Исследование структурного фазового перехода в монокристалле KDy(MoO₄)₂ методом рамановского рассеяния света

А.В. Песчанский

Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Науки, 47, г. Харьков, 61103, Украина E-mail: peschansky@ilt.kharkov.ua

Статья поступила в редакцию 19 июня 2017 г., опубликована онлайн 25 сентября 2017 г.

Исследован спектр рамановского рассеяния света в монокристалле KDy(MoO₄)₂ в области частот $3-1000 \text{ см}^{-1}$ и диапазоне температур от 2 до 300 К, включающем температуру структурного фазового перехода типа кооперативного эффекта Яна–Теллера ($T_C \sim 14,5$ К). При переходе в низкотемпературную фазу обнаружено появление ряда дополнительных фононных линий, соответствующих модам A_g , B_{1g} , B_{2g} , B_{3g} , что указывает на удвоение примитивной ячейки при фазовом переходе. На основе анализа симметрии фононных мод сделан вывод, что симметрия низкотемпературной фазы предпочтительно моно-клинная с сохранением оси второго порядка вдоль кристаллографического направления b, т.е. перпенди-кулярно слоям. Обнаружены возбуждения, соответствующие низкоэнергетическим электронным переходам между уровнями основного мультиплета ${}^{6}H_{15/2}$ иона Dy ${}^{3+}$, расщепленного в кристаллическом поле с симметрией C_2 . В области первого возбужденного крамерсового дублета иона Dy ${}^{3+}$ в кристалле KDy(MoO₄)₂ в спектре рассеяния вместо одной линии (18,3 см ${}^{-1}$ (25 К)) выше температуры фазового перехода (14,5 К) при низких температурах наблюдаются четыре линии (16,5, 21,0, 24,9 и 29,1 см ${}^{-1}$ (2 K)). Это указывает на присутствие в низкотемпературной фазе четырех камалентных ионов диспрозия.

Досліджено спектр раманівського розсіяння світла в монокристалі KDy(MoO₄)₂ в області частот $3-1000 \text{ см}^{-1}$ та діапазоні температур від 2 до 300 К, що включає температуру структурного фазового переходу типу кооперативного ефекту Яна–Теллера ($T_C \sim 14,5$ К). При переході в низькотемпературну фазу виявлено появу ряду додаткових фононних ліній, які відповідають модам A_g , B_{1g} , B_{2g} , B_{3g} , що вказує на подвоєння примітивної комірки при фазовому переході. На основі аналізу симетрії фононних мод зроблено висновок, що симетрія низькотемпературної фази переважно моноклінна зі збереженням осі другого порядку вздовж кристалографічного напрямку b, тобто перпендикулярно шарам. Знайдено збудження, які відповідають низькоенергетичним електронним переходам між рівнями основного мультиплету ${}^{6}H_{15/2}$ іона Dy³⁺, розщепленого в кристалічному полі з симетрією C_2 . В області першого збудженого крамерсового дублету іона Dy³⁺ у кристалі KDy(MoO₄)₂ в спектрі розсіяння замість однієї лінії (18,3 см⁻¹ (25 К)) вище температури фазового переходу (14,5 К) при низьких температурах спостерігаються чотири лінії (16,5, 21,0, 24,9 и 29,1 см⁻¹ (2 К)). Це вказує на присутність у низькотемпературній фазі чотирьох нееквівалентних іонів диспрозія.

PACS: 71.70.Ch Поля кристалла и лигандов;

78.30.-ј Инфракрасные и рамановские спектры.

Ключевые слова: рамановская спектроскопия, фазовый переход, фонон, низкоэнергетическое электронное возбуждение.

1. Введение

Интерес к двойным щелочно-редкоземельным соединениям молибдатов обусловлен как присутствием в них структурных фазовых переходов (ФП), так и наличием сложного магнитного упорядочения в области температур ~ 1 К. Несмотря на длительный период исследований и большое число опубликованных работ, физические свойства этих соединений недостаточно полно изучены, а в имеющихся литературных данных наблюдаются противоречия.

В ряду двойных молибдатов наиболее изученным является калий-диспрозиевый молибдат. Впервые низкотемпературный ФП второго рода в KDy(MoO₄)₂ был обнаружен по спектрам поглощения [1]. Увеличение энергетического расстояния между нижайшими дублетами основного терма ${}^{6}H_{15/2}$ иона Dy^{3+} при понижении температуры от *T* ~ 14 К до гелиевой связывалось с упорядочением типа кооперативного эффекта Яна-Теллера (КЭЯТ), обусловленным электрон-фононным взаимодействием ионов Dy^{3+} [1–3]. В работе [2] было обнаружено, что этот кристалл переходит в магнитоупорядоченное состояние при 1,1 К. Исследование двулучепреломления и магнитных свойств KDy(MoO₄)₂ показали, что ФП происходит путем последовательности переходов с температурами T₁ ~ 14,5 К и T₂ ~ 11,5 К [4,5]. В этих работах предполагалось, что в интервале температур 14,5-11,5 К может реализоваться несоразмерная фаза.

