and conti-
nuity equation (12). Substituting (14) into the equation for 

1T  yields 

 

2
2 2

1 2
0 0

( , )= 4
2 ( , )

R rm dr n r RT R r dr
Rr n r R

 ∂ ′π ′ ′  ∂ 
∫ ∫ .  

The velocity distribution 0 ( )rv  in the metastable phase 
obeys the continuity equation (12) as well. However, un-
like (13) the term with the time derivative of the density 
vanishes since the density in the metastable phase is con-
stant for all R  and is determined with the ambient pressure 
P. This entails the following behavior [18] 

 2 2
0 ( ) = / .r ARR rv  (15) 

The dimensionless factor A can be found using the condition 
of conserving the total number of particles in the system 

 2
0 0/ = 4 ( )( ( )).dN dt R n P R Rπ − v  (16) 

The left-hand side equals the rate of varying the particle 
number N in a nucleus and the right-hand side does the 
incoming flow of particles from the metastable phase. 
Since the time dependence in (9) enters via variable R, we 
arrive at 

 2 2

0

( , )= 4 ( ) 4
RdN n r RR n R R R r dr

dt R
∂

π + π
∂∫  . (17) 

Using Eqs. (15)–(17), we obtain for A 

 2
2

0 0 0

( ) 1 ( , )= 1
( ) ( )

Rn R n r RA r dr
n P RR n P

∂
− −

∂∫ . (18) 

Putting Eq. (15) into the expression for 2T  and calculating 
the integral in r, we represent kinetic energy T  in (11) as 

 2= ( ) /2T M R R , (19) 

 3
0

0

( )( ) = 4 ( ) 1
( )

n RM R m n P R
n P

 
π − − 

  

 
2

2
2

0 0

1 ( , )
( )

R n r R r dr
RR n P

∂ − +∂∫   

 
2

2
2

0 0

( , )
( , )

R rdr n r R r dr
Rr n r R

 ∂ ′ + ′ ′   ∂  
∫ ∫ .  

This expression differs from the corresponding one in [18] 
because the compressibility of the stable phase is taken 
into account. In our case the involvement of compressibil-
ity is essential since the density of molecular hydrogen 
varies by a factor of 10 from zero pressure to the 100 GPa 
pressure region. 

The next analysis of nucleation kinetics is based on the 
Hamiltonian with the potential energy (4) and kinetic energy 
(19). The density distribution in the nucleus bulk is go-
verned with Eqs. (6) and n = 0 and related with the ambient 
pressure via Eq. (10). 

Deriving the Hamiltonian, we have assumed that the 
state of the system is completely determined with the den-
sities of the phases and the other physical quantities are 
adjusted adiabatically and unambiguously to the magni-
tudes of the densities. As an example of such quantities, 
we can mention the spacing between two atoms in the hy-
drogen molecule, symmetry of the crystalline lattice in the 
both phases, and electron density tracing adiabatically the 
nuclear motion. The adiabatical adjustment of these quanti-
ties supposes the slow and quasistationary nucleus growth 
when the setting of all processes in equilibrium occurs 
faster than the nucleus growth, i.e., transition of particles 
from the metallic phase to the molecular one. In particular, 
this implies the mechanical equilibrium between phases 
(8). The adiabatical relaxation of these parameters means 
the neglect of contributions of these parameters both to the 
potential and to the kinetic energies. Such optimization 
underrates the lifetime of the metastable phase. Setting the 
equilibrium in the these parameters occurs at about sound 
velocity or faster as, for example, in the case of adiabatic 
relaxation of electrons to the motion of nuclei. Hence, we 
suppose the smallness of nucleus growth rate R  compared 
with the sound velocity s. Adiabaticity and relaxation of all 
parameters are equivalent to the fact that the frequency of 
oscillations, associated with the underbarrier motion, is 
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much smaller than all other frequencies in the system. The 
frequency ,bω  determining the nucleus underbarrier evo-
lution, reduces as the nucleus radius cR  grows 

 
1/2 3/2

max
2 .

