Особенности магнитострикции металлов при электронных топологических переходах

Г.П. Микитик, Ю.В. Шарлай

Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Науки, 47, г. Харьков, 61103, Украина E-mail: mikitik@ilt.kharkov.ua

Статья поступила в редакцию 4 августа 2016, опубликована онлайн 25 ноября 2016 г.

Исследованы особенности магнитострикции металлов в условиях близости уровня химического потенциала электронов к критической энергии электронного энергетического спектра, при которой происходит электронный топологический переход 2½ или 3½ рода. Показано, что экспериментальное исследование магнитострикции может быть эффективным средством детектирования этих переходов в металлах.

Досліджено особливості магнітострикції металів в умовах близькості рівня хімічного потенціалу електронів до критичної енергії електронного енергетичного спектра, при якій відбувається електронний топологічний перехід 2½ або 3½ роду. Показано, що експериментальне дослідження магнітострикції може бути ефективним засобом детектування цих переходів в металах.

PACS: **71.30.+h** Переходы металл–изолятор и другие электронные переходы; **71.18.+y** Поверхность Ферми; расчеты и измерения, эффективная масса, *g* фактор.

Ключевые слова: электронный топологический переход, магнитострикция, линии вырождения зон, топологические полуметаллы.

1. Введение

Понятие электронного топологического перехода в металлах было введено И.М. Лифшицем более 50 лет назад [1]. Рассмотренные Лифшицем электронные топологические переходы $2\frac{1}{2}$ рода имеют место в тех точках зоны Бриллюэна кристалла, в которых закон дисперсии энергии электронов от квазиимпульса имеет минимум, максимум или седловую точку. В этих точках при достижении уровнем Ферми критического значения є появляется (исчезает) новая полость поверхности Ферми или рвется (образуется) перемычка на ней. Переходы $2\frac{1}{2}$ рода исследовались теоретически и экспериментально в большом количестве работ (см., например, [2-4] и ссылки там). При таких переходах плотность электронных состояний испытывает особенность, а вместе с ней имеют особенности и те физические величины, которые пропорциональны плотности электронных состояний или ее производной по энергии. Таким образом, измерение таких величин позволяет экспериментально обнаруживать и изучать электронные топологические переходы $2\frac{1}{2}$ рода [3,4].

Известно также [2,5], что, если в зоне Бриллюэна существует линия вырождения двух энергетических

зон, то поверхность Ферми металла может иметь самопересекающийся вид, и точки линии вырождения, в которых такая поверхность появляется или исчезает, тоже соответствуют электронным топологическим переходам. В этих точках общая энергия двух вырожденных зон достигает своего минимума или максимума. В работе [5] детально исследованы электронные топологические переходы, связанные с появлением (исчезновением) самопересекающихся изоэнергетических поверхностей. Было показано, что эти переходы являются электронными топологическими переходами 31 рода, согласно классификации Лифшица [1], и они могут быть экспериментально обнаружены и исследованы с помощью магнитной восприимчивости, которая испытывает гигантскую диамагнитную аномалию в окрестности такого перехода. Отмечено также, что эти переходы широко распространены в металлах (см., например, [6,7]). Кроме того, такие переходы должны иметь место в топологических полуметаллах с линиями узлов [8–11]. Что касается физических величин, пропорциональных плотности электронных состояний или ее производной по энергии, то они при переходах $3\frac{1}{2}$ рода проявляют особенность более слабую, чем при электронном топологическом переходе $2\frac{1}{2}$ рода.

Как известно [12], в магнитном поле кристаллы испытывают деформацию, т.е. проявляют магнитострикцию. Магнитострикция металлов изучалась в большом числе экспериментальных и теоретических работ (см., например, [13-17] и ссылки там). Однако поведение магнитострикции вблизи электронных топологических переходов в металлах не было исследовано до сих пор. В настоящей работе мы проводим такое теоретическое исследование и показываем, что магнитострикция может быть эффективным средством детектирования и экспериментального исследования электронных топологических переходов. Структура настоящей работы следующая. Во втором ее разделе мы приводим необходимые формулы для описания магнитострикции. В третьем и четвертом разделах магнитострикция исследуется в окрестностях электронных топологических переходов $2\frac{1}{2}$ и $3\frac{1}{2}$ родов соответственно. В пятом разделе мы обсуждаем полученные результаты и указываем особенности поведения магнитострикции в сильных магнитных полях в окрестности топологических переходов.

