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We present magnetoresistance studies of the quasi-two-dimensional organic conductor κ-(BETS)2Mn[N(CN)2]3, 
where BETS stands for bis(ethylenedithio)tetraselenafulvalene. Under a moderate pressure of 1.4 kbar, required for 
stabilizing the metallic ground state, Shubnikov–de Haas oscillations, associated with a classical and a magnetic-
breakdown cyclotron orbits on the cylindrical Fermi surface, have been found at fields above 10 T. The effective 
cyclotron masses evaluated from the temperature dependence of the oscillation amplitudes reveal strong renormali-
zation due to many-body interactions. The analysis of the relative strength of the oscillations corresponding to the 
different orbits and of its dependence on magnetic field suggests an enhanced role of electron-electron interactions 
on flat parts of the Fermi surface. 

PACS: 72.15.Gd Galvanomagnetic and other magnetotransport effects; 
74.70.Kn Organic superconductors; 
71.18.+y Fermi surface: calculations and measurements; effective mass, g-factor. 

Keywords: Shubnikov–de Haas effect, organic superconductors, Fermi surface, correlated electronic systems. 

1. Introduction

Since the Lifshitz–Kosevich theory [1] provided a basis 
for universal quantitative description of magnetic quantum 
oscillations, these effects became one of most popular ex-
perimental means of studying the Fermi surface properties 
of metals [2,3]. Besides traditional metals, quantum oscil-
lations of magnetoresitance (Shubnikov–de Haas, SdH 
effect) and magnetization (de Haas–van Alphen effect) 
have recently proved extremely useful in exploring more 
complex topical materials such as cuprate [4,5] and iron-
based superconductors [6–8], topological insulators [9–11], 
heavy fermion compounds [12–14], and organic charge-
transfer salts [15–17]. Here we report on an experimental 
study of the high-field interlayer magnetoresistance of the 

layered conductor κ-(BETS)2Mn[N(CN)2]3, demonstrating 
the power of the SdH effect in exploring Fermi surface 
properties of a quasi-two-dimensional correlated electronic 
system. 

The present compound belongs to the family of 
bifunctional organic charge-transfer salts, in which conduct-
ing and magnetic properties are formed by different electron-
ic subsystems spatially separated on a subnanometer level. 
The electrical conductivity is provided by delocalized π  
electrons of fractionally charged BETS donors arranged in 
two-dimensional (2D) sheets, whereas magnetic properties 
are dominated by localized d-electron spins of Mn2+ in the
insulating anionic layers [18]. In addition to the interesting, 
still not understood crosstalk between the two subsystems 
[19–21], the narrow, half-filled conduction band is a likely 
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candidate for a Mott instability [22]. The material undergoes 
a metal–insulator transition at 21≈  K [18,22]. The insulating 
ground state is very sensitive to pressure: under a quasi-
hydrostatic pressure of about 1 kbar it is completely sup-
pressed, giving way to a metallic and even a superconducting 
state with 5cT ≈  K [22]. A thorough knowledge of the Fer-
mi surface and other basic properties of the normal-state 
charge carriers is certainly mandatory for understanding the 
interplay between the various instabilities of the normal me-
tallic state. To this end we have carried out high-field 
magnetoresistance studies of κ-(BETS)2Mn[N(CN)2]3 under 
pressure p = 1.4 kbar. This pressure drives the system in the 
metallic part of the phase diagram, however, not far away 
from the insulating domain. We have found SdH oscillations 
with two fundamental frequencies, indicating a Fermi surface 
consistent with the predictions of the band structure calcula-
tions [22]. Our analysis of the oscillation behavior suggests 
strong electron correlations which are considerably depend-
ent on the inplane wave vector. 

2. Experimental 

Single crystals of κ-(BETS)2Mn[N(CN)2]3 were grown 
electrochemically, as described elsewhere [18] and had a 
shape of small plates with characteristic dimensions of 

0.5 0.3 0.02× ×  mm. The largest surface of the plate was 
parallel to the highly conducting BETS molecular layers, 
which is defined as the crystallographic bc-plane. 

Resistive measurements were done with a standard four-
probe ac technique using a low-frequency (f ∼ 20 Hz) lock-
in amplifier. Two contacts were attached to each of two op-
posite sample surfaces with conducting graphite paste in 
order to measure the interlayer resistance. The magneto-
resistance measurements were done in the temperature range 
0.35–1.4 K in magnetic fields of up to 29 T generated by the 
24 MW resistive magnet at the LNCMI-Grenoble. A quasi-
hydrostatic pressure of 1.4 kbar was applied using the Cu-Be 
clamp cell with silicon oil as a pressure medium and with a 
manganin coil for pressure control. The samples were 
aligned with the normal to conducting layers (a-axis) being 
parallel to the magnetic field. 

