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Channel electron bubbles in low-temperature helium gas 
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Self-localization of electrons caused by their interaction with helium vapor atoms in quasi-one-dimensional con-
ducting channels over liquid helium is theoretically studied. We have shown that channel electron bubbles of a large 
size can exist at temperatures which are substantially lower than the critical temperature reported previously for 
electron bubbles of three-dimensional and two-dimensional electron systems. The transition from a large-size bub-
ble to a small-size bubble is shown to be discontinuous, and a sort of bistability involving metastable states is de-
scribed. The analysis given explains a sharp decrease of electron mobility in quasi-one-dimensional channels on 
liquid helium observed at T  2,5 К. 
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1. Introduction

Interaction of a free electron with a collection of helium 
atoms leads to a remarkable self-localization effect: a lo-
calized electron and a strong reduction of the helium-gas 
density in the vicinity of the electron form a self-sustained 
complex called electron bubble [1]. The “bubble” concept 
explained a sharp decrease of the electron mobility in a 
dense helium gas with (3D) 21 310 cmg cn n −≥   (T > 3 K),
and helped with interpretation of electron and ion 
mobilities in liquid helium. In the presence of a strong 
magnetic field, the existence of large radius ions was 
shown [2] to be possible at (3D)<g cn n . The description of
these ions is similar to the description of one-dimensional 
(1D) polarons: any interaction forming a potential well 
leads to a bound state. At 2.5 KT  , the typical electron 
interaction energy with helium vapor 0U  is much larger 
than temperature, therefore, even a small reduction of the 
gas density can cause self-localization. 

Ions of a large radius coupled to a helium gas density 
deformation can exist also in a two-dimensional (2D) elec-
tron system formed on the free surface of liquid helium (or 
other cryogenic substrates), if a strong magnetic field is 
applied perpendicularly to the interface [3]. In this case 
electron localization is induced by external fields, while 
electron interaction with the deformation of gas density 
just eliminates the degeneracy of the electron spectrum in 
the magnetic field. In the absence of the magnetic field, 2D 
electron bubbles in helium gas reportedly [4] can appear 
only if gn  exceeds a critical value (2D)

cn  dependent on the
strength of electron localization in the perpendicular direc-

tion. The theory of these cavities was used to explain local-
ization effects reported for 2D electrons on solid hydrogen 
[5] where (2D)

cn  is much less than (3D)
cn . Still, for electrons

bound to the free surface of liquid helium, the critical tem-
perature necessary for self-localization (2D)

cT  estimated [6]
for the strong coupling regime appears to be close to that 
of the 3D system ( (2D) 3 KcT ≈ ).

Recently, a strong mobility decrease of electrons 
trapped in quasi-one-dimensional channel states over liq-
uid helium was observed [5] at comparatively low temper-
atures T > 2 K. This interesting behavior was attributed to 
self-localization of channel electrons in dense helium va-
por. A theoretical analysis and numerical calculations [6] 
performed for the strong coupling regime indicated that the 
critical temperature (1D)

cT  at which self-localization of
channel electrons can appear slightly exceeds 3 K, and it 
depends very weakly on the pressing electric field E⊥ . It 
should be noted that the relatively small difference in the 
critical temperatures found theoretically and in the experi-
ment (about 0.5 K) leads to a substantial difference in criti-
cal vapor densities (about two times) because the saturated 
gas density exponentially depends on T . The origin of this 
difference requires a theoretical explanation. 

In strongly bound self-localized states [6], the electron 
localization length along the channel ( xL ) was shown to be 
surprisingly very close to the localization length in the 
transverse direction ( yL ). These remarkable results are in 
contrast with naive expectations triggered by the theory of 
large radius ions [2] which yields no density threshold and 

x yL L . Therefore, an additional theoretical analysis of 
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electron self-localization in quasi-one-dimensional con-
ducting channels over liquid helium is necessary to explain 
the differences in theoretical results reported previously 
and describe the strong dependence of (1D)

cT  on the width 
of the conducting channel observed in the experiment [6]. 

In this work, following [4,6], we consider a theoretical 
model which assumes strong electron localization in the 
direction perpendicular to the surface caused by the image 
potential and pressing electric field. Contrary to the previ-
ous treatments [2,4], the in-plane localization parameters 

xL  and yL  are not initially restricted by the conditions 
=x yL L  or 0=yL L , where 0L  is the transverse localization 

length in the absence of the vapor density deformation. 
The electron localization length in the perpendicular direc-
tion zL  generally is also affected by the gas density defor-
mation. This model allows us to obtain analytical equations 
which, in the weak coupling regime, describe bubble states 
of electrons with x yL L , similar to large radius ions [2] 
(here we still use the term “bubble state” even if the real 
gas density reduction is small). It is important that these 
states can exist at temperatures which are substantially 
lower than 3 K which explains experimental observations. 
At the same time, in the strong coupling regime, our equa-
tions yield x yL L  in accordance with numerical calcula-
tions of Ref. 6. Remarkably, the transition between solu-
tions of the weak and strong coupling regimes is 
discontinuous, and a sort of bistability involving metasta-
ble states is predicted. Therefore, channel electron bubbles 
represent an interesting case for the theory of polaron sys-
tems [7–9]. 