2. Магнитострикция в металлах

В разделах 2–4 мы будем рассматривать случай не слишком сильных магнитных полей, при которых расстояние между уровнями Ландау электронов в магнитном поле $\Delta \varepsilon_H$ заметно меньше температуры T или размытия распределения Ферми, вызванного рассеянием электронов на дефектах кристаллической решетки металла. Это размытие обычно описывается температурой Дингла T_D [11], поэтому далее фактически предполагается, что

$$\Delta \varepsilon_H \ll T + T_D. \tag{1}$$

При экспериментальном исследовании электронных топологических переходов это условие, как правило, выполнено в достаточно широкой области магнитных полей. Это связано с тем, что для того, чтобы приблизить уровень Ферми металла к энергии перехода ε_c , при изготовлении образца в него обычно добавляются примеси другого металла, и температура Дингла при этом становится достаточно большой. Для краткости в дальнейшем изложении под температурой мы всегда подразумеваем величину $T + T_D$.

В экспериментах магнитострикция металла определяется как относительное изменение его размера $\Delta L/L$ вдоль некоторого направления. Если известен тензор деформации u_{ik} [18] кристалла, то магнитострикция вдоль любого направления может быть найдена по u_{ik} при заданной симметрии металла [19]. Деформация u_{ik} , возникающая в кристалле при включении магнитного поля H, находится из условия, что сумма магнитного и упругого вкладов в соответствующий термодинамический потенциал должна быть минимальна. В итоге имеем [13]:

$$u_{ik} = \int_{0}^{\mathbf{H}} \frac{\partial \mathbf{M}(\mathbf{H}, \sigma_{ik})}{\partial \sigma_{ik}} d\mathbf{H}, \qquad (2)$$

где σ_{ik} — тензор напряжений, а **М** — намагниченность металла. Зависимость намагниченности от *u_{ik}* (или, эквивалентно, от σ_{ik}) связана с тем, что при деформации изменяется энергия электронов в кристалле $\epsilon(\mathbf{p})$, где \mathbf{p} — квазиимпульс электронов. Как это изменение энергии электронов, так и изменение их химического потенциала могут быть описаны с помощью деформационного потенциала [20]. Эти изменения пропорциональны и_{ік} и обычно очень малы при магнитных полях, используемых в экспериментах. Наиболее заметно при деформации кристалла изменяется малая разность $\zeta - \varepsilon_c$. Именно изменение этой разности определяет производную намагниченности в (2) в окрестности электронного топологического перехода. В связи с этим в дальнейшем считаем, что вблизи такого перехода от деформации зависит только разность $\zeta - \varepsilon_c$, а все остальные параметры электронного энергетического спектра, определяющие намагниченность, считаем независящими от деформации. В рамках такого приближения получаем

$$\frac{\partial \mathbf{M}}{\partial \sigma_{ik}} = \frac{\partial \mathbf{M}}{\partial (\zeta - \varepsilon_c)} \lambda_{ik}, \qquad (3)$$

где λ_{ik} — некоторые постоянные, выражающиеся через деформационный потенциал и модули упругости металла. Эти постоянные определяют сдвиг $\Delta(\zeta - \varepsilon_c)$ уровня Ферми относительно критической энергии при деформации, $\Delta(\zeta - \varepsilon_c) = \lambda_{ik} \sigma_{ik}$ (здесь и далее по повторяющимся индексам подразумевается суммирование). Это соотношение позволяет находить постоянные λ_{ik} , измеряя поверхность Ферми соответствующей электронной группы в деформированном металле [21].