3. Results and discussion 

Figure 1 shows the low-temperature interlayer re-
sistance of a pressurized κ-(BETS)2Mn[N(CN)2]3 crystal 
measured in a magnetic field perpendicular to the layers. 
On the background of a monotonic, almost linear magneto-
resistance one can see prominent SdH oscillations. The fast 
Fourier transform (FFT) of the oscillatory signal is pre-
sented in Fig. 2 for two field windows, 12 to 15 T and 23 
to 29 T. In both spectra the dominant frequency is =Fβ

(4223 8)= ±  T. In addition, a smaller peak is observed at 
= (1126 8)Fα ±  T and, in the higher-field spectrum, at 

2 8460Fβ ≈  T, which is the second harmonic of Fβ . The 
contribution from the α  frequency is stronger at relatively 
low fields, < 20  T and can be seen by bare eye, for exam-

ple, in the inset in Fig. 1. At increasing the field its relative 
contribution decreases; however, it is still present in the 
high-field FFT spectrum in Fig. 2. 

The β frequency reveals a cyclotron orbit area in k-space 
equal to the first Brillouin zone (BZ) area. This result is in 
full agreement with the band structure calculations [22], pre-
dicting a 2D Fermi surface as shown in the upper left inset in 
Fig. 2. The corresponding cyclotron orbit in the extended 
zone scheme is shown in the upper right corner in Fig. 2. 

Due to the inversion symmetry of the molecular layer, 
the band dispersion was predicted to be degenerate at the 
Fermi level on the line Z–M of the BZ boundary [22]. In 
that case only one fundamental SdH frequency Fβ  would 
be expected. However, we clearly observe the frequency 
Fα  corresponding to an orbit occupying 27%  of the BZ 
area. This is exactly the size of the α  orbit centered at 
point Z of the BZ boundary, see Fig. 2. Therefore, we 
conclude that the band degeneracy is lifted, most likely 
due to a finite spin-orbit interaction [23]. The resulting 
Fermi surface should consist of a closed part α  and a 
pair of open sheets extended along ck  (parallel to Γ–Z 
line in Fig. 2). The large orbit β  is then a consequence of 
magnetic breakdown (MB) through the small gap be-
tween the different parts of the Fermi surface. Similar 
evidence of the MB effect were found on several well 
known κ-(BEDT-TTF)2X salts [24–27]. 

The SdH spectrum in Fig. 2 differs from that reported 
earlier for this compound at similar pressures [22]. In the 

Fig. 1. (Color online) Interlayer resistance of a 
( ) ( )2 2 3BETS Mn[N CN ]−κ  crystal as a function of magnetic field 

perpendicular to the layers, at T = 0.4 K. Inset: close-up view of the 
oscillatory component of the field-dependent resistance normalized 
to the monotonic background: ∆Rosc/Rbg = R(B)/Rbg(B) – 1. The 
background Rbg(B) was determined by a low-order polynomial fit 
to the as-measured resistance R(B). 
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earlier experiment no Fα  and Fβ  but, instead, very slow 
oscillations with the frequency = 88Fγ  T were found. 
While the absence of the α  and β  oscillations can easily be 
attributed to the higher temperatures and lower fields used in 
Ref. 22, the absence of the slow oscillations in the present 
experiment is most likely caused by a different pressurizing 
procedure. In the previous work the samples were cooled at 
ambient pressure and then a pressure of 1  kbar was ap-
plied at temperatures below 20 K, using the He-gas pressure 
technique. During the ambient pressure cooling, a super-
structure transition was detected at = 102T  K [22]. This 
transition was proposed to give rise to small Fermi pockets 
responsible for the slow oscillations. By contrast, in the pre-
sent work we apply pressure already at room temperature, 
using the clamp cell technique. The pressure probably pre-
vents the formation of superstructure and the associated re-
construction of the Fermi surface. Indeed, the characteristic 
transition feature found in the ambient-pressure ( )R T  cool-
ing curves has not been detected under pressure. 

We now turn to quantitative analysis of the oscillations. 
Generally speaking, the quasi-2D character of the electronic 
system may lead to strong violations of the standard 
Lifshitz–Kosevich (LK) theory, see, e.g., Refs. 16,17,28–31. 
However, if we compare the present oscillations with those 
observed on some other highly 2D, clean organic metals 
[32–35], their amplitude is relatively weak and the harmonic 
content is low. As will be shown below, the oscillations ex-
hibit the conventional exponential temperature and field 
dependence. Therefore, in the following we apply the con-
ventional LK formalism described in detail in Ref. 3. This 
approach has been proved to give reasonable results for oth-

er similarly anisotropic organic metals at not too high mag-
netic fields [15,16,36,37]. 