( )
s

b D
cc c

U r
RM R R

   
ω ω     
   (20) 

Here 2
max cU Rσ  and 3

0( )c cM R mn R  where m  is an 
atom mass and Dω  is of the order of the Debye frequency. 
For the nucleus of large radius cR , frequency bω  is small, 
entailing a correctness of the quasistationary application. 
In the case when the size of the critical nucleus is about 
several interatomic distances it is necessary to take the lack 
of quasistationary approximation into account. 

3. Discussion of the parameters in the Hamiltonian 

The potential energy ( )U R  (4) and kinetic energy 
( , )T R R  (19) are governed with the following parameters 

such as: (i) chemical potential of metallic phase 0 ( )Pµ  
depending on the pressure, (ii) energy ( )nε  and chemical 
potential ( )nµ  depending on the density, (iii) energy varia-
tion ( )h x  of a molecule beside the metal surface, and (iv) 
surface tension ( )Pσ  of a metal. Below we consider the 
consistent description of the above quantities. 

The behavior of energy and chemical potentials as a 
function of pressure are given for the molecular and metal-
lic phases in Fig. 2. Figure 3 plots the equations of state for 
the both phases. 

We take the results for the metallic phase after [11]. For 
the molecular phases, we use the results from the same 
work [11] and also after [23]. Note that the functions given 
for metallic hydrogen are obtained with high accuracy at 
high P  100 GPa pressures and, correspondingly, at 
small < 1.45.sr  In zero pressure region of 1.7sr ≈  the 
accuracy of the quantities calculated is smaller and the 
error for the equation of state within this range may be 
estimated as ± 5 GPa. 

On the contrary, the equation of state for the molecular 
phase is well-known in the low pressure region as P 10 GPa. 
This is associated with the existence of precise hydrostatic 
measurements and with the relatively exact description since 
it is sufficient mainly to consider the pair interactions alone. 
For higher 10P   GPa pressures, the consideration of pair 
interactions alone becomes insufficient [23] and the theoreti-
cal description of the equation of state has a worse accuracy. 
The same is referred to the experiments in this region. An 
uncertainty in the data for the equation of state results in a 
dispersion of the phase transition pressure cP  [11]. However, 
for our purposes such dispersion has no principal meaning 
since the pressure region where the metallic phase exists 
practically the infinite time is wide and extends down to 
pressures of about 10 GPa. An uncertainty of the equations of 
states for the phases shifts the pressure boundary by ±5 GPa 
as the transition pressure of about 300–500 GPa. Note that 
the boundary of the pressure region where the metastable 
metal exists in the long-lived state is drastic since the lifetime 
depends on the pressure via large exponent β . This entails 
that the small variations of the exponent results in a strong 
variation of the exponential expression. 

The main parameter, which determines the region of the 
long-lived metastable state, is the energy of a molecule 

( )h x  varying beside the metal surface due to spreading the 
electron density outside the metal. The magnitude ( )h x  
can be obtained with the direct calculation of the behavior 
of the energy of a molecule as a function of the distance 
taken from the metal surface. Such calculation is per-
formed in [20] using the model of jellium. Figure 4 shows 
the dependence ( )h x  extrapolated from the data after [20] 
to = 1.7sr  corresponding to that of metallic hydrogen at 
zero pressure [7]. In this figure we also show the energy of 
a separate hydrogen atom beside the metal jellium surface 
with = 1.7sr  denoted as ( )h x . 

Minimum A  at the curve ( )h x  (Fig. 4) corresponds to 
the energy position of the chemical potential for atoms in 
metallic hydrogen. At this point there occurs a chemical 
sorption of hydrogen molecule at the metallic hydrogen 
surface. This means a possibility of adding new layer to the 

Fig. 2. The chemical potentials of metallic (1) and molecular (2) 
phases as a function of pressure. Curve 3 is the energy of molecu-
lar phase. 

Fig. 3. The equations of state for metallic (1) and molecular (2) 
phases. 
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metallic hydrogen surface. Minimum A  of curve ( )h x  lies 
higher than the magnitude ( )h x  at x → ∞ . Otherwise, 
there occurs an associative chemical sorption at the sur-
face, i.e., chemical sorption with releasing the energy at the 
transition of a particle from the surface to the infinity. If 
atoms are located far from the surface as compared with 
the intersection point cx  of curves ( )h x  and ( )h x  (Fig. 4), 
the existence of a molecule becomes possible. For the dis-
tances closer than xc, the separate atoms are more energeti-
cally favorable. 