2. Free energy and basic equations 

In the experiment [6], conducting channels with elec-
trons are formed above a liquid helium surface curved 
by capillary forces between glass light guides. The elec-
tron wave function in the channel will be considered 
as ( ) = ( ) ( ) ( )f z y xΨ ϕ ψR , where 3/2( ) = 2 exp ( )f z z zγ −γ  
describes electron localization in the direction perpendicu-
lar to the surface of liquid helium. In the limit of weak 
coupling with the vapor atom density, 1γ γ , where 1γ  is 
determined by the image potential ( /z−Λ ) and the electric 
field E⊥ . The parameter 11/γ  represents the typical locali-
zation length in z -direction 610 cmzL −≈ . For the strong 
coupling regime, one have to consider an increase in γ  
caused by the gas density deformation. The wave function 

( )yϕ  is affected by the transverse confining potential 
2 2
0 /2m yω  and by the redistribution of vapor atoms, while 

( )xψ  describes an electron state along the channel. 
In order to investigate self-localization of channel elec-

trons, consider the free energy of an electron bubble F  
which consists of the electron contribution elF , the free 
energy of helium gas gasF , and the interaction term intF . 
According to the conventional treatment [1,2,4,6], the elec-
tron free energy  

 ( )
2 22

2 2 20
el =

2 2
m y

F d F
m ⊥

 ω ∇ ψϕ + ψϕ + γ 
  
∫ r r ,  (1) 

where ( , )x yr =  is a 2D vector, m is the electron mass, in 
the absence of the vapor density reduction inside the bub-
ble, the frequency 0ω  determines the transverse localiza-

tion length 0 0= /L mω , and  

 ( )
2 2 3

=
2 2

eEF
m

⊥
⊥

γ
γ −Λγ +

γ
   

represents the free energy of an electron due to its motion 
in the perpendicular direction. The function ( )f z  does 
not enter the integrand of Eq. (1) because of the normali-
zation condition 2( ) = 1f z dz∫ , still it was used for ob-
taining ( )F⊥ γ . 

Considering the collection of vapor atoms as an ideal 
gas, we can define the free energy of vapor atoms as  

 ( ) 3
gas = ln ,F nT g T n d  ∫ R  (2) 

where ( )zR = r,  is a 3D vector, ( )n R  is the local gas 
density,  

 ( )
3/221 2= ,

e
g T

MT
 π
  
 

   

e is Euler’s number, and M  is the mass of a helium atom. The 
interaction term depends on the electron wave function  

 ( ) ( )
2 2 30

int
2

= ,
a

F n d
m

π
Ψ∫ R R R



 (3) 

where 8
0 0.62 10 cma −⋅  is the scattering length. 

The helium gas density deformation is determined by a 
sort of barometric formula [1]  

 ( ) 20= expg
g

U
n n

n T

 
− Ψ 
  

R  (4) 

originating from variation of F  with respect to n. Here gn  
is the equilibrium density and  

 
2

0
0

2
= ga n

U
m

π
 (5) 

is the typical interaction energy. Using Eq. (4), gas intF F+  
can be transformed into  

 ( )gas int = lng gF F n T g T n + ×    

 ( ) 2 30exp
g

U
d

n T

 
× − Ψ  

 
∫ R R,  (6) 

where ln[ ( ) ] < 0gg T n . For saturated pressure, 

ln[ ( ) ] = (1 / )gg T n Q T− + , where Q  is the vaporization 
energy. 
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Self-localization can appear when a change of the free 
energy caused by localization = ( , , )x yF F L L∆ γ −  

0 1( , , )F L− ∞ γ  becomes negative (here xL  and yL  are lo-
calization lengths in the in-plane directions, and 1γ → γ  if 
the gas density deformation is absent). Taking into account 
that the first two terms of the series expansion of Eq. (6) 
are independent of xL , yL , and γ , one can represent 

gas intF F∆ + ∆  as  

 ( )gas int = lng gF F n T g T n ∆ + ∆ − ×    

 2 2 30 0exp 1
g g

U U
d

n T n T

  
 × − Ψ − + Ψ     

∫ R. (7) 

This correction is responsible for the energy gain caused 
by localization. 

