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The charge transport in a dirty 2-dimensional electron system biased in the presence of a lateral potential bar-
rier under magnetic field is theoretically studied. The quantum tunnelling across the barrier provides the quan-
tum interference of the edge states localized on its both sides that results in giant oscillations of the charge cur-
rent flowing perpendicular to the lateral junction. Our theoretical analysis is in a good agreement with 
the experimental observations presented in W. Kang et al., Lett. Nature 403, 59 (2000). In particular, positions of 
the conductance maxima coincide with the Landau levels while the conductance itself is essentially suppressed 
even at the energies at which the resonant tunnelling occurs and hence these puzzling observations can be re-
solved without taking into account the electron-electron interaction. 

PACS: 75.47.–m Magnetotransport phenomena; materials for magnetotransport; 
03.65.Ge Solutions of wave equations: bound states; 
05.60.Gg Quantum transport; 
75.45.+j Macroscopic quantum phenomena in magnetic systems. 
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1. Introduction 

Investigations of low dimensional electronic structures 
have opened new fields in condense matter physics such as 
Berezinskii–Kosterlitz–Thouless phase transition [2,3], the 
quantum Hall effect [4], the macroscopic quantum tunnel-
ling [5], the conductance quantization in QPCs [4,6,7], to 
name a few. 

Energy gaps in electronic spectra in semiconductors and 
insulators play a crucial role in their kinetic and optic pro-
perties, and one of the fascinating features of low-dimen-
sional structures is a possibility to get energy gaps in elec-
tronic spectra which are gapless in the three dimensional 
case. One such example is a two dimensional electron gas 
(2DEG) with a lateral barrier under an external magnetic 
field. In this case the spectrum of electrons skipping along 
the barrier is an alternating series of extremely narrow 
bands and gaps [1,8,9], the widths of which being Hω   
for the barrier transparency ~ 1D . Such a drastic change of 
the spectrum is due to the quantum interference of the edge 
states located on the opposite sides of the barrier, the spec-
tra of the latter being gapless in the absence of the tunnel-

ling. Such a spectra of alternating narrow bands and gaps 
arises if the quantum interference of the electron wave 
functions with semiclassically large phases takes place. The 
most prominent and seminal phenomenon of this type is the 
magnetic breakdown phenomenon [10–13], in which large 
semiclassical orbits of electrons under magnetic field are 
coupled by quantum tunnelling through very small areas in 
the momentum space. Other systems with analogous quan-
tum interference are those with multichannel reflection of 
electrons from sample boundaries [14,15], samples with 
grain [16] or twin boundaries [17]. Common to all these 
systems are analogous dispersion equations which are sums 
of 2π periodic trigonometric functions of semiclassically 
large phases of the interfering wave functions. 

Dynamics and kinetics of electrons in 2DEG in the pre-
sence of a lateral barrier under magnetic field H  was ex-
perimentally and theoretically investigated in the situation 
that the current flows along [8,9] and perpendicular [1,18] 
to the barrier in ballistic samples. In all these cases giant 
conductance oscillations have been shown to arise. In pa-
per [8] a ballistic sample with a lateral barrier in the quan-
tum Hall regime was considered. It has been analytically 
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shown that the lateral junction placed perpendicular to the 
current serves as a unique quantum-mechanical scatter for 
propagating magnetic edge states, and that this quantum 
“anti-resonant” scatter provides an essential increase of the 
transverse conductance as soon as the Fermi energy is in-
side one of the energy gaps in the spectrum of electrons 
skipping along the junction. 

The object of the present paper is to investigate trans-
port properties of a dirty biased 2DEG with a lateral barri-
er under semiclassical magnetic field, the barrier being 
placed perpendicular to the current. In contrast to the bal-
listic situation considered in paper [19] the contribution of 
the conventional edge states to the conductance is neglected 
assuming the following inequalities being satisfied: 1;Hω τ >>  

0 ( )y HL l>> ω τ  where = /H eH mcω  and 0 = Fl τv  are the 
cyclotron frequency and the electron free path length, re-
spectively, while τ is the free path time and Fv  is the Fermi 
velocity. It is shown that the above-mentioned bands and 
gaps manifest themselves by giant oscillations of the trans-
verse conductance with a change of the magnetic field of the 
gate voltage. Detailed analysis of the phases of the tunnel-
ling matrix and the gap positions shows that the conductance 
peaks coincide with Landau levels in agreement with obser-
vations presented in paper [8]. 