The energy ( )h x  of a molecule in the field of electron 
liquid can be subdivided into the energy of atoms in the 
molecule and the binding energy of a molecule 

 0 0
1( ) = [ ( /2) ( /2)] .
2

h x h x R h x R H− + + +   (21) 

Here 0R  is the equilibrium distance between the nuclei 
in the molecule. The binding energy H  of a molecule [21] 
proves to be slightly affected with the orientation of a mo-
lecule. Thus, the local approximation governed by the elec-
tron liquid density ( )xρ  is well adequate, i.e., 

 = ( ( )).H h xρ  (22) 

The behavior ( )H ρ , as a function of rs, is shown in Fig. 5 
and 1 3= 4 /3.sr

−ρ π  The different curves in Fig. 5 corre-
spond to various methods of calculating the function H. 

Curves 1, 2 and 3 are obtained from the data [20] on the 
behavior of a hydrogen molecule beside the surface of me-
tallic jellium with various 0sr  of a metal, namely, 2.07, 
2.65 and 4. Subscript 0 in 0sr  differs 0sr  of metallic sub-
strate from sr  determining the magnitude of electron den-
sity with the aid of 1 3= 4 /3.sr

−ρ π  One can see that the 
curves, obtained with the different ways, are very close to 
each other and one may say about the universal behavior. 

In order to derive the behavior of energy of a molecule as 
a function of the distance from the metal surface if one 
knows behavior ( ),H ρ  it is sufficient to apply the behavior 

( )xρ  beside the surface [19]. The latter problem is one-
dimensional and, therefore, is simpler. 

One can see from Fig. 5 that the binding energy of a 
molecule vanishes at the electron density = 4.6.sr  For 
smaller rs, molecule is energetically unfavorable and dis-
sociates into atoms. 

Note that the behavior of ( )h x  and ( )h x  in Fig. 4 cor-
relates well with the data [7] on metallic hydrogen. The 
asymptotic behavior ( )h x  for x → ∞  is determined with 
the binding energy of hydrogen molecule and the position 
of minimum A is governed by the binding energy of an 
atom in metallic hydrogen. The accuracy of coincidence 
between the minimum at curve ( )h x  and the position of 
the chemical potential for atoms in metallic hydrogen is 
determined by the neglect of the coupling between atoms 
in the surface layer. This approximation is analogous to 
neglecting the dependence ( )h x  on the density of molecu-
lar phase n. 

While obtaining the plots given in Figs. 4 and 5, the 
genuine metal with the discrete structure is replaced with 
the jellium model. This approximation is well justified at 
the large distances from the metal. In essence, if > sx r , 
the discreteness of the crystal lattice becomes insignificant. 
In addition, function ( )h x  at such large distances is of 
most interest. The point is that in the range of relatively 
low pressures of about 10 GPa, there appears a spacing 
between the metal and molecular phases in which the den-
sity of molecular phase vanishes. Thus, for such pressures 
an uncertainty due to inaccurate determination of function 

( )h x  at small distances is negligible. For higher pressures, 
the lifetime grows more and an additional specifying ( )h x  
in this range becomes inessential. The growth of ( )h x  at 
small < sx r  distances in the metal with the discrete lattice 
is reduced as compared with the jellium model since the 
discrete ions are located from the molecule farther on than 
for the smoothed background of the jellium. The discrete 
ions attract electrons stronger and, therefore, electron liq-
uid spreads at smaller distance from the surface as com-
pared with the jellium model. This results in the slower 

Fig. 4. The functions h(x) and ( )h x  as a function of distance 
from the metal surface. The metallic phase is approximated with 
the jellium model of rs = 1.7. The dash line corresponds to the 
energy of a hydrogen atom far from the metal surface. 

Fig. 5. The plot of binding energy H for a molecule immersed 
into an electron liquid. 
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enhancement of function ( )h x  in the metal with the dis-
crete lattice than that in the jellium model. Below we take 
this fact into account and vary function ( )h x  at small dis-
tances in order to clarify its effect on the lifetime of the 
metallic phase. 