In order to obtain elF∆  as a function of the localization 
parameters, we shall use the following trial wave functions 

 ( )
2

1/4 1/2 2
1= exp ,

2y y

yy
L L

 
 ϕ −
 π  

 (8) 

 ( )
2

1/4 1/2 2
1= exp ,

2x x

xx
L L

 
ψ −  π  

 (9) 

and assume that ( )f z  has the same shape as in the absence 
of the gas density deformation (still, the actual value of γ  
to be found by variation). In this treatment, 

el el el 0 1= ( , , ) ( , , )x yF F L L F L∆ γ − ∞ γ  has a simple form  

 
2 22 2 20

el 2 2 2
0

=
44 4 2

y

x y

m L
F

mL mL mL

ω
∆ + + − +

     

 ( ) ( )1 .F F⊥ ⊥+ γ − γ  (10) 

The fourth term in the right side of Eq. (10) represents the 
energy of zero-point vibrations 0 /2ω  extracted. Obvious-
ly, the right side of Eq. (10) becomes zero when xL →∞, 

0yL L→  and 1γ → γ . A finite xL  together with 0<yL L  
and 1>γ γ  only increase the positive contribution elF∆ . 

For the trial wave functions of Eqs. (8) and (9), the 
contribution gas intF F∆ + ∆  given in Eq. (7) can be repre-
sented as 

 ( )
2

gas int 05
3= ln ,

2
G

g
x y

R
F F U g T n G

L L

 γ ∆ + ∆ −     
 



 (11) 

where 1= /γ γ γ , 2 2
0 1= 2 /GR a mTγ  and  

 ( ) ( ) ( )
( ) ( )

14

2 4
=1

1 2 2 !2= .
3 1 ! 1

n
n

n
n

n
G x x

n n

+∞

+

− +

+ +
∑  (12) 

The function ( )G x  differs from the similar function ( )xΦ  
defined previously [6] only by the normalization factor 

52 /3 introduced for further convenience. The length pa-
rameter GR  has a weak dependence on temperature and 

usually it is very small: 7(2.5 K) 2.5 10 cmGR −⋅  for 

= 100V/cmE⊥ , and 7(2.5 K) 3.1 10 cmGR −⋅  for 
= 2000V/cmE⊥ . 

Variation of F∆  with respect to γ , xL , and yL  yields three 
equations containing the derivative 2( / )G x yG R L L′ γ . This de-
rivative can be expressed from the equation / = 0xF L∂∆ ∂  and 
inserted into equations / = 0F∂∆ ∂γ  and / = 0yF L∂∆ ∂ . This 
procedure yields two simple relationships:  

 
3

3 20
2 2 2 3

1 1 0 1

1 = 0,
2

E

xL l
γ γ

γ − γ − γ −
γ γ γ

    (13) 

 
2

2
4= ,

1
y

x
y

l
l

l−
 (14) 

where we introduced two dimensionless localization 
lengths 0= /y yl L L , 0= /x xl L L , and two characteristic pa-

rameters 2 1/3= (3 /2 )E meE⊥γ   and 2
0 = /mγ Λ  . It should 

be noted that Eq. (14) was already given in Ref. 6. Equa-
tion (13) is a cubic equation whose solution can be found 
in an analytical form. Together with Eq. (14) it establishes 
the dependence ( )ylγ . It is worth noting also that the all 
parameters of these two equations do not depend on tem-
perature, if we neglect the weak temperature dependence 
of the dielectric constant entering Λ . 

Inserting the functions ( )x yl l  and ( )ylγ  given above in-
to the expression for 2( / )G x yG R L L′ γ  we obtain the final 
equation for the dimensionless localization length yl  

 ( ) ( )ch = ,yW l Tκ  (15) 

where we introduced the following notations 

 ( )
42

ch 2 2 40

1
= ,

1

y' G
y

y y

lR
W l G

L l l

 − γ γ   − 



  (16) 

and  

 ( )
( ) 2 2

0 1

4= .
3 lng g

mTT
n n g T a

κ
 π γ  

 (17) 

The dimensionless parameter κ  depends strongly on tem-
perature. It is large at low temperatures, and it becomes of 
the order of unity when 2.6 KT ≈ . Obviously, it decreases 
with the pressing electric field because 11/κ ∝ γ . 

The parameter κ  plays an important role in the descrip-
tion of self-localization of channel electrons and establish-
es its remarkable relationship with self-localization in the 
pure 2D electron system. For example, the characteristic 
temperature T∗ defined by the equation ( ) = 1Tκ  coincides 
with the critical temperature (2D)

cT  of self-localization in-
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duced by helium gas density in the pure 2D electron sys-
tem (γ  is fixed to 1γ ) which is defined by the condition 

(2D)=g cn n , where [4] 

 
( )

(2D)
2 2

0

4= .
3 ln

c
g

mTn
g T n a π γ  

 (18) 

Therefore, formally we can write (2D)= /c gn nκ , though, as 
correctly stated in Ref. 6, for 2D electrons on liquid heli-
um, it is impossible to fix γ  to 1γ , and the real critical pa-
rameters (2D)

cT  and (2D)
cn  are determined by different equa-

tions. In the pure 2D system, electron bubbles can appear 
only if (2D)>g cn n  when the parameter κ  is less than unity. 
There are no 2D electron bubbles at low temperatures where 