Кристалл KDy(MoO₄)₂ при комнатной температуре имеет орторомбическую симметрию D_{2h}^{14} (z = 4) [6]. Рентгеновские данные о симметрии низкотемпературной фазыПП в KDy(MoO₄)₂ до настоящего времени отсутствуют. Ряд работ по исследованиям спектров ЭПР [7], спектров поглощения в ИК диапазоне [8,9] и ультразвуковым исследованиям [10,11] был посвящен изучению ФП и определению симметрии низкотемпературной фазы. Но в работе [10] был сделан вывод о сохранении симметрии D_{2h}^{14} при ФП, а в работе [11], анализируя свои предыдущие результаты, авторы указывают, что симметрия при ФП понижается до моноклинной C_{2h}^5 . Анализ возможных симметрий низкотемпературной фазы был проведен в работе [12].

Рамановской спектроскопии в KDy(MoO₄)₂ было уделено большое внимание. В работе [13] при комнатной температуре исследовались рамановские спектры в KDy(MoO₄)₂ с различными изотопами молибдена. В [14] приведены значения частот колебательных мод для целого ряда двойных молибдатов при 300 К. Исследование температурного поведения рамановских спектров в низкочастотной области спектра в области ФП проведено в работе [15]. Для низкочастотного участка спектра проводились измерения в магнитном поле [16]. В работе [17] исследовалось влияние давления на рамановские спектры при 300 К. В широком диапазоне частот и температур рамановские измерения не проводились.

Анализ полученных в работах [1–11] результатов свидетельствует о неоднозначности в определении количества низкотемпературных фаз, установлении их симметрии, поведении низкоэнергетических возбуждений электронной природы, и как следствие — отсутствие достаточно четко аргументированного мнения о механизме ФП типа КЭЯТ. Значения энергий для более высокоэнергетичных уровней иона Dy³⁺ приведены в работе [18]. Для уровней основного терма ⁶ $H_{15/2}$ иона Dy³⁺ в KDy(MoO₄)₂ полные данные отсутствуют.

В данной работе исследовались рамановские спектры в монокристалле KDy(MoO₄)₂ в широком диапазоне частот и температур с целью получения ответов на поставленные выше вопросы.

2. Образцы и методика измерений

Кристалл KDy(MoO₄)₂ при комнатной температуре имеет орторомбическую симметрию D_{2h}^{14} . Элементарная ячейка содержит четыре формульные единицы и имеет параметры: a = 5,084 Å, b = 18,18 Å, c = 7,97 Å [6]. Для настоящих исследований образец был приготовлен из монокристалла хорошего оптического качества и вырезан в виде прямоугольного параллелепипеда с размерами $5,0\times5,0\times0,8$ мм, торцы которого тщательно полировались. Его ребра были параллельны ортогональным осям X, Y и Z, выбранным так, что $X \parallel a, Y \parallel b$ и $Z \parallel c$.

Рамановские спектры возбуждались линией 632,8 нм Не–Ne лазера мощностью 30 мВт. Свет, рассеянный образцом под углом 90°, анализировался с помощью двойного монохроматора Ramanor U-1000 и регистрировался охлаждаемым фотоумножителем со схемой счета фотонов. Образец помещался в специальные оптические криостаты, позволяющие проводить измерения в широком интервале температур (5–300 K) или в сверхтекучем гелии (2 K). До 25 К температура измерялась по колиброванному полупроводниковому болометру, выше — с помощью медь-константановой термопары. Перегрев образца в луче лазера оценивался по интенсивностям стоксовой и антистоксовой компонент низкочастотной фононной линии. Точность определения температуры была не хуже \pm 0,3 К.

Спектры представлены в стандартных обозначениях k(ij)q, где k и q — направления распространения падающего и рассеянного света с электрическим вектором е вдоль i и j соответственно. Обозначения ZZ, XY и т. д. соответствуют определенным компонентам тензора рассеяния и индексам i и j. Моды A_g , B_{1g} , B_{2g} и B_{3g} активны в рамановском процессе с ненулевыми компонентами тензора рассеяния: $A_g - XX$, YY, ZZ, $B_{1g} - XY$, YX, $B_{2g} - XZ$, ZX, и $B_{3g} - YZ$, ZY [19]. В спектрах высокотемпературной фазы ожидается $17A_g + 19B_{1g} + 17B_{2g} +$ $+ 19B_{3g}$ колебательных мод [13,14].

3. Экспериментальные результаты

Обзорные спектры рамановского рассеяния света в кристалле KDy(MoO₄)₂ получены при температурах 2, 25, 90, 150 и 300 К. На рис. 1 приведены спектры при 2 К, соответствующие A_g , B_{1g} , B_{2g} и B_{3g} колебательным модам. При низких температурах линии узкие, поэтому несложно определить число наблюдаемых линий и отнести их к возбуждениям определенной симметрии. Спектры хорошо поляризованы, деполяризация от интенсивных линий не превышает 2–3%.