While calculating ( )h x  in [20], the axis of a molecule 
is assumed to be normal to the metal surface. Provided one 
neglects the effect of the molecule orientation on the dis-
tribution of electron liquid beside the metal surface and 
takes into account that the binding energy H  of a mole-
cule depends only on the magnitude of the electron liquid 
density and is independent of the molecule orientation, one 
can obtain information about ( )h x  for an arbitrary orienta-
tion using the data on ( )h x  for the normal-to-surface ori-
entation of a molecule. For example, in the case when the 
molecule axis is parallel to the surface the following rela-
tion is valid 

 || ( ) = ( ) ( ).h x h x H x+  (23) 

In the calculation [20] of function ( )h x  the parameter 
R0, distance between the nuclei in the molecule, keeps un-
varied as the molecule approaches the metal surface. This 
approximation is well justified due to slight dependence of 
the binding energy on R0. 

To conclude the discussion of functions ( )h x  and 
( ),h x  we note a few aspects. First, the binding energy of a 

molecule is positive starting from the electron densities 
with = 4.6.sr  For lower rs, molecule is energetically un-
favorable. This specific magnitude rs is three times as larg-
er than rs of metallic hydrogen. Correspondingly, the elec-
tron liquid density at the center of cavity, in which the 
molecule could be placed, should be at least 30≈  times as 
smaller if compared with the electron density of metallic 
hydrogen. Thus, to nucleate a single molecule inside the 
metallic phase, it is necessary to produce a large cavity 
with the radius of a few rs. This fact correlates with the 
assumption in the previous sections that the nucleation of 
the molecular phase requires the outflow of a matter in the 
metallic phase and that the radius of the critical nucleus 
should significantly exceed rs. 

The next point to be mentioned is that the hydrogen 
atom escaping from the metallic phase and traveling from 
point A (Fig. 4) along curves ( )h x  and ( )h x  should over-
come an energy barrier. In our model (Sec. 2) we neglect 
a possibility for reflection of hydrogen atom from the 
energy barrier in the course of quantum tunneling. This 
implies that we underrate the lifetime of the metastable 
metallic phase. 

Here we emphasize also that the real crossover between 
the curves ( )h x  and ( )h x  is smooth-like since an addi-
tional parameter R0, distance between the nuclei in the 
molecule, varies with the distance from the metal surface. 
In principle, there are possible two situations for the transi-
tion from the molecular to metallic phase. 

First, R0 varies smoothly from the typical spacing be-
tween the nuclei in a molecule to that in the metallic 
phase. Second, variation R0 is a jump-like one at the 
phase interface. Below, as in the previous section, we 
imply that distance R0 follows adiabatically the density. 
Then a single distinction between these two cases is the 
following. As distance R0 varies continuously, function 

( )h x  behaves more smoothly in the narrow transient re-
gion between the phases. So, from this viewpoint it is 
useful to vary ( )h x  at distance of about sr  in the transi-
ent region between the phases. This will be done below 
with the analysis of the data. 

Finally, we discuss the surface tension ( )Pσ  of metallic 
hydrogen for the vacuum-metal boundary. The calculation 
of the surface tension at the vacuum-metal boundary and 
comparison with the experimental data has been treated in a 
large number of works [19,25,26]. In all these papers the 
consideration is based on the Hohenberg–Kohn–Sham den-
sity functional in which the kinetic, exchange and correla-
tion energies of nonuniform electron gas are described as a 
functional of electron density ( )ρ r . The surface tension of a 
metal results from the redistribution of electrons and ions 
beside the metal surface as compared with the bulk distribu-
tion. We here employ the simplest version of Ref. 26 when 
the electron distribution is assumed to be homogeneous in 
the metal bulk. In this case the surface tension σ  as a func-
tion of pressure is given with curve 1 in Fig. 6. The curve is 
well fitted with the relation 

 2
1( ) = 23 in erg/cm .P Pσ −  (24) 