( ) > 1Tκ . For channel electrons with the transverse confining 
potential, the possibility of existence of electron bubbles at 

( ) > 1Tκ  requires a detailed investigation of Eq. (15). 
The saturated vapor density is usually described by  

 ( )3/22 /= / 2 e .Q T
gn MT −π   

In calculations of the present work, the vaporization energy 
Q  is fixed to 7.36 K in order to fit the experimental data 
[10] on the saturated density of helium gas at 3 KT  . An 
alternative formula [11] based on fitting experimental data 
[12] gives somewhat smaller values of gn  if > 2 KT . 

3. Channel ions of a large size 

First, it is reasonable to consider the limit of strong 
electron binding to the interface and to assume that at low 
enough gn  the parameter γ  is not affected by the gas den-

sity deformation ( = 1γ ). This assumption is based on the 

fact that the third term of Eq. (13) is small if 2 2
1 0 1Lγ   and 

> 1xl . The 3D effects in electron self-localization will be 
described in the next Section. Under conditions of the ex-
periment [6], 0GR L , and, therefore, the parameter 

2 2
0/GR L  entering the argument of 'G  in Eq. (16) is very 

small. Additionally, for large ( )Tκ  the left side of Eq. (15) 
can be compared with κ  only if 1yl →  when the argument 

of G′ approaches zero ( 1G′ → ) while the factor 41/ 1 yl−  

entering ch ( )yW l  strongly increases. In this limiting case, 
Eq. (15) and Eq. (15) yield the simplest solution 

 
1/4

2
1= 1 , = .y x yl l l 

− κ 
 κ 

 (19) 

If the system is cooling, the parameter ( )Tκ  increases 
and, therefore, 1yl →  ( 0yL L→ ) while xl  becomes much 
larger than unity ( 0xL L ). In the opposite limit, when 

( ) 1Tκ → , the both localization lengths yl  and xl  are rap-
idly shrinking. 

The sharp decrease of yl  at T T∗→  means that the ap-
proximation ( ) 1G x′   used for obtaining Eq. (19) fails in 
the vicinity of =T T∗ . Since the next term in the sum of 
Eq. (12) has the opposite sign, it reduces the shrink effect. 
Thus, we have to consider a more accurate approximation: 

8 8( ) 1 2 5 /3G x x′ − . In this case, the omitted terms can 
only increase ( )G x  and the effect of self-localization. In-
serting this approximation of ( )G x′  into Eq. (16) we obtain 
a quartic equation for 2

yl :  

 8 6 2 4 2 2
2

12 1 2 = 0,y y y yl l l l 
+ Ω − − −Ω − Ω −Ω 

 κ 
 (20) 

where  

 
8 2

2
0

52= .
3

GR
L

 Ω  
  κ

 (21) 

Using Eqs. (20) and (14) it is possible to find another use-
ful relationship 

 2= 1 ,x y
y

l l
l

 Ω + κ
 
 

 (22) 

valid only for the approximation 8 8( ) 1 2 5 /3G x x′ − . This 
equation extends the asymptote of xl  given in Eq. (19). 

The temperature dependent parameter Ω  is very small 
(usually < 0.02Ω ). Still, it is necessary to keep it in 
Eq. (20) to extend the solution to the range T T∗ . The 
numerical evaluation of Eq. (20) is not difficult, still it is 
possible to find a simple analytical solution valid up to the 
point =T T∗ . Neglecting the two terms proportional to 2Ω  
in Eq. (20) allows reducing this equation to a cubic equa-
tion whose solution can be represented as 

 ( )2
2

2cos1 2= 1 ,
33yl

β Ω
− −
κ

 (23) 

 
( )

( )

2

3/22

3 2 1/1= arccos .
3 1 1/

 + κ Ω 
β  

 − κ
 

  

Numerical calculations indicate that the analytical solution 
of Eq. (23) practically coincides with the exact solution of 
Eq. (20) even at T T∗→ . Similarly, it is easy to find also an 
analytical solution valid at >T T∗  but in this range soon 
one needs to consider the higher terms of the expansion 
series of Eq. (12). 