При условии (1) намагниченность есть линейная функция магнитного поля, $M_l = \chi_{ln} H_n$, где χ_{ln} — тензор магнитной восприимчивости. Тогда формула (2) с учетом соотношения (3) может быть переписана следующим образом:

$$u_{ik} = \frac{H_l H_n}{2} \frac{\partial \chi_{ln}}{\partial \sigma_{ik}} = \frac{H^2}{2} \frac{\partial \chi_{\parallel}}{\partial \sigma_{ik}} = \frac{\lambda_{ik} H^2}{2} \frac{\partial \chi_{\parallel}}{\partial (\zeta - \varepsilon_c)}, \quad (4)$$

где χ_{\parallel} — продольная магнитная восприимчивость, определяющая намагниченность M_{\parallel} вдоль магнитного поля, $M_{\parallel} = \chi_{\parallel} H$. Используя (4), мы в следующих разделах проанализируем магнитострикцию металлов в окрестности электронных топологических переходов.

3. Магнитострикция при электронных топологических переходах 2¹/₂ рода

Особенности поведения спиновой части магнитной восприимчивости металлов в окрестности электронных топологических переходов $2\frac{1}{2}$ рода были исследованы

еще в работе Лифшица [1]. Полная магнитная восприимчивость, с учетом орбитального вклада в нее, была теоретически изучена Недорезовым [22,23]. Приведем необходимые нам результаты работ [22,23].

В окрестности точки изменения топологии изоэнергетических поверхностей закон дисперсии $\varepsilon(\mathbf{p})$ электронов всегда может быть представлен разложением:

$$\varepsilon(\mathbf{p}) \approx \varepsilon_c + \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + \frac{p_3^2}{2m_3}.$$
 (5)

В зависимости от знака эффективных масс m_i это разложение описывает либо разрыв перемычки (знаки m_i различны, коническая критическая точка), либо появление или исчезновение полости (знаки m_i одинаковы, эллипсоидальная критическая точка). Магнитная восприимчивость χ_{\parallel} для магнитного поля, направление которого определяется углами θ и ϕ в сферической системе координат разложения (5), имеет вид [22,23]:

$$\chi_{\parallel} = \frac{e^2 C(\theta, \varphi) T^{1/2}}{\hbar c^2} G\left(\frac{z}{T}\right),\tag{6}$$

где $z \equiv (\zeta - \varepsilon_c) \operatorname{sgn}(m_1 m_2 m_3)$, $\operatorname{sgn}(x)$ означает знак x, $C(\theta, \phi)$ — функция, описывающая угловую зависимость χ_{\parallel} ,

$$C(\theta, \phi) = \mp \frac{|2m_1m_2m_3|^{1/2}}{24\pi^2} \times \left(\frac{\sin^2\theta(m_1\cos^2\phi + m_2\sin^2\phi) + m_3\cos^2\theta}{m_1m_2m_3} - \frac{3}{m^2}\right), \quad (7)$$

e — заряд электрона, m — его масса, а функция G(x) определяется выражением:

$$G(x) = \int_{0}^{\infty} \frac{dt}{\sqrt{t}} \left[1 + \exp(t - x) \right]^{-1}.$$
 (8)

В (7) верхний знак выбирается в случае эллипсоидальной точки, а нижний — в случае конической точки.

Если кристаллическая симметрия металла порождает несколько эквивалентных критических точек, то с помощью (6) и простых геометрических соображений можно найти магнитную восприимчивость χ_{\parallel} всего кристалла. Для определенности далее предполагаем, что имеется только одна критическая точка. Необходимо также иметь в виду, что формула (6) дает только особый вклад в магнитную восприимчивость, который определяется электронными состояниями вблизи критической точки. Именно этот вклад зависит от температуры и химического потенциала. Все остальные электронные состояния определяют фоновый вклад в магнитную восприимчивость, который практически не зависит от температуры и химического потенциала, и который не важен при анализе магнитострикции.

Рис. 1. Функция F(x), определяемая формулой (10), при небольших значениях своего аргумента. При x >> 1 формула (10) дает: $F(x) \approx x^{-1/2}$, а при больших отрицательных x получаем: $F(x) \approx \sqrt{\pi} \exp(-|x|)$.