We consider the relative amplitudes of the oscillations 
in the form [38]: 

 0, , , ,= ,j j T j D j MB jA A R R R  (1) 

where the subscript = ,j α β  labels the relevant orbit on 
the Fermi surface, osc, bg,= /j j jA ∆σ σ  is the amplitude of 
the oscillations in conductivity normalized to the respec-
tive nonoscillating background, ,0jA  is the field- and tem-
perature-independent prefactor and TR , DR , and MBR  are 
the damping factors caused, respectively, by finite temper-
ature, scattering, and MB effects. 

The temperature dependence of the SdH amplitude can 
be fitted by the LK temperature damping factor [1]: 

 /= ,
sinh( / )T

K T BR
K T B
µ

µ
 (2) 

where K = 14.69 T/K and = /c em mµ  is the effective cy-
clotron mass in units of the free electron mass em . For a 
large argument of the sinh-function in Eq. (2) the loga-
rithmic plot of the ratio / ( )jA T T , known as the LK plot, 
should be a straight line with a slope proportional to jµ . 
This is, indeed, true for both the α  and β  oscillations, as 
demonstrated in Fig. 3. Fitting the slopes yields the cyclo-
tron masses = 5.55 0.05αµ ±  and = 6.90 0.05.βµ ±  

The obtained values can be compared to the band masses 
estimated within a noninteracting electron model. To this 
end, we have carried out tight-binding band structure calcu-
lations based on the organic donor HOMOs (highest occu-
pied molecular orbitals) obtained by the extended Hückel 
method [39]. To estimate the energy dependence of the 
Fermi surface area and thus the cyclotron mass, the calcu-
lations were done for different band fillings near the 

Fig. 2. (Color online) FFT spectrum of the SdH oscillations at 
T = 0.4 K taken in the field windows 12–15 T (lower curve) and 
23–29 T (upper curve). Two peaks at the fundamental frequen-
cies Fα and Fβ correspond, respectively, to the classical (α) and 
MB (β) orbits on the 2D Fermi surface [22] shown as insets. 

Fig. 3. LK plot of the oscillation amplitudes Aα (circles) and Aβ 
(squares). The amplitudes were determined by FFT in the field 
window 14 to 17 T. The lines are fits by Eq. (2) with normalized 
cyclotron mass values of 5.53 and 6.88 for the α and β oscilla-
tions, respectively. 
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Fermi level with a step of 0.001 electron per BETS do-
nor. The resulting values are 0 1.1αµ   and 0 1.7.βµ   
Although these estimations are rather rough, they demon-
strate that the real cyclotron masses are considerably en-
hanced, most likely due the many-body effects. The sig-
nificance of electronic correlations would not be very 
surprising, since κ-(BETS)2Mn[N(CN)2]3 is proposed to 
be a Mott insulator at ambient pressure [22] and at the 
given pressure, p = 1.4 kbar, the compound is still quite 
close to the metal-insulator boundary. It should be noted 
that the present mass values, especially αµ , are even higher 
than those reported for the similar κ-(BEDT-TTF)2X salts 
[24,27, 40–42], which are also known for a strong Mott in-
stability [37,43]. 

While the temperature dependence of the oscillation 
amplitude is solely determined by the temperature damping 
factor TR , the field dependence is contributed by all three 
damping factors on the right-hand side of Eq. (1). The 
Dingle factor taking into account the Landau level broad-
ening Γ  has the form [44,45]: 

 ( ) ( )= exp 2 / = exp / ,D c DR K T B− πΓ ω − µ  (3) 

where = /c ceB mω  is the cyclotron frequency and 
= /D BT kΓ π  is the Dingle temperature. The Dingle tem-

perature is often associated with the scattering rate 1/τ  [3]: 
= 2 / .D BT kπ τ  Finally, the MB factors for the α  and β  

oscillations are determined, respectively, by the probability 
amplitudes of Bragg reflection or tunneling at the MB 
junctions [3,46] and can be expressed as 

 ( ), 0= 1 exp /MBR B Bα  − −   (4) 

and 

 ( ), 0= exp 2 / ,MBR B Bβ −  (5) 

where 0B  is the characteristic MB field. 
Equations (1)–(5) can be used for analyzing the field de-

pendence of the oscillation amplitudes. Figure 4 shows the 
amplitudes of both oscillatory components plotted against 
inverse magnetic field. The data points are obtained from 
FFT spectra taken in 3 T-wide field windows. The height of 
the Fα  peak becomes comparable with the FFT background 
noise level above 20 T; therefore, for this frequency only the 
data in the field range 12.8 to 20 T is presented. 