The numerical solution of Eq. (20) is shown in Fig. 1 as 
a solid (blue) line. In this figure, the analytical solution 
given in Eq. (23) cannot be distinguished from the numeri-
cal solution up to = 2.66 KT . As expected, the asymptote 
of Eq. (19) (dotted blue line) deviates from the solid line 
when the parameter ( ) 1Tκ → . It is noticeable also that at 

<T T∗  the localization length along the channel ( )xl T  
(dashed red line) increases with lowering T  much faster 
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than ( )yl T  whose value is limited by 1. The critical point 
=T T∗  is shown by the vertical pink arrow which separates 

the regimes of the weak and strong coupling. 
The numerical solution of Eq. (15) including the all 

terms of the function ( )G x  and using the assumption 
1=γ γ  (electron localization in the vertical direction is not 

affected by the vapor density deformation) is shown in 
Fig. 1 as the solid (olive) curve. At low temperatures (
T T∗≤ ) this solution coincides with the solid blue curve 
obtained employing only two first terms of the sum given 
in Eq. (12). In the opposite regime ( >T T∗), it is situated 
a bit lower than the numerical solution of Eq. (20). It is 
remarkable that in this regime the analytical solution of the 
reduced cubic equation (similar to that given in Eq. (23)) 
accidentally is close to the exact solution represented by 
the olive curve. Anyway, we can conclude that the first 
two terms of ( )G x′  give reasonable description of elec-
tron self-localization in a wide range of temperatures if γ  
is fixed to 1γ . 

With an increase of 0L  the transition range near =T T∗  
becomes sharper, and in the limiting case 0L →∞ , the 
solution of Eq. (20) transforms into the solution of the pure 
2D problem [4]. Since the parameter κ  defined by Eqs. 
(17) and the critical density (2D)

cn  depend on the electron 
localization length in the perpendicular direction 1

1zL −≈ γ , 
the critical temperature T∗ decreases with the pressing elec-
tric field E⊥ . Under typical experimental conditions, T∗ 
can be varied from about 3.2 K ( = 100 V/cmE⊥ ) to about 
2.7 K ( = 2000 V/cmE⊥ ). 

Inserting the solutions xl  and yl  obtained into 
el gas int=F F F F∆ ∆ + ∆ + ∆  determined by Eqs. (10) and 

(11) we found that ( ) < 0F T∆  for all temperatures. If 
=T T∗  and 5

0 = 0.2 10 cmL −⋅ , the absolute value 
( ) 1 KF T∗∆ ≈ . The binding energy ( )F T∆  decreases 

strongly with 0L  and for 4
0 = 10 cmL −  it becomes very 

close to the binding energy of 2D electron bubbles ob-
tained neglecting changes in γ  induced by localization: 

 
( ) 22 (2D)0(2D)

ln
= 1 ,

4
g g c

g

n g T n a n
F

m n

    ∆ −λ −  
 



 (24) 

where (2D)
g cn n≥  and  

 
93= 6.

20 2
π  λ  
 

   

Thus, the theory based on the assumption 1=γ γ  indicates 
that channel electron bubbles (their localization lengths 
and the free energy) continuously transform into pure 2D 
electron bubbles with a strong decrease in the transverse 
confining potential. On the other hand, Fig.1 indicates that 
in the channel geometry, there is no a threshold for the 
electron bubble creation which differs from the result ob-
tained for 2D bubbles [4,6]. Therefore, the electron bub-
bles of large size are possible in a channel geometry at low 
temperatures where the parameter ( )Tκ  is large. 

4. 3D effects and self-localization bistability 

A very important result was obtained in Ref. 6: for elec-
trons on liquid helium near (2D)

cT , the vapor density defor-
mation affects crucially the electron localization length in 
the perpendicular direction zL  and Eq. (24) becomes inap-
plicable to the electron system. This means that describing 
channel electron bubbles at T T∗≈  we have to consider 3D 
effects and take into account changes of γ  induced by the 
gas density deformation. 

In the general case, we need to solve Eq. (15) taking in-
to account the increase of the localization parameter γ  in-
duced by self-localization. Already the structure of Eq. (13) 
indicates that a substantial increase in γ  above the unity 
should lead to a strong decrease of xl  and yl . The cubic 
equation for γ  can be solved analytically  

 ( ) ( )1/3 1/3 0

1
= ,

3
q P q P

γ
γ + + − +

γ
  (25) 

where  

 ( ) ( )43 300
3 3 2 2 3
1 1 0 1

1
= ,

27 12 2

y E
y

y

l
q l

L l

γ −γ γ
+ +

γ γ γ
 (26) 

 ( ) ( ) ( ) 342
2 0

2 2 2 2 2
1 1 0

3 11= .
27 2

y
y y

y

l
P l q l

L l

 −γ − + γ γ  

 (27) 

Fig. 1. (Color online) The dimensionless localization lengths 

xl  and yl  vs temperature calculated for = 2000V/cmE⊥ , 
5

0 = 0.2 10 cmL −⋅  and different approximations: the asymptote of 
Eq. (19) based on the one-term approximation for ( )G x  (dotted 
blue line), the solution of Eq. (20) based on the two-terms 
approximation for ( )G x  [solid blue ( yl ) and dashed red ( xl )], the 
numerical solution of Eq. (15) using the exact form of ( )G x  
(solid olive line). 
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The function ( )yP l  changes its sign at 0.142y cl l≡   
(for 5