Подставляя (6) в формулу (4), получаем выражение, описывающее магнитострикцию металла в окрестности электронного топологического перехода $2\frac{1}{2}$ рода:

$$u_{ik} = \operatorname{sgn}(m_1 m_2 m_3) \frac{\lambda_{ik} H^2}{2} \cdot \frac{e^2 C(\theta, \phi)}{\hbar c^2 T^{1/2}} \cdot F\left(\frac{z}{T}\right), \quad (9)$$

где функция F(x) имеет вид

$$F(x) = \frac{dG}{dx} = \int_{0}^{\infty} \frac{dt}{4\sqrt{t}} \left[\cosh\left(\frac{t-x}{2}\right) \right]^{-2}.$$
 (10)

График функции F(x) представлен на рис. 1. Подчеркнем, что фактор $T^{-1/2}F(z/T)$ в (9) полностью определяет зависимости магнитострикции от температуры и химического потенциала. В частности, функция F(x)фактически описывает зависимость магнитострикции от химического потенциала в окрестности электронного топологического перехода $2\frac{1}{2}$ рода.

4. Магнитострикция при электронных топологических переходах 3¹/₂ рода

Рассмотрим точку на линии вырождения двух зон, в которой энергия этих зон достигает своего экстремума ε_c . Как было отмечено во Введении, эта точка есть точка электронного топологического перехода $3\frac{1}{2}$ рода. В окрестности такой точки зависимости энергий двух близких к вырождению зон от квазиимпульса **р** всегда могут быть представлены в виде [5]:

$$\varepsilon_{a,b}(\mathbf{p}) = \varepsilon_c + Bp_z^2 + \mathbf{v}_{\perp}\mathbf{p}_{\perp} \pm \left[b_{xx}p_x^2 + b_{yy}p_y^2\right]^{1/2}, (11)$$

где индексы «a» и «b» обозначают рассматриваемые две зоны; ось p_z направлена по касательной к линии вырож-

дения зон в точке экстремума энергии; $\mathbf{p}_{\perp} = (p_x, p_y)$; постоянные *B*, b_{xx} , b_{yy} и $\mathbf{v}_{\perp} = (v_x, v_y)$ — параметры спектра. Знак постоянной *B* — положительный, если критическое значение энергии ε_c соответствует минимуму энергии, и отрицательный для случая максимума энергии. Как указано в работах [5,24], вид самопересекающихся изоэнергетических поверхностей, а также зависимость магнитной восприимчивости от химического потенциала существенно зависят от следующей комбинации параметров:

$$\tilde{a}^{2} = \frac{v_{x}^{2}}{b_{xx}} + \frac{v_{y}^{2}}{b_{yy}}.$$
 (12)

При $\tilde{a}^2 > 1$ электронного топологического перехода нет, и магнитная восприимчивость не зависит ни от температура, ни от химического потенциала. Топологический переход $3\frac{1}{2}$ рода существует только при $\tilde{a}^2 < 1$. В этом случае компонента χ_{zz} тензора магнитной восприимчивости испытывает гигантскую диамагнитную аномалию в магнитных полях, удовлетворяющих условию (1) [24]:

$$\chi_{zz}(\zeta,T) = -\frac{e^2}{6\pi^2 \hbar c^2} \left(\frac{b_{xx}b_{yy}}{|B|}\right)^{1/2} \frac{(1-\tilde{a}^2)^{3/2}}{T^{1/2}} F\left(\frac{z}{T}\right), \quad (13)$$

где $z \equiv (\zeta - \varepsilon_c)$ sgn(*B*), а функция F(x) определяется выражением (10). Необходимо подчеркнуть, что формула (13) описывает только особый вклад в магнитную восприимчивость, связанный с близкими к вырождению электронными состояниями зон *a* и *b*. Этот вклад существенно зависит ζ . Остальные электронные состояния в зоне Бриллюэна металла дают практически постоянный фоновый вклад в χ_{zz} , и поэтому не важны при расчете магнитострикции. Что касается других компонент тензора магнитной восприимчивости, то они не содержат представляющего интерес особого вклада. Поэтому для магнитной восприимчивости вдоль магнитного поля χ_{\parallel} получаем

$$\chi_{||} = \chi_{zz} \cos^2 \theta, \qquad (14)$$

где θ — угол между направлением магнитного поля и осью *z*, т.е. касательной к линии вырождения зон в точке электронного топологического перехода $3\frac{1}{2}$ рода.