Here pressure P  is given in GPa. This approximation ne-
glects a series of contributions to the surface tension. The 
main contribution neglected is that the density of exchange 
and correlation energies in nonuniform electron gas has a 
nonlocal relation with the electron liquid density. Provided 
this contribution is taken into account as a simple gradient 
correction, we obtain the surface tension-pressure plot as a 
curve 2 in Fig. 6. The curve is well described with 

 2
2 ( ) = 22 520 in erg/cm .P Pσ − +  (25) 

Fig. 6. The surface tension-pressure dependence. 
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Here we do not discuss the finer effects associated, e.g., 
with a shift of the edge ion planes beside the metal surface 
[25] or with nonuniform distribution of electrons in the 
metal bulk [26] since these contributions are smaller than 
the term resulted from the gradient exchange-correlation 
energy. In addition, these corrections become insignificant 
due to uncertainty of the equation of state in the zero pres-
sure range. Emphasize that the shift of the equation of state 
with about 5 GPa results in varying the surface tension by 
about 100 erg/cm2 within the zero pressure range. In what 
follows, we use mainly expression (24) for the surface ten-
sion since this expression results in the stricter condition 
for the lifetime of the metastable metallic phase. 

Note that the final result for the lifetime of metastable 
metallic hydrogen is not noticeably sensitive whether one 
takes Eq. (24) or Eq. (25) for the surface tension. The point 
is that the function ( )h x  itself results in the effective sur-
face tension which exceeds surface tension ( )Pσ  by a few 
times for the moderate pressures of about 10 GPa. For the 
larger pressures, the effect of surface tension ( )Pσ  is 
weaker due to effect of the bulk term 34 /3.Rπρ  

4. Quantum nucleation of the molecular phase.  
The discussion of results 

Like [18], we perform the semiclassical analysis of the 
tunneling transition between the phases. The classical 
Lagrangian of the system reads 

 2( , ) = ( ) /2 ( ).L R R M R R U R−    

Here effective mass ( )M R  is determined with Eq. (19) 
and energy ( )U R  is given by Eq. (4). In Appendix C the 
derivative ( , )/n r R R∂ ∂  in the equation for mass ( )M R  is 
transformed to the ambient pressure-fixed expression. The 
Hamiltonian corresponding to the above Lagrangian reads 

 2= / 2 ( ) ( ).RH p M R U R+  (26) 

Within our approximation the dynamic description of 
the system during phase transition is governed with the 
single principle variable = ( )R R t  and corresponding mo-
mentum Rp . The initial state of the system is a metastable 
state. Provided a possibility of the tunneling transition is 
ignored, the ground state in potential ( )U R  for radius R  
close to zero (1) can be estimated with using the uncertain-
ty principle as 

 typ .Rp R     

Since radius R  is not large, one can approximate potential 
( )U R  as 

 2
typ( ) = 4 .U R Rπ   

Denoting the ground state energy as 0 0=E ω , we have 

 2
0 typ4 / .Rω πσ    

Due to 

 
2

2
typ

typ
4

2 ( )
Rp

R
M R

πσ   

and using 3
0 typ( ) = 4 ( ) ,M R mn P Rπ  we obtain 

 2 2 1/7
typ 0[ /(32 ( ))]R mn Pπ σ    

and 

 3 1/7 5/7 3/7 2/7
0 0(16 ) ( ( ))mn P− −ω π σ  . (27) 

The estimate for 0ω  coincides with the semiclassical ex-
pression in [18]. Note that unlike bω  (20), frequency 0ω  is 
independent of critical radius Rc. The point is that frequency 

0ω  is associated with the heterophase quantum fluctuations 
in the homogeneous metastable phase and is insensitive to 
critical radius Rc. In the semiclassical approximation the 
probability for the quantum transition from level 0ω  to 
nucleation of the critical nucleus is given by 

 0
0

2= exp( ), = | |
Rc

RW ν p dRω −β β ∫


. (28) 

Equation (27) yields 

 3/14 14 1
0 ( / ) 10 .D em m s−ω ω   (29) 

Here / em m  is a ratio of proton mass to electron one and v 
is the number of virtual nucleation centers of new phase. 
The latter is of the order of the number of particles in the 
system. Thus, the preexponential factor coincides with 
Eqs. (1) and (2) and is about 1036 particle/s. 