2. Formulation and solution of the problem 

Let us consider a 2D dimensional electron system in 
the presence of a lateral barrier subject to an external mag-
netic field H applied perpendicular to its plane as is shown 
in Fig. 1. 

In this paper electron dynamics and kinetics are consid-
ered in the semiclassical approximation that is H Fω << ε  
where = /H eH mcω  is the cyclotron frequency and Fε  is 
the Fermi energy. It is also assumed that the electron free 
path length 0 Hl R>>  where = /H FR cp eH  is the Larmor 
radius and Fp  is the Fermi momentum; the width of the 
sample 2

0 /y HL l R>>  and hence the contribution of the 
conventional edge states (which are localized at the exter-
nal boundaries) to the sample conductance is negligible. 
The x-axis is parallel to the current flowing along the bi-
ased sample while the y -axis is along the lateral barrier. 

2.1. Dynamics of quasi-particles skipping along the lateral 
junction under magnetic field 

As is seen in Fig. 1 electrons are in three qualitatively 
different states: a) there are electrons in the Landau states 
moving along closed orbits, b) those in the conventional 
edge states skipping along the external boundaries of the 
sample, and c) electrons in peculiar field-dependent quasi-
particle states highly localized around the lateral barrier. 
The quantum interference between the left and right edge 
states results in peculiar one-dimensional spectrum. 

As shown in Appendix A, at low transparency of the 
barrier 2= | | 1D t <<  the dispersion equation which deter-
mines the energy ( )n yE P  of quasi-particles skipping along 
the barrier is  

 ( )
2

1 2
| |cos ( , ) cos ( , ) = cos ( , )

4y y y
tE P E P E P−θ θ θ  (1) 

where 1,2 1,2= /4θ θ − π  and 1 2=±θ θ ± θ  while yP  is the 
conserving projection of the generalized electron momen-
tum on the direction of the lateral barrier while  

 2 2
1 = ;

Py

E y y
pE

c p p dp
eH

−

θ −∫


  

 2 2
2 = .

pE

E y y
Py

c p p dp
eH

θ −∫


 (2) 

Here = 2Ep mE . As one easily sees ( )E+θ  does not de-
pend on yP . 

One sees from Eq. (1) that at = 0t  there are a large 
number of crossing points of the spectra of the left and 
right independent edge states. At final barrier transparency 
the degeneracy is lifted that opens gaps | |t∆ ω   in the 
quasi-particle spectrum (see Fig. 2). 

As follows from Eq. (1) degeneration takes place at 
| | = 0t  if two equations are satisfied:  

 1 2cos ( , ) = cos ( , ) = 0y yE P E Pθ θ  (3) 

Hence positions of the degeneration points in the ( , )yE P  

plane are determined by the conditions: 1( ) = (2 1)
2

E kπ
θ +  

and 2 ( ) = (2 1)
2

E lπ
θ +  where ,k l  are integer. Summing and 

subtracting them with the use of Eq. (2) one gets  

 
1= / = ;
2

( , ) = (2 1);

n H

n y

E n

E P k n

+

−

  θ ω π +  
 

θ π − +



 (4) 

where 2 1= ( , ) ( ,y yE P E P±θ θ ± θ  and , = 0, 1, ...n k . 
Therefore, the degeneration points are in line with dis-

crete Landau levels nE  being situated in discrete points Fig. 1. Schematic presentation of the sample. 
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=y kP P  inside the each Landau level n and hence their 
positions may be uniquely classified with two discrete in-
dexes as ( )= n

y kP P . 
One easily sees that the distances between neighboring 

points are  

 ( ) ( ) ( )
1=| |n n n

Fk k k
H

P P P p
R±δ − <<


 . (5) 

Therefore, if ( )( , )n
nkQ P E  is a slow varying function of 

the momentum on the / HR  scale one may changes the 
summation with respect to k  to the integration as follows:  

 ( )( , ) =n
n k

k
Q E P∑   

 2( , ) 2n y n y y
c Q E P mE P dP

e H
= − −

π ∫


. (6) 

Summing up, the spectrum of electrons skipping along 
the junction is an alternating sequence of narrow energy 

bands ( )n yE P  (the widths of which are 21 | | Ht− ω  ) 

and energy gaps | |n Ht∆ ω   (see Ref. 7–9), the latter 
lining discrete Landau levels (n is the Landau number). 