Подставляя (13) и (14) в формулу (4), получаем выражение, описывающее магнитострикцию металла в окрестности электронного топологического перехода 3¹/₂ рода:

$$u_{ik} = -\text{sgn}(B) \,\frac{\lambda_{ik} H^2}{2} \frac{e^2 C_1}{\hbar c^2 T^{3/2}} F_1\left(\frac{z}{T}\right), \qquad (15)$$

где функция $F_1(x)$ имеет вид

$$F_1(x) = \frac{dF}{dx} = \int_0^\infty \frac{dt}{4\sqrt{t}} \tanh\left(\frac{t-x}{2}\right) \left[\cosh\left(\frac{t-x}{2}\right)\right]^{-2}, (16)$$

Low Temperature Physics/Физика низких температур, 2017, т. 43, № 1

Рис. 2. Функция $F_1(x)$, определяемая формулой (16), при небольших значениях своего аргумента. При x >> 1 формула (16) дает: $F_1(x) \approx -x^{-3/2}/2$, а при больших отрицательных xполучаем: $F_1(x) \approx \sqrt{\pi} \exp(-|x|)$.

а комбинация постоянных С1 равна

$$C_{1} = \frac{1}{6\pi^{2}} \left(\frac{b_{xx} b_{yy}}{|B|} \right)^{1/2} (1 - \tilde{a}^{2})^{3/2} \cos^{2}\theta.$$
(17)

График функции $F_1(x)$ представлен на рис. 2. Множитель $T^{-3/2}F_1(z/T)$ в (9) полностью определяет зависимости магнитострикции от температуры и химического потенциала. В частности, функция $F_1(x)$ фактически описывает зависимость магнитострикции от химического потенциала в окрестности электронного топологического перехода $3\frac{1}{2}$ рода.

Как правило, кристаллическая симметрия металла порождает несколько эквивалентных критических точек. В этом случае формула (15) остается неизменной, но в выражении (17) для постоянной C_1 множитель $\cos^2 \theta$ заменится на $\sum_i \cos^2 \theta_i$, где θ_i — угол между направлением магнитного поля и направлением касательной к линии вырождения зон в *i*-й критической точке.

5. Обсуждение результатов

В разделах 2 и 3 мы рассмотрели особые вклады в магнитную восприимчивость и магнитострикцию, которые обусловлены электронными состояниями, близкими к точке электронного топологического перехода. Оценим теперь фоновые вклады в эти величины, которые связаны со всеми остальными электронными состояниями. Фоновая магнитная восприимчивость $\overline{\chi}_{\parallel}$ в металле может быть оценена как восприимчивость электронного газа с химическим потенциалом ζ [19],

$$\overline{\chi}_{||} \sim \frac{e^2 \sqrt{\zeta}}{\hbar c^2 \sqrt{m}}.$$
(18)

203

Подставляя это выражение в формулу (4), получаем оценку для фонового вклада в магнитострикцию. Эта оценка дает порядок величины магнитострикции в случае, когда химический потенциал не находится вблизи критической энергии электронного топологического перехода,

$$\overline{u}_{ik} \sim \frac{\lambda_{ik} H^2 e^2}{\hbar c^2 \sqrt{m\zeta}}.$$
(19)

Сравнивая это выражение с формулой (9), находим, что магнитострикция растет по абсолютной величине при приближении химического потенциала к критической энергии ε_c электронного топологического перехода $2\frac{1}{2}$ рода,

$$\frac{u_{ik}}{\overline{u}_{ik}} \sim \frac{\zeta^{1/2}}{\left(\zeta - \varepsilon_c\right)^{1/2}},$$

и в максимуме это отношение достигает значения порядка $(\zeta/T)^{1/2}$. Если положить $\zeta \sim 1$ эВ и $T \sim 100$ К, получаем, что магнитострикция вблизи топологического перехода может на порядок превышать ее значение вдали от него при той же величине магнитного поля. Магнитострикция вблизи электронного топологического перехода $3\frac{1}{2}$ рода превосходит свое фоновое значение еще больше. Сравнивая выражение (19) с формулой (15), находим

$$\frac{u_{ik}}{\overline{u}_{ik}} \sim \frac{mV^2 \cdot \zeta^{1/2}}{(\zeta - \varepsilon_c)^{3/2}},$$