One readily sees from Eqs. (3) and (5) that MB,R β  has 
the same functional dependence on B  as the Dingle factor. 
Therefore, the Dingle temperature and MB field cannot be 
separately determined from the field dependence of the β  
oscillations, which dominate our SdH spectrum. On the 
other hand, the B-dependence of ,MBR α  is rather weak as 
compared to the exponential behavior of ,TR α  and , .DR α  
This limits the accuracy of our analysis. Nevertheless, we 
will show that it enables us to draw some important quali-
tative conclusions. 

For fitting we first assume that scattering is momentum-
independent and, thus, the Dingle temperature is the same 
for both orbits. In this case, substituting the cyclotron 
masses determined above and performing an iterative fit of 
both ( )A Bα  and ( ),A Bβ  we obtain = 0.35DT  K and 

0 26B ≈  T. Taking into account that, despite the heavier 
mass, the β  oscillations strongly dominate the SdH spec-
trum even at B ∼ 12–15 T, the obtained MB field seems to 
be much too high. Indeed, in order to match the observed 
relation between the amplitudes, we have to assume an 
unreasonably large ratio of the prefactors in Eq. (1): 

0, 0,/ = 670.A Aβ α  Since the α  orbit constitutes approxi-
mately one half of the β  orbit (see inset in Fig. 2), one 
would expect this ratio to be ∼ 2. Of course, the ratio 

0, 0,/ ,A Aβ α  being determined by the inplane momentum 
dependence of the Fermi surface parameters, needs not be 
exactly 2. Nevertheless, a modification by more than two 
orders of magnitude looks highly unlikely. 

A key to resolving the apparent controversy is in a 
proper consideration of the influence of many body inter-
actions. If the latter depend on the inplane momentum, the 
above assumption of a common Dingle temperature for 
both orbits is no longer valid. Although the rigorous analy-
sis is very difficult, fortunately, the consideration may be 
strongly simplified by taking into account compensation of 
the renormalization effects on the cyclotron mass and Din-

Fig. 4. Amplitude of the α oscillations as a function of inverse 
magnetic field (a); the same for the β oscillations (b). Both ampli-
tudes are measured in the same units. The lines are fits by Eqs. 
(1)–(5), see text. 
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gle temperature. For electron-phonon interactions such 
compensation was observed long ago on Hg [47]: the Din-
gle factor DR  was found to be independent of temperature 
despite a considerable T-dependence of the electron-
phonon scattering (see also Ref. 3 for a review). It has been 
shown theoretically [48–50] that in a large field and tem-
perature range the product DTµ  can be approximated by 
the product of the bare cyclotron mass 0µ  and Dingle 
temperature 0DT  in the absence of electron-phonon scat-
tering. While the case of electron-electron interactions is 
less studied in this respect, Martin et al. [51] have pro-
posed that the same compensation should hold for any ine-
lastic processes, including the electron-electron scattering. 

Turning to our compound, we note that the α  pocket of 
the Fermi surface contains extended flat segments (see 
inset in Fig. 2) and hence has a pronounced nesting proper-
ty. One can expect that electron correlations are particular-
ly enhanced at the nesting wave vector. This is probably 
the reason for the unusually high effective cyclotron mass 
ratio / = 0.8α βµ µ  as compared to the value 0.5≈  typical 
of other κ-type organic conductors [52]. Indeed, the other 
salts do not have such flat segments and the interactions 
are believed to be momentum independent [52]. We, there-
fore, redo the analysis of the oscillations amplitudes in Fig. 
4, substituting the bare cyclotron masses 0 = 1.7βµ  and 

0 0= /2 = 0.85α βµ µ  in the Dingle factor [53]. With an 
additional condition that the prefactor ratio 0, 0,/ = 2A Aβ α , 
the fit yields a reasonably small value of the MB field, 

0 = 70B  mT and only slightly different Dingle tempera-
ture values, 3.1 K and 3.5 K for the α  and β  oscillations, 
respectively. Of course, the present analysis is far from 
being precise. An improvement can be achieved when 
more reliable band mass estimations based on advanced, 
first-principle band structure calculations are available. 
Further theoretical and experimental studies are required 
for evaluation of the Fermi surface properties entering the 
prefactors 0, jA  in Eq. (1) for the oscillation amplitude. 
Nevertheless, already now we can conclude that the beha-
viour of the SdH oscillations clearly reveals the importance 
of electron correlations in the present organic conductor. 
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