0 = 0.2 10 cmL −⋅ ) becoming negative if <y cl l . For 
< 0P , the solution has a trigonometric form similar to that 

found in the preceding Section for yl  [Eq. (23)]. 
The dependence ( )ylγ  found above should be inserted 

into Eqs. (16). Thus, the final equation for yl  has the form 
ch ( ) =yW l κ , where ch ( )yW l  includes the all terms of 
( )G x′ . The solutions of this equation for three typical tem-

peratures are illustrated in Fig. 2. As expected, the function 
ch ( , )yW l T  depends rather weakly on temperature (here we 

fixed dielectric constants of liquid helium and vapor to their 
values at = 2.5 KT ). Changing T  affects noticeably ch ( )yW l  
only in the range of small yl  ( 0.2yl  ). At the same time, the 
parameter ( )Tκ  shown in Fig. 2 by three horizontal lines has 
a very strong dependence on T . Therefore, at a low tempera-
ture (for example, = 2.25 KT ) there is only one solution of 
the equation ch ( ) =yW l κ  illustrated in the figure by the olive 
circle. At the chosen temperature ( = 2.25 KT ) the intersec-
tion of the horizontal line ( )2.25Kκ  with ch ( )yW l  approxi-
mated by the assumption = 1γ  (black dotted line) yields prac-
tically the same result for yl . 

Contrary to the curve calculated for = 1γ , the exact 
function ch ( )yW l  is not monotonous, and in a certain tem-
perature range there are three solutions of the equation 

ch ( ) =yW l κ , as shown in Fig. 2 for = 2.56 KT . Only two 
of these solutions indicated by filled red circles represent 
minima of F∆ . Therefore, in this temperature range, there 
is self-localization bistability, and the transition to the 
strong coupling regime is not continuous. At substantially 
higher temperatures, there is only one solution with a small 

yl  indicated in the figure by the blue circle calculated for 
= 3 KT . In this range, the approximate solution given by 

the intersection with the dotted curve deviates substantially 
from the exact solution. 

The numerical solutions of the equation ch ( ) =yW l κ  
are shown in Fig. 3 as functions of temperature. In the limit 
of low temperatures, the high branch shown by the solid 
blue curve approaches the approximate solution obtained 
for the assumption = 1γ  (dotted curve). The low branch 
shown by the solid red curve is quite distant from the dot-
ted curve. The transition from the high branch to the low 
branch obviously cannot be continuous. Figure 3 indicates 
that there is a bistability range restricted by two vertical 
arrow-lines. Here we still use the term “bistability” in spite 
of the fact that at certain temperatures the branches can 
become metastable.  

The free energy gain F∆  induced by self-localization is 
shown in Fig. 4 for different values of the transverse con-
fining potential indicated by different 0L . The two branch-
es are shown by separate lines of the same color. For 

5
0 = 0.2 10 cmL −⋅ , the high and low branches (black solid 

lines) have a cross-point at about 2.54 K. At higher tem-
peratures, the high-branch line becomes metastable, and 
eventually it reaches the end-point. On the left side from the 
cross-point, the low-branch line is metastable and, moreo-
ver, soon F∆  becomes positive. With an increase of 0L  the 
cross-point shifts up and right as shown by dashed (blue, 

5
0 = 0.3 10 cmL −⋅ ) and dash-dotted (olive, 5

0 = 10 cmL − ) 
lines. The high-branch line eventually ( 0L →∞) approaches 
the zero line, while the low-branch line approaches the 
solid red line calculated for the 2D electron system. In 
should be noted that in Fig. 4, the low-branch line calculat-
ed for 5

0 = 10 cmL −  cannot be distinguished from the red 
line calculated for 0 =L ∞. 

Fig. 2. (Color online) Graphical solution of the equation 

ch ( ) =yW l κ [Eq. (15)] for 5
0 = 0.2 10 cmL −⋅  and three typical 

temperatures. The dashed horizontal lines represent κ at different 
T . Their cross-points with curves representing ch ( )yW l  yield the 
solutions for yl  shown by circles. The black dotted curve repre-
sents ch ( )yW l  for the approximation 1=γ γ . The black solid curve 
is calculated for the pure 2D system with 1=γ γ . 

Fig. 3. (Color online) The numerical solutions of Eq. (15) ( )yl T  
calculated for 5

0 = 0.2 10 cmL −⋅ . The dotted line represents the 
result of the approximation 1=γ γ . 
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The solid red line ( 0 =L ∞) in Fig. 4 obtained using the 
all terms of the function ( )G x  remarkably has nothing in 
common with the result of calculations based on the as-
sumption 1=γ γ  and restricted by the first two terms of the 
sum defining ( )G x  in Eq. (12) (wine dash-dot-dot line). 
This seems strange and requires additional explanations 
because, for a large in-plane localization radius 

1/ g cL n n∝ −  (this can also be seen from the solid black 

line of Fig. 2), the argument of the function ( )G x  is small. 
This means that the usual self-verification procedure fails 
in this particular case. 