Рис. 1. (Онлайн в цвете) Рамановские спектры монокристалла $KDy(MoO_4)_2$ при температуре 2 К с различными поляризациями. Низкочастотная область спектра (а). Высокочастотная область спектра (б). Спектральное разрешение 1,8 см⁻¹.

Как видно на рис. 1, при низких температурах наблюдается избыточное число линий для кристалла с указанной симметрией. Это может быть как следствием ФП, так и присутствием линий, соответствующих электронным переходам в пределах основного терма ${}^{6}H_{15/2}$ иона Dy³⁺.

Для разделения линий на спектр первого порядка высокотемпературной фазы и дополнительные возбуждения, указанные выше, рассмотрим температурные зависимости спектров. На рис. 2 показана температурная эволюция спектров рамановского рассеяния в кристалле KDy(MoO₄)₂ с XX-компонентой тензора рассеяния (A_g -моды). Узкие линии различной интенсивности, присутствующие в спектрах во всем диапазоне температур, отнесены к фононному спектру первого порядка высокотемпературной фазы. При повышении температуры они незначительно уширяются. Большая часть линий смещается в низкочастотную область на несколько обратных сантиметров, т.е. имеет нормальный температурный ход.

При низких температурах в спектрах наблюдается ряд дополнительных поляризованных линий малой интенсивности, которые можно разделить на два типа. Первый — это линии (на рис. 2 обозначены тонкими черными стрелками), которые исчезают выше температуры ФП. По полуширине их можно отнести к фононному спектру низкотемпературной фазы. Второй — это более широкие по сравнению с фононными линиями, которые реагируют на ФП, но по мере повышения температуры они уширяются, интенсивность их падает, наблюдаются они до 90–150 К и не наблюдаются при 300 К. На рис. 2 они обозначены красными широкими стрелками. Такое температурное поведение характерно для линий, соответствующих низкоэнергетическим электронным переходам иона Dy^{3+} .

Анализ температурного поведения B_{1g}-, B_{2g}- и B_{3g}мод был проведен по рамановским спектрам (рис. 3-5 соответственно), а результаты обработки спектров приведены в табл. 1. В ней представлены частоты, симметрия колебательных мод в сравнении с литературными данными для спектров высокотемпературной фазы и значения частот дополнительных фононных линий, возникающих в низкотемпературной фазе. Точность определения частоты составляет от $\pm 0,2$ до $\pm 0,5$ см⁻¹ в зависимости от интенсивности линии. Как видно из табл. 1, в настоящей работе для высокотемпературной фазы обнаружены $16A_g + 19B_{1g} + 15B_{2g} + 18B_{3g}$ из $17A_g + 19B_{1g} + 17B_{2g} + 19B_{3g}$ колебательных мод, ожидаемых для кристалла с данной симметрией. Анализ линий, которые отнесены к электронным переходам между компонентами основного терма иона Dy^{3+} , будет проведен в обсуждении.

Рис. 2. (Онлайн в цвете) Температурное поведение рамановских спектров $KDy(MoO_4)_2$. Экспериментальная геометрия Z(XX)Y (A_g -симметрия). Низкочастотная область спектра (а). Высокочастотная область спектра (б). Черными стрелками обозначены дополнительные фононные линии, а красными — низкоэнергетические электронные переходы между уровнями основного мультиплета ${}^{6}H_{15/2}$ иона Dy^{3+} в низкотемпературной фазе. (*) обозначены фононные линии, которые наблюдаются вследствие деполяризации. Спектральное разрешение 1,8 см⁻¹.

Как видно на рис. 2–5, наиболее значительные изменения при ФП происходят в области первого и второго возбужденного крамерсового дублета и в высокочастотной области спектра. На рис. 6 приведены подробные температурные эволюции спектров рассеяния в этих частотных областях для XX (A_g -симметрия) и YZ (B_{3g} симметрия) поляризаций. Как видно, в высокотемпературной фазе в области 18 и 76 см⁻¹ наблюдаются две широкие линии, которые соответствуют низкоэнергетическим электронным переходам с основного на первый и

Рис. 3. (Онлайн в цвете) Температурное поведение рамановских спектров KDy(MoO₄)₂. Экспериментальная геометрия Z(YX)Y (B_{1g} -симметрия). Низкочастотная область спектра (а). Высокочастотная область спектра (б). Черными стрелками обозначены дополнительные фононные линии, а красными — низкоэнергетические электронные переходы между уровнями основного мультиплета ${}^{6}H_{15/2}$ иона Dy³⁺ в низкотемпературной фазе. (*) обозначены фононные линии, которые наблюдаются вследствие деполяризации. Спектральное разрешение 1,8 см⁻¹.