 Momentum Rp  is determined semiclassically for the 
state of energy E  close to zero, 0 max ,Uω   as 

 | | = .2 ( ) ( )Rp M R U R   

The integration in (28) is performed over the positive region 
of potential energy ( ) > 0.U R  To have a macroscopically 
long-lived state of metastable metallic phase, the exponent 
β  in (28) should be large and not smaller than 80–100. For 
the smaller exponents, the large preexponential factor in (28) 
compensates the effect of the exponent, resulting in the large 
decay probability. 

The main parameter determining the exponent is the 
critical nucleus radius cR  or critical number of particles 

cN . The Rc–P dependence is plotted in Fig. 7. Curve 1 
corresponds to choice ( )h x  obtained by extrapolating the 
data to metallic hydrogen sr  at zero pressure = 1.7sr  
(Fig. 4) and to the surface tension determined with the 
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curve 1 in Fig. 6. Curve 2 in Fig. 7 is obtained with the 
same surface tension but with the function ( )h x  changed 
for < 1.5x  a.u. Function ( )h x  is truncated and put equal 
to h(x = 1.5 a.u.) (Fig. 4). Such variation ( )h x  remains 
the critical radius cR  unchanged (Sec. 3) at low pres-
sures of about 10  GPa when the region for a long-lived 
existence of the metastable metallic hydrogen is deter-
mined. Thus for determining the boundaries of stability 
of stable existence of metallic state, the behavior of func-
tion ( )h x  is essential only at large distances from the 
surface. The behavior at large distances, as noted in 
Sec. 3, is well-known. For the higher pressures when cri-
tical radius cR  is already large, the truncation mentioned 
results in some reduction of critical radius Rc. 

In Figs. 8 and 9 we give the plot of the number of parti-
cles cN  in the critical nucleus and the plot of the exponent 
β  in Eq. (28) for different functions ( )h x . From Figs. 8 
and 9 we can obtain the relation between β  and cN . It 
proves to be that in a wide pressure range this relation can 
approximately be described with the linear law = cNβ α , 
α  being 200 as 100cN   and α  being 120 as 510 .cN   

In Fig. 10 we plot the typical distribution for the molec-
ular phase density ( , )n r R  inside the nucleus at various 
pressures. It is seen that, for the relatively low pressures, 

there is a spacing d  where the density of the molecular 
phase vanishes. For the pressures larger than 75 GPa, the 
density of molecular phase does not vanish everywhere. In 
Fig. 11 we show the dependence of spacing = ( )c cd d R  as 
a function of pressure P  for the critical nucleus. 

The plot in Fig. 12 demonstrates the dependence of the 
minimum magnitude of density ( )cn R  of molecular phase 
in the critical nucleus. Within the whole pressure range the 
density at the boundary of molecular phase is significantly 
smaller as compared with the density of metallic phase 
(curve 3 in Fig. 12). The latter, as is noted in Sec. 2, makes 
it possible to neglect the dependence of function ( )h x  on 
the density of molecular phase.  

As the data show, the variation of function ( )h x  within 
the reasonable limits affects insignificantly the main result, 
i.e., long-lived stability of existing the metastable metallic 
phase within the wide pressure range below the transition 
point cP  300 GPa down to pressure  10 GPa. The var-
iation of surface tension ( )Pσ  affects the results to slight 
degree. Emphasize that we have used the surface tension 
(Fig. 6, curve 1), resulting in the minimum magnitude of 
the lifetime. 

Fig. 7. The critical radius Rc versus ambient pressure. Fig. 9. The exponent β (28) versus ambient pressure (logarith-
mic scale). 

Fig. 10. The density distribution in the nucleus of radius R = 9 a.u. 
at pressures 20 GPa (curve 1) and 75 GPa (curve 2). 