The free energy F∆  of the 2D electron system with γ  
affected by self-localization is described by two parame-
ters: γ  and the in-plane localization radius L . These pa-
rameters satisfy two equations which are found similar to 
Eqs. (13) and (15): 

 
2 3

3 201
2 3

1 1

21 = ,E

L

 γγ γ
γ − γ −  γ γ γ 
 



 (28) 

 ( ) ( )2D , = ,W L Tγ κ  (29) 
where 

 ( )
2

2D 2, = ,' GR
W L G

L

 γ
γ γ   

 



   (30) 

and the parameters ( )Tκ  and GR  are defined above. Re-
markably, the expression for 2DW  can be also obtained 
directly from Eq. (16) for chW  considering the limiting case 

0L →∞  which allows us to neglect 4
yl  in the square root ex-

pressions. Here, it is instructive to solve Eq. (29) with regard 
to the parameter γ  by inserting Eq. (28) into Eq. (30). The 
resulting equation 2D ( ) =W γ κ  is solved numerically, and its 
solutions are shown in Fig. 4 by the solid and dotted red lines. 
The dotted line represents an unstable solution given here by 
way of illustration. The solid red line represents a stable solu-
tion obtained using the all terms of ( )G x . 

It is interesting that the solid red line of Fig. 4 is shifted 
substantially to the left from the result based on the asymp-
totic form of ( )G x  and it does not approach the critical 
point T∗ defined above by the condition (2D)=g cn n . This 
strange situation is explained by Fig. 5 where the resulting 
function 2D ( )W γ  is shown for three different temperatures. 
It is very important that for electrons on liquid helium the 
function 2D ( )W γ  has a maximum in the range 1/ > 1γ γ . 
Therefore, when ( )Tκ  meets this maximum, 2D electron 
bubbles appear already with the parameter γ  which is sub-
stantially larger than 1γ  and, therefore, with a finite (!) ra-
dius L  determined by Eq. (28). In a certain temperature 
range, there are two solutions of the equation 2D ( ) =W γ κ  
shown in Fig. 5 by red circles. The left circle represents an 
unstable solution (here L  increases with T ) which can 
reach the point T∗, as illustrated in Fig. 4 by the red dotted 
curve. The stable solution (the red filled circle) appears at 

<T T∗  and it eventually leads to < 0F∆  (see the red solid 
line in Fig. 4).  

It should be emphasized that for 2D electrons on liquid 
helium, the self-verification procedure of finding a solution 
of the equation 2D ( ) =W L κ  is not sufficient and it can 
bring to a wrong result. For example, assuming that at a 
critical point 2D electron bubbles appear with a large radi-

Fig. 4. (Color online) The free energy gain F∆  caused by self-
localization vs temperature calculated for different transverse 
confining potentials indicated in the legend by 0L  in units 

510 cm− . The dotted red line represents the unstable (US) solu-
tion of the 2D electron system. The dash-dot-dot line represents 
the asymptotic solution [4] (AS) based on the assumption 1=γ γ  
and given in Eq. (24). 

Fig. 5. (Color online) Graphical solution of the equation 

2D( ) =W γ κ  describing 2D electron bubbles for = 2000 V/cmE⊥ . 
The dashed horizontal lines represent κ  at different T . Their 
cross-points with curves representing 2D( )W γ  at three tempera-
tures yield the solutions for γ  shown by circles. The dotted pink 
curve represents 2D( )W γ  for electrons on solid hydrogen. 
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us L , we seemingly can neglect 21/L  in Eq. (28), obtaining 
1=γ γ , and disregard higher terms in the expansion series 

for ( )G x′ . As a result, one obtains 21/ 0L →  when 
(2D)

g cn n→  which justifies the initial assumption. The later 
is valid also for the exact form of ( )'G x , as can be seen 
from the solid black curve (marked with 2D) in Fig. 2. 
Nevertheless, the accurate solution, taking into account 3D 
effects, at the critical point leads to a finite and rather small 

73.4 10 cmL −⋅ , as follows from Fig. 5. This means that a 
sort of polaronic phase transition can exist in the 2D elec-
tron system on liquid helium. 

We compared 2DW  as the function of L  (properly nor-
malized) with the respective curve ch ( )yW l  given in Fig. 2 
and found that 2D 0( / )W L L  practically coincides with the 
solid red curve in the range < 0.3yl  which includes the 
maximum. At larger 0/L L , it decreases approaching unity 
from the upper side, in contrast with the solid black curve 
(2D) calculated for 1=γ γ . 