Рис. 4. (Онлайн в цвете) Температурное поведение рамановских спектров KDy(MoO₄)₂. Экспериментальная геометрия Z(XZ)Y (B_{2g} -симметрия). Низкочастотная область спектра (а). Высокочастотная область спектра (б). Черными стрелками обозначены дополнительные фононные линии, а красными — низкоэнергетические электронные переходы между уровнями основного мультиплета ${}^{6}H_{15/2}$ иона Dy³⁺ в низкотемпературной фазе. (*) обозначены фононные линии, которые наблюдаются вследствие деполяризации. Спектральное разрешение 1,8 см⁻¹.

второй возбужденные уровни иона Dy^{3+} . В отличие от фононных линий, они присутствуют с разными интенсивностями в спектрах с различными компонентами тензора рассеяния (рис. 6(а) и вставка на рис. 6(а)). По мере понижения температуры ниже $T_C \sim 14,5$ К происходит расщепление указанных линий на пары

компонент (рис. 6(а), красные стрелки). Кроме этого появляются дополнительные фононные линии, соответствующие B_{3g} -моде с частотой 49,2 см⁻¹ (вставка на рис. 6(а)) и A_g -модам с частотами 779,5 и 835,1 см⁻¹ (рис. 6(б), черные стрелки).

Рис. 5. (Онлайн в цвете) Температурное поведение рамановских спектров KDy(MoO₄)₂. Экспериментальная геометрия Z(YZ)Y (B_{3g} -симметрия). Низкочастотная область спектра (а). Высокочастотная область спектра (б). Черными стрелками обозначены дополнительные фононные линии, а красными — низкоэнергетические электронные переходы между уровнями основного мультиплета ${}^{6}H_{15/2}$ иона Dy³⁺ в низкотемпературной фазе. (*) обозначены фононные линии, которые наблюдаются вследствие деполяризации. Спектральное разрешение 1,8 см⁻¹.

Low Temperature Physics/Физика низких температур, 2017, т. 43, № 11

A_g		B_{2g}		B_{1g}		B _{3g}	
2 K (300 K)	300 K	2 K (300 K)	300 K	2 K (300 K)	300 K	2 K (300 K)	300 K
настоящая работа	[13]	настоящая работа	[13]	настоящая работа	[13]	настоящая работа	[13]
55,2 (55,9)	57	59,5 (60,5)	60	59,9 (58,8)	59	54,8 (~52)	
105,7 (105,7)	106	91,4 (91,8)	98	68,0 (70,1)	70	60,1 (58,6)	59
115,5 (~114)		118,7 (118,5)	119	106,6 (101,6)	106	73,8 (78,3)	81
153,8 (151)	150	157,4 (153,4)	148	121,8 (118,4)	118	89,2 (85,8)	89
211,7 (207,0)	208	169,9 (165,3)		132,0 (126,2)		102,9 (99,6)	101
246,5 (~232)	230	219,2 (212,7)	217	135,3 (132,0)	132	126,2 (124,1)	124
280,3 (274,5)	276	249,4 (244,1)		157,6 (153,8)	155	139,8 (136,6)	133
356,1 (354,6)	356	280,6 (275,6)	277	271,0 (266,4)	276	162,3 (156,7)	154
362,7 (~358,5)		364,1 (362,4)	363	313,5 (313,9)	314	269,1 (~279)	
395,6 (394,8)	396	409,6 (408,4)	408	337,0 (336,1)	336	317,2 (316,8)	317
418,4 (-)		437,1 (437,3)	440	355,4 (353,8)	354	337,2 (336,8)	337
436,2 (435,2)	436	731,4 (728,2)	730	401,5 (399,3)	399	356,2 (356,1)	354
730,6 (727,9)	730	814,6 (813,5)	815	418,6 (–)		382,8 (381,1)	382
812,3 (809,8)	812	867,6 (866,6)	869	434,9 (~437)	440	400,8 (399,0)	397
866,9 (866,2)	868	952,7 (950,3)	950	713,6 (710,3)	711	435,9 (434,8)	438
949,0 (946,6)	949			746,1 (744,2)	746	715,2 (710,8)	712
				851,0 (849,2)	851	746,6 (746,7)	750
				926,7 (924,6)	926	949,2 (946,5)	948
				949,1 (946,5)	948		
Дополнительные фононные линии при 2 К							
40,3		40,3		49,4		49,2	
263,2				265,3		209,9	
445,9		445,9		308,9			
779,5		779,9					
835,1		835,0					

Таблица 1. Симметрия и частоты (см⁻¹) фононных рамановских линий кристалла KDy(MoO₄)₂ при 2 и 300 К в сравнении с литературными данными

В отличие от низкочастотных фононных линий, полуширина которых при низких температурах определяется аппаратной функцией, линии, соответствующие низкоэнергетическим электронным переходам между уровнями основного мультиплета ⁶ *H*_{15/2} иона Dy³⁺, остаются уширенными даже при 2 К. На рис. 7 приведен низкочастотный участок рамановского спектра при 2 К с высоким спектральным разрешением для всех поляризаций, соответствующих модам Ад, B1g, B2g и B3g. Видно, что линии в области первого возбужденного уровня иона Dy³⁺ только в первом приближении можно считать дублетами. Обработка спектров показывает, что в этом диапазоне частот присутствуют четыре линии с частотами 16,5, 21,0, 24,9 и 29,1 см⁻¹ (рис. 7, красные стрелки). Этими линиями при одном значении частоты, полуширины и разных интенсивностях описываются спектры с XX-, XZ- и YZкомпонентами тензора рассеяния. При более высокой температуре уже сложно разделить этот участок спектра на четыре компоненты. Дополнительные фононные линии показаны на рис. 7 черными стрелками.