2.2. Current flowing along dirty sample and perpendicular 
to lateral junction under magnetic field 

As in the case of the magnetic breakdown phenomenon, 
dynamic and kinetic properties of quasi-particles skipping 
along the junction under magnetic field are of the funda-

mentally quantum mechanical nature due to the quantum 
interference of their wave functions with semiclassically 
large phases. Thus, in order to analyze the transport prop-
erties of the quasi-particles in the presence of impurities it 
is convenient to start with the equation for the density ma-
trix ρ̂ in the τ-approximation:  

 0
ˆˆ ( )ˆˆ ˆ ˆ[ , ] = [ , ( )].

f Hi ieH V x
ρ−

ρ + − ρ
τ 

 (7) 

Here, Ĥ  is the Hamiltonian of the system under considera-
tion in the absence of the bias voltage ( )V x , 0f  is the Fer-
mi distribution function, τ is the electron scattering time. 

In this paper we assume that the barrier transparency 
2| | 1t <<  is so low that the main drop of the voltage applied 

to the sample takes place on the lateral barrier, that is it 
may be written as  

 0( ) = ( )V x V xΘ −  (8) 

where 0V  is the voltage drop on the barrier and Θ is the 
unit step function. 

Writing the density matrix in the form (1)
0

ˆˆ ˆ= ( )f Hρ +ρ  
and linearizing Eq. (7) with respect to the bias potential 
one gets  

 (1) (1)
0

ˆ ˆˆ ˆ ˆ[ , ] = [ ( ), ( )].iH e f H V xρ − ρ −
τ
  (9) 

In terms of the density matrix the current density at 
a point 0r  is written as follows:  

 { }ˆ= 2 Tre ρJ v  (10) 

where v is the operator of the quasi-particle velocity. 
Taking matrix elements of Eq. (9) with respect to the 

proper functions of the Hamiltonian Ĥ  written in the Dirac 
notations  

 ˆ , = ( ) , ;y n y yH n P E P n P  (11) 

one finds the density matrix. Inserting the found solution in 
Eq. (10) one obtains the current J  flowing perpendicular to 
the barrier as follows:  

 
( )

, ,2
0 2

( ) ( )
= 2

2 [ ( ) ( )]

x
n n y yy y n n

x n n n y n y

V P PL dP
J i e

L E P E P

′ ′

′ ′≠
− ν ×

π −
∑ ∫



v
  

 0 0[ ( ( )) ( ( ))];n y n yf E P f E P′× −  (12) 

where ,
ˆO ( ) = < , | O | , >n n y y yP n P n P′ ′  and 0 = 1/ν τ  is the 

electron-impurity relaxation frequency. The equation is 
written under assumption that 0 | | Htν << ω . Matrix ele-
ments of the applied voltage and the velocity operator are 
presented in Appendix B (see Eqs. (B.2), (B.3)). 

Such a peculiar dynamics as is described in Subsection 2.1 
manifests itself in the resonant properties of the matrix ele-
ments in Eq. (12) that is especially pronounced at | | 1t << . 
Consider, e.g., ,n nV ′, Eq. (B.2). At 2| | = 0t  the wave func-

Fig. 2. Spectrum of the quasi-particles skipping along the lateral 
junction under magnetic field. Due to the quantum interference of 
the edge states on the left and right sides of the junction this spec-
trum is a series of alternating extreme narrow bands and gaps, the 
widths of which being (1 ) HD− ω   and HD ω  , respec-
tively (D is the barrier transparency). The numerical calculations 
are carried out for = 0.1D  and the semiclassical parameter 

2/ = 10H F
−ω ε . 
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tions 2Ψ  in Eq. (B.1) are orthogonal edge state functions 
and hence , ( ) = 0n n yV P′  at n n′≠ . Therefore, one has 

, ( ) 0n n yV P′ ≠  exclusively due to a final barrier transparen-
cy. Using Eq. (1) one easily finds that far from the degen-
erate points 2

, | |n nV t′ ∝  while in the vicinity of them the 
resonance tunnelling takes place and , 1/2n nV ′ ∝  and hence 
the main contribution to the integral in Eq. (12) is from yP  
in the vicinity of the degenerate points ( )n

kP  (see Eq. (4). 
Therefore, when calculating the current Eq. (12) one 

may use Eqs. (B.3), (B.7) and get it as follows:  