где $V^2 \sim (b_{xx}b_{yy})^{1/2}$ — характерное значение квадрата скорости электронов в критической точке. Обычно в металлах $mV^2 \sim 1-10$ эВ, и поэтому абсолютная величина магнитострикции могла бы быть очень большой вблизи точки электронного топологического перехода $3\frac{1}{2}$ рода. Однако формулы, полученные в разд. 2 и 3, справедливы при условии (1), а в окрестности точки электронного топологического перехода $3\frac{1}{2}$ рода это условие начинает нарушаться уже при сравнительно небольших магнитных полях, так что множитель H^2 в (15) ограничен сверху. Это связано с тем, что в окрестности такого перехода расстояние между уровнями Ландау $\Delta \varepsilon_H$ оценивается как [25] $\Delta \varepsilon_H \sim (e\hbar HV^2/c)^{1/2}$, и, следовательно, формула (15) пригодна при $H \lesssim H_T$, где

$$H_T = \frac{cT^2}{e\hbar V^2} \approx 0.64 \frac{T^2}{mV^2}.$$
 (20)

В последней части формулы (20) температура измеряется в градусах, mV^2 в электрон-вольтах, а магнитное поле в эрстедах. Если $mV^2 \sim 1-10$ эВ и $T \sim 100$ К, получаем, что $H_T \sim 640-6400$ Э. С другой стороны, для случая электронного топологического перехода $2\frac{1}{2}$ рода имеем оценку [22,23]: $\Delta \varepsilon_H \sim e\hbar H/mc$, и соответствующее поле H_T в mV^2/T раз больше, чем в (20).

Таким образом, в этом случае за счет большей допустимой величины магнитного поля можно добиться большей абсолютной величины магнитострикции, не нарушая ограничения (1). Однако наиболее важно, что вблизи электронных топологических переходов $2\frac{1}{2}$ и $3\frac{1}{2}$ родов магнитострикция металлов существенно возрастает по отношению к ее фоновому значению и проявляет немонотонные зависимости от химического потенциала, которые показаны на рис. 1 и 2. Это свойство магнитострикции может быть использовано для экспериментального обнаружения и исследования электронных топологических переходов.

Если магнитное поле H становится больше H_T и $|\zeta - \varepsilon_c| >> \Delta \varepsilon_H$, появляются осцилляции магнитострикции при изменении H [12]. Однако для случая электронного топологического перехода $3\frac{1}{2}$ рода фаза этих осцилляции будет отличаться на π от обычно наблюдаемой фазы [26]. Это связано с тем, что в этом случае электронные орбиты охватывают линию вырождения зон, и так называемая фаза Берри для таких орбит отлична от нуля [27]. В результате правило квазиклассического квантования энергии электрона в магнитном поле изменяется [27,28], и это приводит к сдвигу фазы осцилляций.

В достаточно сильных магнитных полях, когда под уровнем Ферми находится лишь несколько уровней Ландау ($|\zeta - \varepsilon_c| \gtrsim \Delta \varepsilon_H$), становится возможным наблюдать еще один эффект, предсказанный в [17]. В таких полях осцилляции магнитострикции могут сопровождаться фазовыми переходами первого рода при пересечении уровня Ферми очередным уровнем Ландау. При этих переходах магнитострикция испытывает небольшой скачок. Наблюдать этот эффект наиболее удобно в окрестности электронного топологического перехода $3\frac{1}{2}$ рода, поскольку в этом случае поля $H > H_T$ легко достижимы в экспериментах. Более того, если вследствие симметрии кристалла имеется несколько эквивалентных групп носителей заряда, сосредоточенных вблизи эквивалентных критических точек, и магнитное поле направлено так, что оно не нарушает эту симметрию, упомянутые фазовые переходы могут приводить к спонтанному нарушению симметрии кристалла [17].