(на интенсивность при 2 К) поведение интенсивностей дополнительных фононных линий, соответствующих A_g -моде с частотой 835,1 см⁻¹ (рис. 6(б)) и B_{3g} -моде с частотой 49,2 см⁻¹ (вставка на рис. 6(а)). Для нижайшего возбужденного уровня в низкотемпературной фазе обработка проводилась (по данным, приведенным на рис. 6(а)) в рамках двух линий. Это связано с тем, что разделить спектр в этой области на четыре компоненты возможно только при 2 К и на записи с высоким спектральным разрешением (рис. 7). Как видно на рис. 8(а), наблюдается систематическое отличие значений частот ниже Т ~ 14 К, полученных из спектров с XX- и YZ-компонентами тензора рассеяния. Это отличие связано скорее не с погрешностью обработки, а с тем, что в этой области спектр обрабатывался с использованием двух линий, а не четырех. Эта разницы в значениях частот указывает, что 4 компоненты в спектре присутствуют не только при 2 К, но при температу-

На рис. 8 приведено поведение частоты низкоэнергетических электронных переходов для первого и второго

возбужденных уровней иона Dy³⁺ и нормированное

Рис. 6. (Онлайн в цвете) Температурное поведение участков рамановских спектров $KDy(MoO_4)_2$. Экспериментальная геометрия Z(XX)Y (A_g -симметрия) и Z(YZ)Y (B_{3g} -симметрия). Низкочастотная область спектра (а). Высокочастотная область спектра (б). Черными стрелками обозначены дополнительные фононные линии, а красными — низкоэнергетические электронные переходы между уровнями основного мультиплета ${}^{6}H_{15/2}$ иона Dy^{3+} в низкотемпературной фазе. (*) обозначены фононные линии, которые наблюдаются вследствие деполяризации. Спектральное разрешение 1,8 см⁻¹.

рах ниже T_C . Из анализа температурного поведения спектров можно сказать, что выше $T_C \sim 14,5$ К в области нижайшего электронного перехода иона Dy³⁺ наблюдается одна линия. В то же время дополнительные фононные линии (рис. 6, рис. 8(в)) исчезают при температуре ~ 17 К.

4. Обсуждение

фононного спектра монокристалла Анализ KDy(MoO₄)₂ при различных температурах позволил обнаружить и определить симметрию $16A_g + 19B_{1g} +$ $+15B_{2g}+18B_{3g}$ из $17A_g+19B_{1g}+17B_{2g}+19B_{3g}$ колебательных мод, предсказываемых теоретико-групповым анализом для высокотемпературной фазы (табл. 1). Наблюдение дополнительных фононных линий в низкотемпературной фазе однозначно указывает на удвоение примитивной ячейки при ФП. Часть дополнительных линий наблюдается в низкочастотной области (рис. 7), а часть в области внутренних колебаний тетраэдров МоО₄ (рис. 1–5). Это указывает, что при ФП увеличивается число неэквивалентных тетраэдров МоО4 и ячейка удваивается в слое Dy(MoO₄)₂, а не за счет смещения слоев и увеличения числа последних.

В работе [7] по исследованию спектров ЭПР указывалось, что в высокотемпературной фазе наблюдаются два магнитонеэквивалентных иона Dy^{3+} , а в низкотемпературной — четыре. Это может указывать как на мультипликацию элементарной ячейки, так и на понижение локальной симметрии. Так, при исследовании кристаллов KDy(WO₄)₂ методом рамановской спектроскопии [20] было обнаружено, что в низкотемпературной фазе наблюдаются четыре неэквивалентных иона Dy³⁺, в то время как примитивная ячейка низкотемпературной фазы содержит четыре формульные единицы.

Для обсуждения симметрии низкотемпературной фазы рассмотрим тензоры рассеяния в случае орторомбической и моноклинной симметрии [19]:

$$D_{2h}^{14}: \qquad A_g = \begin{vmatrix} a & \cdot & \cdot \\ \cdot & b & \cdot \\ \cdot & \cdot & c \end{vmatrix}, B_{1g} = \begin{vmatrix} \cdot & d & \cdot \\ d & \cdot & \cdot \\ \vdots & \vdots & \vdots \end{vmatrix}$$
$$B_{2g} = \begin{vmatrix} \cdot & \cdot & e \\ \cdot & \cdot & \cdot \\ e & \cdot & \cdot \end{vmatrix}, B_{3g} = \begin{vmatrix} \cdot & \cdot & \cdot \\ \cdot & f & \vdots \end{vmatrix};$$