 2 *
0 0 1 1 2= 2 ( ) ( ) ( )

2
y y

x n n

L dP
J e V T C C

L ′≠

′− ν κ κ κ ×
π∑ ∫


  

 
2

0 0*

=1

( ( )) ( ( ))
( ) ( ) ( ) ;

( ) ( )
n y n y

n y n y

f E P f E P
C C X

E P E P
′

α α α
′α

−
′× κ κ κ

−∑  (13) 

where = { , }yn Pκ  and = { , }yn P′ ′κ  while 
0

= ( )
T

X x t dt
α

α ∫  

and ( )x t  is the x-coordinate of the electron which is de-
fined by the classical Hamilton equation Eq. (B.6). 

Expanding the integrand in the vicinities of degenera-
tion points ( )n

kP  (where the resonant tunnelling takes place) 
with the use of Eq. (A.10) one rewrites the current, Eq. (13), 
as follows: 

 
( )

2
0 0

1,

( )
= 2

n
y y

x n k

L cP k
J e V

L eHT

 
 ν ×
 
 

∑   

 
2

2 2
12

| |
(( /2 ) | |

y
y

tdP
P t

∞

−−∞

× ×
ω +∫
v

  

 0 1 0 2

2 1

( )) ( ))
.

( )
n y n y

y

f E P f E P
P

+ − +
×

−

v v
v v

 (14) 

Here the summation is over all the degeneration points; 
1= −τ ν  is the electron-impurity relaxation time, 

12 1 2= 1/ T Tω  and 1,2v  are the velocities of the left (1) and 
right (2) edge states at | | = 0t  while 1( , )yT E P  and 

1( , )yT E P  are the times of electron motion between points 

ay  and by  along the left and right classical orbits shown in 
Fig. 3, respectively:  

 
(0)

1,21,2
1,2

1,2

/
= = ;

/
y

y

dE P
dP E

∂θ ∂
−
∂θ ∂

v   

 1,2
1,2

1= = arcsin
2

y

H E

P
T

E p
∂θ  π

±  ∂ ω  
  (15) 

All the above-mentioned quantities are taken at = ,nE E
( )= ( )n

y yP P k . 

The first resonant term of the integrand is due to the 
resonant transmission of electrons between left and right 
edge states skipping along the lateral junction: at the de-
generate points ( )= n

y kP P  the widths of the left and right 
wells (which are created by the magnetic field) are of such 
values that the electron energies in them (at | | = 0t ) coin-
cide causing resonant transmissions between the wells (see 
Eq. (A.10) and the text below it). 

For the case that the temperature satisfies the inequali-
ty | | HkT t ω  one may expand the Fermi distribution 
functions with respect to 1,2 yPv  and obtain the current as 
follows:  

 0 0
2= | |

( )
y

x H

L V
J t

L
σ

×
ω τ

  

 2
2

( 1/2)
cosh

24
H H F

n

n
TT

−ω ω + − ε ×   π
∑   (16) 

where 2
0 /Fn e mσ = τ  is the Drude conductivity, 2 2= /F Fn p   

is the electron density. While writing this equation the 
summation with respect to k  was changed to integration 
according to Eq. (6). 

As one sees from Eq. (16), at T << ω  the current oscil-
lates with a giant amplitude under a change of the magnetic 
field or the gate voltage (see Fig. 4). 

Fig. 3. (Color online) Schematic presentation of semiclassical 
motion of a quasi-particle skipping along a lateral barrier (black 
vertical line) under magnetic field. An electron packet moves 
along a semiclassical orbit, the x-coordinate of its center being 

0 = /yx cP eH . Due to the quantum-mechanical tunnelling through 
the barrier the incoming packet undergoes a two channel scatter-
ing at the barrier (points ,a by ) where it is split to two packets 
with the amplitude probabilities t  and r , 2 2| | | | = 1t r+ . The 
number of these packets grow in time and their quantum interfer-
ence results in peculiar spectrum Eq. (1). 
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If T >> ω  the summation with respect to n may be 
changed to integration, ... ...n dn→∑ ∫ , and the current 
oscillations are smoothed out and the current becomes of 
the conventional form. 