- 1. И.М. Лифшиц, ЖЭТФ **38**, 1569 (1960).
- И.М. Лифшиц, М.Я. Азбель, М.И. Каганов, Электронная теория металлов, Наука, Москва (1971).
- A.A. Varlamov, V.S. Egorov, and A.V. Pantsulaya, *Adv. Phys.* 38, 469 (1989).
- Ya.M. Blanter, M.I. Kaganov, A.V. Pantsulaya, and A.A. Varlamov, *Phys. Rep.* 245, 159 (1994).
- G.P. Mikitik and Yu.V. Sharlai, *Phys. Rev. B* 90, 155122 (2014).
- Г.П. Микитик, Ю.В. Шарлай, ФНТ 41, 1276 (2015) [Low Temp. Phys. 41, 996 (2015)].

- G.P. Mikitik and Yu.V. Sharlai, J. Low Temp. Phys. 185, 686 (2016).
- 8. T.T. Heikkilä and G.E. Volovik, JETP Lett. 93, 63 (2011).
- L.S. Xie, L.M. Schoop, E.M. Seibel, Q.D. Gibson, W. Xie, and R.J. Cava, *APL Mater.* 3, 083602 (2015).
- Y. Kim, B.J. Wieder, C.L. Kane, and A.M. Rappe, *Phys. Rev. Lett.* **115**, 036806 (2015).
- 11. R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, *Phys. Rev. Lett.* **115**, 036807 (2015).
- 12. D. Shoenberg, *Magnetic Oscillations in Metals*, Cambridge University Press, Cambridge, England (1984).
- 13. P. Kapitza, Proc. R. Soc. London, Ser. A 135, 537 (1932).
- B.S. Chandrasekhar and E. Fawcett, *Adv. Phys.* 20, N88, 775 (1971)
- P.B. Littlewood, B. Mihaila, and R.C. Albers, *Phys. Rev. B* 81, 144421 (2010).
- R. Kuchler, L. Steinke, R. Daou, M. Brando, K. Behnia, and F. Steglich, *Nature Materials* 13, 461 (2014).
- 17. G.P. Mikitik and Yu.V. Sharlai, *Phys. Rev. B* **91**, 075111 (2015).
- Л.Д. Ландау, Е.М. Лифшиц, *Теория упрогости*, Наука, Москва (1987).
- P.G. Averbuch and P.J. Ségransan, *Phys. Rev. B* 4, 2067 (1971).
- А.А. Абрикосов, Основы теории металлов, Наука, Москва (1987)
- E. Fawcett, R. Griessen, W. Joss, M.J.G. Lee, and J.M. Perz, in: *Electrons at the Fermi Surface*, M. Springford (ed.), Cambridge University Press, Cambridge (1980), p. 278.
- C.C. Hegopesob, ΦΗΤ 2, 1047 (1976) [Sov. J. Low Temp. Phys. 2, 515 (1976)].

- C.C. Hegopesob, ΦΗΤ 4, 198 (1978) [Sov. J. Low Temp. Phys. 4, 97 (1978)].
- 24. Г.П. Микитик, И.В. Свечкарев, *ФНТ* **15**, 295 (1989) [*Sov. J. Low Temp. Phys.* **15**, 165 (1989)].
- Γ.П. Микитик, Ю.В. Шарлай, ФНТ 22, 762 (1996) [Low Temp. Phys. 22, 585 (1996)].
- Γ.П. Микитик, Ю.В. Шарлай, *ΦΗТ* 33, 586 (2007) [Low Temp. Phys. 33, 439 (2007)].
- G.P. Mikitik and Yu.V. Sharlai, *Phys. Rev. Lett.* 82, 2147 (1999).
- 28. Г.П. Микитик, Ю.В. Шарлай, ЖЭТФ 114, 1375 (1998).

Specific features of magnetostriction at electron topological transitions in metals

G.P. Mikitik and Yu.V. Sharlai

Specific features of magnetostriction in metals are theoretically studied in the case when the chemical potential of electrons is close to a critical energy of the electron energy spectrum at which the electron topological transition of $2\frac{1}{2}$ or $3\frac{1}{2}$ kind occurs. It is shown that an experimental investigation of the magnetostriction can be an effective tool in detecting these transitions in metals.

PACS: 71.30.+h Metal-insulator transitions and other electronic transitions
71.18.+y Fermi surface: calculations and measurements; effective mass, g factor

Keywords: electron topological transition, magnetostriction, band-contact lines, topological semimetals.