Рис. 7. (Онлайн в цвете) Низкочастотный участок рамановского спектра монокристалла KDy(MoO₄)₂ при температуре 2 К с различными поляризациями. Черными стрелками обозначены дополнительные фононные линии, а красными низкоэнергетические электронные переходы в области первого возбужденного уровня основного мультиплета ${}^{6}H_{15/2}$ иона Dy³⁺ при 2 К Спектральное разрешение 0,9 см⁻¹.

$$C_{2h}: z \parallel C_2 \quad A_g - \begin{vmatrix} a & d & \cdot \\ d & b & \cdot \\ \cdot & \cdot & c \end{vmatrix}, \quad B_g - \begin{vmatrix} \cdot & \cdot & e \\ \cdot & f \\ e & f & \cdot \end{vmatrix};$$
$$y \parallel C_2 \quad A_g - \begin{vmatrix} a & \cdot & d \\ \cdot & b & \cdot \\ d & \cdot & c \end{vmatrix}, \quad B_g - \begin{vmatrix} \cdot & e & \cdot \\ e & f & f \\ \cdot & f & \cdot \end{vmatrix};$$
$$x \parallel C_2 \quad A_g - \begin{vmatrix} a & \cdot & \cdot \\ \cdot & b & d \\ \cdot & d & c \end{vmatrix}, \quad B_g - \begin{vmatrix} \cdot & e & \cdot & f \\ e & \cdot & f \\ f & \cdot & \cdot \end{vmatrix}.$$

Как видно из приведенных тензоров, при переходе из орторомбической фазы в моноклинную, в которой имеется уже два представления A_g и B_g , должно происходить смешивание A_g с одной из B_g -мод, например B_{2g} . При этом B_{1g} и B_{3g} переходят в B_g -моды моноклинной фазы, и в спектрах становятся разрешенными в обеих поляризациях. Следует отметить, что спектры рассеяния во всех поляризациях при 5 и 25 К, т.е. в низкотемпературной и высокотемпературной фазах, для основных фононных линий (табл. 1) подобны (рис. 2–5). Не наблюдается увеличение степени депо-

Рис. 8. (а) Температурное поведение частоты низкоэнергетических электронных переходов между уровнями основного мультиплета ${}^{6}H_{15/2}$ иона Dy³⁺ в области 25 см⁻¹, экспериментальные геометрии: Z(XX)Y (A_g -симметрия) (○) и Z(YZ)Y (B_{3g} -симметрия) (□). (б) Температурное поведение частоты низкоэнергетических электронных переходов иона Dy³⁺ в области 80 см⁻¹ (○) в экспериментальной геометрии Z(XX)Y (A_g -симметрия). (в) Температурное поведение нормированной интегральной интенсивности для линий рамановского спектра с частотой 835 см⁻¹ (○) A_g -мода и 49,2 см⁻¹ (□) B_{3g} -мода.

ляризации при 5 К по сравнению с 25 К. Исходя из этого, можно предположить, с одной стороны, что симметрия кристалла при ФП не меняется и остается орторомбической. С другой стороны, из анализа частотного положения дополнительных линий (табл. 1) видно, что и в низкочастотном диапазоне (рис. 7) и в высокочастотном (рис. 1) многие из них появляются попарно с фактически одинаковыми частотами.

Таким образом, дополнительны фононные моды, возникающие в низкотемпературной фазе, можно рассматривать в рамках A_g - и B_g -мод, т.е. низкотемпературная фаза, скорее всего, моноклинная. Как видно из приведенных выше тензоров рассеяния, при ФП сохраняется ось второго порядка в направлении у (кристаллографическое направление *b* перпендикулярно слоям). Отсутствие видимой реакции на фононах спектра высокотемпературной фазы, скорее всего, связано с очень малыми искажения структуры, что согласуется с данными по ультразвуковом исследованиям [10,11].

Основное состояние иона Dy³⁺ в кристалле $KDy(MoO_4)_2 - {}^{6}H_{15/2}$. В кристаллическом поле моноклинной симметрии основной мультиплет расщепляется на восемь крамерсовых дублетов [21]. Основное внимание в многих работах уделялось изучению перехода между нижайшими дублетами основного терма ${}^{6}H_{15/2}$ иона Dy³⁺, так как увеличение энергетического расстояния между ними при понижении температуры связывалось с упорядочением типа КЭЯТ. В работе [15] по результатам исследования температурного поведения рамановских спектров была предложена модель с возникновением мягкой моды в спектре электронных возбуждений. Впоследствии по этим же данным была предложена другая модель [22], в которой при ФП происходит расщепление в области первого возбужденного крамерсового дублета. Настоящие исследования температурного поведения рамановских спектров показали, что при ФП не наблюдается мягкомодовое поведение ни для фононных мод, ни для линий, соответствующих низкоэнергетическим электронным переходам иона Dy³⁺. Как и предсказывалось в работе [22], для первого и второго возбужденных уровней при ФП наблюдается расщепление (рис. 6(а), 8(а), (б)).