In conclusion, it is shown that kinetic properties of 
a dirty 2DEG system with lateral junction under magnetic 
field is extremely sensitive to actions of external fields. In 
particular, even a rather weak variation of the magnetic 
filed or the gate voltage causes giant oscillations of the 
charge current flowing perpendicular to the junction. The 
theoretical analysis based on quantum resonance tunnelling 
of quasi-particles skipping along the junction is in a good 
agreement with experimental data: the period of the con-
ductance oscillations, the position and the value of the con-
ductance maxima correspond to the observations presented 
in [1]. 

Appendix A: Wave functions and dispersion equation 
for quasi-particles skipping along lateral junction 

Quantum dynamics of electrons with a lateral junction 
under magnetic field is described by the wave function 

( , )x yΨ  satisfying the two-dimensional Schrödinger equa-
tion: 

 
22 2

2
1

2 2
eHxi

m m y cx

  ∂ Ψ ∂− + − + + ∂∂  



   

 
2

21 ( ) = 0,
2

m y V x E
ω

+ + − Ψ


 (A.1) 

where the gauge is used for which the vector-potential 
= (0, ,0)HxA , 

The semiclassical solutions of the above equation on 
the left and right sides of the junction ( < < 0lx x  and 
0 < < rx x , respectively) are 

 
2

1
1

1

2
2

( , )
= exp ( ) ) h.c. ,

4( )/

( , )
= exp ( ) ) h.c.

4( )/

x
y

x

x
y

x

C n P i p x dx
p x m

C n P i p x dx
p x m

  
π  ′ ′Ψ − +      

  π  ′ ′Ψ − +     

∫

∫





 (A.2) 

where quantum numbers n and yP  are the band number and 
the conserving projection momentum, respectively while 

 
( )1,2

2

= 2 ;

( ) = 2

y

y

cx mE P
eH

eHp x mE P x
c

−

 − + 
 



 (A.3) 

Here 1,2x  are the turning points. The dependence of the 
constant factors 1C , 2C  and the quasi-particle dispersion 
law = ( )n n yE E P  are found by matching the above wave 
functions at the lateral barrier and their normalization as it 
is shown below. 

In the vicinity of the junction | | Hx R<< , one may expand 
the phases of the wave functions Eq. (A.2) in | |x  and see that 
they are incoming and outgoing plane waves exp{( / )}ipx±   
the constant factors at which 1,2A  and 1,2B  are  

 
1 1 1 1 1 1

2 2 2 2 2 2

= exp{ ( )}, = exp{ ( )},
4 4

= exp{ ( )}, = exp{ ( )},
4 4

A C i B C i

A C i B C i

π π
θ − − θ −

π π
θ − − θ −

 (A.4) 

where  

 
0 2

1 2
01

= ( ) ; = ( ) ;
x

x

p x dx p x dx′ ′ ′ ′θ θ∫ ∫  (A.5) 

Changing variables in the integrals here one finds Eq. (2) 
of the main text. 

The found plane waves undergo two-channel scattering 
at the junction and the constant factors at the outgoing func-
tions are coupled with the incoming ones with a 2 2×  scat-
tering unitary matrix which is written in the general case as 
follows:  

 1 1

2 2
= e ,i r tB A

B At r
Φ

∗ ∗

    
     −    

 (A.6) 

where t  and r  are the probability amplitudes for the incom-
ing electron to pass through and to be scattered back at the 
junction, respectively, 2 2| | | | = 1t r+ . 

Using Eqs. (A.4), (A.6) one finds the set of equations that 
couples the constant factors in wave functions Eq. (A.2):  

Fig. 4. Dependence of the current (which flows perpendicular to 
the lateral junction under magnetic field) on the gate voltage gV ; 

the current is normalized to 2
0 0 0= | | ( / ) ) /H y xJ t V L Lσ ω τ . The 

numerical calculations are carried out for / = 0.05HT ω  and the 

semiclassical parameter 2/ = 10H F
−ω ε . 
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( )

( )
( )1 1 21 2

( )1 2 21 2

e e e = 0;

e e e = 0,

i i i

i i i

r C t C

t C r C

− θ +Φ θ + θ

θ − θ +Φ θ∗ ∗

− −

+ −
 (A.7) 

where 1,2 1,2= /4θ θ − π . Equating the determinant of equa-
tion Eq. (A.7) to zero and using the inequality | | 1t <<  one 
finds dispersion equation Eq. (1) of the main text. 