Fig. 8. The number of particles Nc in the critical nucleus as a 
function of ambient pressure (logarithmic scale). 
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5. Summary 

We have analyzed stability of the hydrogen metallic 
state against nucleation of the stable molecular phase be-
low the transition pressure cP   300–500 GPa. The nucle-
ation dynamics is governed by the tunneling of a critical 
molecular nucleus through a potential barrier in the low-
temperature region and by thermal activation mechanism at 
high temperatures. In a wide 0.1 c cP P P≤  pressure re-
gion below the phase transition pressure cP  the critical 
nucleus of the molecular phase contains a large number of 
particles and has, correspondingly, a large critical radius as 
compared with the interatomic spacing. The main reason 
for the large critical nucleus lies in the impossibility to 
form a bound state of two hydrogen atoms under high ex-
trinsic electron density of the metallic phase 1.7.sr   This 
entails the necessity to produce a cavity inside the metallic 
phase with the low electron density in the center insomuch 
that the formation of molecules would become energetical-
ly favorable. The nucleation dynamics of molecular nuclei 

at both low and high temperatures can be described within 
the framework of the macroscopic approach. Within the 
mentioned 0.1 c cP P P≤  pressure region the lifetime of 
the metallic hydrogen phase is macroscopically large and 
the metallic state is practically stable, i.e. long-lived. 

In the low pressure region 0.1 cP P  the inception of a 
cavity in the metallic state cannot be suppressed with the 
applied external pressure P  and the critical nucleus 
amounts to a few particles or less as the external pressure 
P  vanishes. Thus, we expect the opposite behavior with 
too small lifetime of the metastable metallic state, resulting 
in practically instant decay of the metallic phase. 

Appendix A 

Let 0V  and 0n  be volume and density of the metastable 
phase. After the nucleation of stable phase of volume V ′  
and density n′  the volume of metastable phase becomes V  
and density does n . The energy of nucleus can be written as 

 3 3
0= ( ) ( )

V V
U n nd r n n d r

′
ε + ε +′ ′ ′∫ ∫   

 3
0 0 0

0

( ) .
V V

dS n n d r
′

+ σ − ε′∫ ∫   

Here σ  is the surface tension, 0 ( )nε  and ( )nε′ ′  are the 
energy density of the metastable and stable phase, respec-
tively. Expanding 0 ( )nε  in small 0( )n n−  as 

 2
0 0 0 0 0 0( ) = ( ) ( ) /n n n n P nε ε + −   

and substituting it into the first equation, we have 

 3 3
0 0 0= ( ) ( )

V V V
U n n d r n n d r

+ ′ ′
− ε + ε +′ ′ ′∫ ∫   

 3 30
0 0 0 0 0

0
( )[ ( )] ( )

V V

P
n n n n d r n n d r dS

n
+ ε + − + − + σ =′∫ ∫   

 3 3
0 0 0= ( ) ( )

V V
n n d r n n d r

′ ′
ε − ε +′ ′ ′∫ ∫   

 30
0 0 0

0
( ) ( ) .

V V

P
n n n d r dS

n
′

 
+ ε + − + σ ′  ∫ ∫   

Since 

 3 3 3 3
0 0 0( ) =

V V V V V
n n d r nd r n d r n d r

+ ′ ′
− − + =∫ ∫ ∫ ∫   

 3 3
0= ,

V V
n d r n d r

′ ′
− ′∫ ∫   

we have finally 

   3 3
0 0 0= [ ( ) ( )]

V V V
U n P n d r P d r dS

′ ′ ′
ε − µ + + σ′ ′ ′ ′∫ ∫ ∫  (A.1) 

taking 0 0 0 0 0 0( ) / = ( )n P n Pε + µ  into account. 

Fig. 11. The spacing dc = d(Rc) for the critical nucleus as a func-
tion of pressure for various functions h(x) (curves 1 and 2). 

Fig. 12. The dependence of the minimum magnitude of density 
n(Rc) of molecular phase in the critical nucleus for various func-
tions h(x) (curves 1 and 2). The density of metallic phase versus 
pressure is shown with curve 3. For P < P1, n(Rc) = 0 (curve 1) 
and for P < P2, n(Rc) = 0 (curve 2). 
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Appendix B 

It follows from Eq. (6) that density ( , )n r R  of molecu-
lar phase depends on C  as a parameter 

 = ( , , ).n n r R C   
Therefore the potential energy U  of a nucleus and the 
number of particles N  depend also on C  as a parameter 

 = ( , ),U U R C  (B.1) 