Как уже отмечалось ранее, при низких температурах в спектрах рамановского рассеяния света в кристалле KDy(MoO₄)₂ наблюдаются широкие полосы с частотами ~ 191, 478,5, 660,0, ~ 700 и 715,5 см⁻¹. Они имеют температурный ход, характерный для линий, соответствующих низкоэнергетическим электронным переходам (рис. 2-5). Кроме того, в отличие от фононных мод, часть из этих линий наблюдается в нескольких поляризациях (рис. 1). Диапазон частот, в которых они наблюдаются, примерно совпадает с расчетным ~ 600 см⁻¹ для расщепления в кристаллическом поле основного терма иона Dy^{3+} в этом кристалле, приведенным в работе [18]. Поэтому в настоящей работе эти полосы отнесены к электронным переходам в пределах основного мультиплета ${}^{6}H_{15/2}$ иона Dy^{3+} . И если для линий в области 20 и 76 см⁻¹ реагируют на магнитное поле [16], то для более высокочастотных таких данных нет. Поэтому измерения рамановских спектров в магнитном поле в дальнейшем позволит однозначно определить природу обсуждаемых линий.

Относительно ФП при 11,5 К, который наблюдался в работах [4,5], следует сказать, что в спектрах рассеяния (вставка на рис. 6(а)), полученных при 11 и 13 К, наблюдается «переигровка» интенсивностей между двумя компонентами в области первого возбужденного уровня иона Dy^{3+} . В поведении фононных линий (рис. 6(а) и (б)) при 13 К никаких аномалий, которые можно было бы ожидать при реализации несоразмерной фазы, не наблюдается. (А именно, уширения линий за счет разворачивания зоны Бриллюэна.) К сожалению, не достаточно подробная температурная эволюция спектров рассеяния не позволяет получить дополнительную информацию для обсуждения ФП при 11,5 К.

Как уже отмечалось выше, расщепление линий, соответствующих электронным переходам иона Dy³⁺, происходит при температуре $T_C \sim 14,5$ К, которая совпадает с большинством результатов по изучению ФП в этом кристалле. Появление дополнительных фононных линий при ~ 17 К может иметь два объяснения. Первое — два последовательных ФП. Второе — проявление предпереходных флуктуаций, которые более заметны на интенсивности линий, по сравнению с расщеплением широких линий, соответствующих электронным переходам. В работах [10,11] было показано, что аномалии в скоростях звука начинаются при более высоких температурах, чем T_C ~ 14,5 К. Поэтому, по мнению автора, на данный момент предпочтительней второй вариант, хотя для окончательного вывода необходимы более подробные температурные исследования рамановских спектров в этой температурной области.

5. Заключение

Впервые исследовано температурное поведение спектров рамановского рассеяния света в монокристалле $KDy(MoO_4)_2$ в области частот 3-1000 см⁻¹. Для высокотемпературной фазы обнаружены $16A_g$ + $+ 19B_{1g} + 15B_{2g} + 18B_{3g}$ из $17A_g + 19B_{1g} + 17B_{2g} + 19B_{3g}$ колебательных мод, ожидаемых для кристалла с данной симметрией. При переходе в низкотемпературную фазу обнаружено появление ряда дополнительных фононных линий, соответствующих модам $5A_g$, $3B_{1g}$, $4B_{2g}$, $2B_{3g}$ в рамках симметрии высокотемпературной фазы, что однозначно указывает на удвоение примитивной ячейки при фазовом переходе. На основе анализа симметрии этих дополнительных мод сделан вывод, что симметрия низкотемпературной фазы предпочтительно моноклинная с сохранением оси второго порядка вдоль кристаллографического направления b.

Обнаружены низкоэнергетические электронные переходы между уровнями основного мультиплета ${}^{6}H_{15/2}$ иона Dy³⁺, расщепленного в кристаллическом поле с симметрией C_2 . Обнаружено, что в области первого возбужденного крамерсового дублета иона Dy³⁺ в кристалле KDy(MoO₄)₂ в спектре рассеяния наблюдается одна линия (18,3 см⁻¹ (24 K)) выше температуры фазового перехода (14,5 K), а при низких температурах наблюдаются четыре линии (16,5, 21,0, 24,9 и 29,1 см⁻¹ (2K)). Это указывает на присутствие в низкотемпературной фазе четырех неэквивалентных ионов диспрозия.

Автор выражают благодарность В.И. Кутько за предоставленный монокристалл для исследований и интерес к работе, В.И. Фомину и Н.М. Нестеренко за полезное обсуждение результатов работы.