Using equations Eq. (1) one easily finds the quasi-part-
icle dispersion law in the vicinity of points of degenera-
tion, = n

y kP P , as follows:  

 2 2
1,2

1= ( ) 4(| | )
2 y yE P P t± + −
 δ δ ± δ + ω 
 

v v  (A.8) 

where 2 1=± −v v v  and 1,2 1 2= 1/ T Tω  while definitions of 
the velocities 1,2v  and times 1,2T  at degeneration points are 
given by Eq. (15). 

Normalization of the wave function Eq. (A.2) to unity 
gives the second independent equation for constants 1,2C :  

 2 2
1 1 2 2| | | | = 1T C T C+  (A.9) 

where 1,2 1,2( , ) = /yT E P E∂θ ∂  are times of electron mo-
tion along classical orbits 1 and 2. 

For the case under considerations 2| | 1t << , using 
Eqs. (A.7), (A.8) one finally finds  

 

2
2

1 2 2
2 1 1

2
2 1

2 2 2
2 1 1

| || ( , ) | ,
4 cos | |

4cos
| ( , ) | = ,

4 cos | |

n y

n y

tC E P
T t T

C E P
T t T

=
θ +

θ

θ +

 (A.10) 

where functions 1,2 ( ( ), )n y yE P Pθ  are determined by Eq. (2). 
Using Eq. (A.8) one easily finds 22

1 1 2| | /4cos t T Tθ ≈  at 

degeneracy point ( )= n
y kP P  and hence 2

1,2| ( , ) | =n yC E P  

1,2= 1/2T  that is a resonant tunnelling takes place at these 
points. 

Appendix B: Matrix elements of applied voltage 
and quasi-particle velocity 

1. Matrix elements of the applied voltage Eq. (8) are  

 
0

, 1, 1,

1

( ) = ( ) ( )n n y
x

V P x x dx∗
′ ′κ κΨ Ψ∫  (B.1) 

where = ( , )yn Pκ  and = ( , )yn P′ ′κ . Using Eq. (A.1) one 
finds  

 , 0 1 1( ) = ( ) ( )n n yV P V C C∗
′ ′κ κ ×  

 1sin{ [ ( ) ( )]/ )}
,

( ) ( )
n y n y

n y n y

T E P E P
n n

E P E P
′

′

−
′× ≠

−



 (B.2) 

In the vicinity of degeneration points one has 
| ( ) ( ) |n y n y HE P E P′− << ω  and hence Eq. (B.1) may be 
written as follows:  

 2
, 0 1 1( ) = | ( , ) |n n y yV P V T C n P′   (B.3) 

2. Matrix elements of the quasi-particle velocity are  

 
0 2

( )
1, 1, 2, 2,,

01

ˆ ˆ= [ , ] [ , ]
x

x
n n'

x

i iH x dx H x dx∗ ∗
′ ′κ κ κ κ

  Ψ Ψ + Ψ Ψ 
 
∫ ∫

 

v . 

  (B.4) 

Using the explicit form of the semiclassical wave func-
tions Eq. (A.2) one finds the velocity matrix elements as 
follows  

 
2

( )
,

=1

( ) ( )
= ( ) ( )n y n yx

n n'
E P E P

i C C′ ∗
α α

α

−
′κ κ ×∑



v   

( )

0

[ ( ) ( )]( )
( ) exp

T
n y n yE P E P T t

x t i dt
α

′ αα − −  ×  
  

∫


, (B.5) 

where ( )x t  is defined by the classical Hamilton equation:  

 = [ ]d e
dt c
p vH  (B.6) 

while (1) ( )x t  and (2) ( )x t  are coordinates of semiclassical 
packets moving along the left and right sections of the 
closed orbit, respectively (see Fig. 3). They are defined in 
such a way that their motion starts at the beginning of the 
corresponding section: e.g., for the motion along the closed 
orbit in Fig. 3 (1) (0) = 0x , (1) (0) = by y  and (2) (0) = 0x , 

(2) (0) = ay y . 
Using inequality | ( ) ( ) |n y n y HE P E P′− << ω , near de-

generation points one may write Eq. (B.5) in the form:  

 
2

( )
,

=1 0

( ) ( )
= ( ) ( ) ( )

T
n y n y

n n
E P E P

i C C x t dt
α

′ ∗ α
′ α α

α

−
′κ κ∑ ∫
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