 = ( , ).N N R C  (B.2) 

Using the last relation, parameter C  can be expressed via 
the total number of particles 

 = ( , ).C C R N  (B.3) 

Substituting Eq. (B.3) into (B.1), we find U  as a function 
of R  and N  

 = ( , ( , )).U U R C R N   

The condition of mechanical equilibrium (8) reads 

 = 0.
N

U
R

∂ 
  ∂

  

Then we have 

 2
04 ( ( )[ ( ( )) (0)] ( ) ( ) )R n R n R h P n R Pπ ε + − µ + +   

 2

0
8 ( ) ( ) ( )4

R
P R n r h R r r dr+ πσ + − π +′∫   

 0
0

( ( ( )) ( ) ( ))
R

n r h R r P+ µ + − − µ ×∫   

 24 = 0
C N

n n C r dr
R C R

 ∂ ∂ ∂   × + π       ∂ ∂ ∂ 
,  

where ( ) ( , )n r n r R≡  and ( ) = ( , ).n R n R R  In the last inte-
gral the expression in the parentheses is constant due to (6) 
and can be put in the front of integral. The magnitude of 
the remaining integral can be found with differentiating 
Eq. (B.2) in R  

 2 2

0
4 4 ( ) = 0.

R

C N

n n C r dr R n R
R C R

 ∂ ∂ ∂   + π + π       ∂ ∂ ∂ 
∫   

Then we obtain Eq. (10) for pressure P  which can be re-
written in the convenient form for numerics 

 2 2
2

0

2 ( ) 1= [ ( ) ( )] ( )
RPP r n r R n R h R r dr

R R
σ

− − − − +′∫   

 ( )[ ( ( )) ( )].n R C n R h R+ − ε −   

Appendix C 

In the kinetic energy (19) the nucleus mass depends on 
derivative ( , )/ ,n r R R∂ ∂  ambient pressure P  being fixed. 
In Eq. (6) the density is directly expressed in terms of C  
related to pressure .P  So, it is necessary to transform 

/n R∂ ∂  from one variable to another 

 
( , ) ( , ) ( , )= = /
( , ) ( , ) ( , )P

n n P n P P R
R R P R C C R

∂ ∂ ∂ ∂  =  ∂ ∂ ∂ ∂
  

 = /
C R R C R

n P n P P
R C C R C

 ∂ ∂ ∂ ∂ ∂         − =                   ∂ ∂ ∂ ∂ ∂ 
  

 = /
C R C R

n n P P
R C R C

∂ ∂ ∂ ∂       −              ∂ ∂ ∂ ∂
. (C.1) 

Differentiating Eq. (6) in R under fixed C  and then in C  
under fixed R, we have 

 
( , ) ( )= ,

( )C

n r R h R r
R n

∂ −′  −  ∂ µ′
  

 
( , ) 1= .

( )R

n r R
C n

∂ 
  ∂ µ′

  

Derivatives ( / )CP R∂ ∂  and ( / )RP C∂ ∂  are found with dif-
ferentiating Eq. (10). Though σ  and h  depend on P, the 
derivatives of σ  and h  in P  do not enter the ratio 
( / ) /( / ) .C RP R P C∂ ∂ ∂ ∂  One can see this directly using the 
cumbersome calculation 

____________________________________________________ 

 2 2 2

0

( / )
= 2 ( ) ( ) ( ) 2 ( )[ ( ) (0)] [ ( ) ( )] ( )

( / )

R
C

R

P R
P R n R h R Rn R h R h r n r R n R h R r dr

P C

∂ ∂  σ − + − − − − +′ ′′∂ ∂ 
∫   

 
12

2 2 2 2 2

0 0 0

2 ( ) ( )[ ( ) ( )] ( ) ( )
( ) ( ( , ))

R R Rh R r h R rr n r R n R h R r dr r dr R n R r dr
R n n r R

−  − −′ ′  + − − + −′ µ µ′ ′   
∫ ∫ ∫ .  

_______________________________________________ 

Substituting the above three relations for the derivatives 
into Eq. (C.1), we obtain the relation for /n R∂ ∂  which 

should be employed for calculating ( )M R  (19) under 
fixed pressure P. 
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