- 1. А.И. Звягин, Т.С. Стеценко, В.Г. Юрко, Р.А. Вайшнорас, *Письма в ЖЭТФ* **17**, 190 (1973) [*JETP Lett.* **17**, 135 (1973)].
- A.H. Cooke, M.M. Davidson, N.J. England, M.J.M. Leask, J.B. Lowry, O.C. Tropper, and M.L. Wells, *J. Phys. C: Solid State Phys.* 9, L573 (1976).
- M.J.M. Leask, O.C. Tropper, and M.L. Wells, *J. Phys. C:* Solid State Phys. 14, 3481 (1981).
- Ю. Харченко, ФНТ 22, 394 (1996) [Low Temp. Phys. 22, 306 (1996)].
- Н.Ф. Харченко, Ю.Н. Харченко, Р. Шимчак, М. Баран, ФНТ 24, 915 (1998) [Low Temp. Phys. 24, 689 (1998)].
- 6. В.И. Спицын, В.К. Трунов, ДАН СССР 185, 854 (1969).
- В.А. Багуля, А.И. Звягин, М.И. Кобец, А.А. Степанов, А.С. Заика, ФНТ 14, 493 (1988) [Sov. J. Low Temp. Phys. 14, 270 (1988)].
- В.А. Багуля, А.И. Звягин, В.И. Кутько, А.А. Мильнер, И.В. Скоробогатова, ФНТ 14, 1215 (1988) [Sov. J. Low Temp. Phys. 14, 671 (1988)].
- В.А. Багуля, А.И. Звягин, В.И. Кутько, И.В. Скоробогатова, ФНТ 14, 1218 (1988) [Sov. J. Low Temp. Phys. 14, 673 (1988)].
- И.М. Витебский, С.В. Жерлицын, А.И. Звягин, А.А. Степанов, В.Д. Филь, *ФНТ* 12, 1108 (1986) [Sov. J. Low Temp. Phys. 12, 626 (1986)].
- И.М. Витебский, С.В. Жерлицын, А.А. Степанов, В.Д. Филь, ФНТ 16, 1064 (1990) [Sov. J. Low Temp. Phys. 16, (1990)].
- Н.М. Нестеренко, ФТТ 42, 176 (2000) [*Phys. Solid State* 42, 184 (2000)].
- 13. J. Hanuza and V.V. Fomitsev, *J. Molec. Structure* **66**, 1 (1980).
- 14. J. Hanuza and L. Macalik, Spectrochimica Acta A 38, 61 (1982).
- D. Mihailović, J.F. Ryan and M.C.K. Wiltshire, J. Phys. C: Solid State Phys. 20, 3047 (1987).
- D. Mihailović and J.F. Ryan, J. Phys. C: Solid State Phys. 20, 3063 (1987).
- A. Jayaraman, S.K. Sharma, S.Y. Wang, S.R. Shieh, L.C. Ming, and S.-W. Cheong, *J. Raman Spectroscopy* 27, 485 (1996).
- Т.С. Стеценко, А.М. Пшисуха, С.Д. Ельчанинова, А.И. Звягин, Оптика и спектроскопия XXXIV, 405 (1973).
- А. Пуле, Ж.-П. Матье, Колебательные спектры и симметрия кристаллов, Мир, Москва (1973).

- А.В. Песчанский, ФНТ **39**, 1248 (2013) [Low Temp. Phys. **39**, 973 (2013)].
- А.К. Звездин, В.М. Матвеев, А.А. Мухин, А.И. Попов, Редкоземельные ионы в магнитоупорядоченных кристаллах, Наука, Москва (1985).
- 22. В.И. Кутько, *ФНТ* **31**, 3 (2005) [*Low Temp. Phys.* **31**, 1 (2005)].

Investigation of structural phase transition in the $KDy(MoO_4)_2$ single crystal by Raman scattering

A.V. Peschanskii

Raman light scattering in the $KDy(MoO_4)_2$ was studied in the frequency region of $3-1000 \text{ cm}^{-1}$ in the temperature range from 2 to 300 K including the temperature of structural phase transition of Jahn-Teller cooperative effect ($T_C \sim 14.5$ K). The appearance of a number of additional phonon lines assigned with A_g , B_{1g}, B_{2g}, B_{3g} modes was found as a result of the phase transition in the low-temperature phase that is caused by unit cell doubling. On the basis of the analysis of symmetry of phonon modes it was concluded that symmetry of the low-temperature phase is preferably monoclinic with conservation of the axis of second order along the *b* crystallographic direction, i.e., it is perpendicular to the layers. Low-energy electronic transitions are determined between levels of main multiplet ${}^{6}H_{15/2}$ of Dy³⁺ ion splitted by the crystal field with the symmetry C_2 . At low temperatures four lines (16.5, 21.0, 24.9 и 29.1 cm⁻¹ (2 K)) were observed in range of first excited Kramers doublet of Dy^{3+} ion in the KDy(MoO₄)₂ crystal in Raman spectrum instead of one line (18.3 cm⁻¹ (25 K)) above the phase transition temperature (14.5 K). This fact points on the presence of four nonequivalent ions of dysprosium in the low-temperature phase.

PACS: 71.70.Ch Crystal and ligands fields;78.30.-j Infrared and Raman spectra and scattering.

Kaywords: Raman spectroscopy, phase transition, phonon, low-energy electronic excitation.