Another important point is that the position of the maxi-
mum of 2D ( )W γ  strongly depends on GR  and 1γ  shifting left 
when 1γ  increases. For the 2D electron system on liquid heli-
um, 1γ  is relatively small, and, therefore, the maximum ap-
pears at 1/ > 1γ γ . The situation changes drastically for elec-
trons on the surface of solid hydrogen. In this case, as shown 
by the pink dotted line of Fig. 5, the maximum is shifted into 
the unphysical range 1<γ γ , and a stable solution with a large 
radius L  appears at ( ) < 1Tκ  ( (2D)> cT T ) in agreement with 
the approximation 1=γ γ  and the results of Ref. 4. 

It is instructive to compare 2D ( )W γ  with the similar 
function for channel electrons ch ( )W γ  which can be ob-
tained from Eq. (16) expressing xl  and yl  as functions of γ . 

Remarkably, ch ( )W γ  shown in Fig. 6 also has a maximum 
positioned approximately at the same value of γ . This 
means that self-localization bistability of channel electrons 
and and the appearance of 2D bubbles at a critical point 
with a finite radius have the same origin. The important 
difference is that ch ( )W γ  does not approach unity when 

1γ → , but strongly increases which leads to a solution with 
1yl ≈ . The preliminary analysis indicates that self-

localization bistability exists also for conducting channels 
with a symmetrical confining potential 2( )U r r∝ , and, 
therefore, it can be relevant also to large radius ions in-
duced by a strong magnetic field [2]. 

The theory developed here, as well as the theories re-
ported previously [4,6], disregards the correction to the 
free energy of helium gas proportional to 2( , )n z∇ r  which 
qualitatively can be considered as a sort of surface tension 
contribution. This term is expected to be small for bubbles 
of a large size, but in the opposite limit it can be substan-
tial. This can affect the critical temperature for 2D electron 
bubbles. Anyway, the 2D model obviously cannot explain 
the strong dependence of the critical temperature on the 
strength of the confining potential observed in the experi-
ment conducted using quasi-one-dimensional channels on 
liquid helium [6]. The strong decrease of F∆  with 0L  ob-
tained here for the high-branch solution and shown in Fig. 
5 correlates with these experimental results. Still, there is 
an interesting question whether self-localized states with 

F∆  substantially smaller than T  can affect the mobility of 
channel electrons. The experimental data [6] unambiguous-
ly prove that a sharp reduction of electron mobility exist 
also at 2.5 KT   for sufficiently large 5

0 0.5 10 cmL −⋅ . 
Under these conditions, F∆  is rather small as compared to 
T , and it seems that one can not expect a predominant 
population of bubble states at such low temperatures. 

The electron-bubble states discussed here remind 
fluctuon states of electrons in disordered systems [13,14] 
whose internal parameters can be easily changed. In these 
states, electrons are bound to a fluctuation of density or an 
internal parameter. If fluctuons can be considered as 3D 
quasiparticles, the ratio of equilibrium numbers of self-
localized electrons (fluctuons) and free electrons is propor-
tional (besides the well-known exponential factor) to the 
mass factor 3/2( / )fM m , where fM  is the effective mass of 
a fluctuon [13]. Therefore, for channel electron bubbles 
with the effective mass bM , one can expect that the ratio  

 = exp ,b b

e

N M F
N m T

∆ − 
 

 (31) 

where bN  and eN  are the number of electron bubbles and 
free electrons, respectively. Assuming that the bubble ef-
fective mass bM  is much larger than the free electron mass 
m, we conclude that the ratio /b eN N  can be large even for 
a small binding energy F∆ . In this case, the transition 
temperature observed in the experiment can be associated 

Fig. 6. (Color online) Graphical solution of the equation ch ( ) =W γ κ  
describing channel electron bubbles for = 2000 V/cmE⊥  and 

5
0 = 0.2 10 cmL −⋅ . The dashed horizontal lines represent κ  at dif-

ferent T . Their cross-points with curves representing ch ( )W γ  for 
three different temperatures yield the solutions for γ  shown by cir-
cles. The dotted red line is calculated for 5

0 = 0.5 10 cmL −⋅ . 
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with a sharp increase of the bubble effective mass. Addi-
tionally, it should be noted that channel electrons on liquid 
helium is a highly correlated system, therefore, even a 
small fraction of bN  can substantially reduce conductivity 
of the entire system. 

5. Conclusions 

In this work, we presented the theoretical analysis of 
bubble electron states caused by a dense helium gas in 
quasi-one-dimensional conducting channels over liquid 
helium. The theory reported unambiguously proves that in 
addition to channel ions of a small size found previously 
[6] there is a possibility of existence of channel electron 
bubbles of a large size under usual experimental condi-
tions. These two solutions are shown to be separate, and in 
the transition regime there is a sort of self-localization 
bistability involving metastable states. We established a 
remarkable relationship between the bistability of channel 
electron bubbles and the unusual onset of the 2D bubble 
creation with a finite radius on the free surface of liquid 
helium. These theoretical results explain experimental ob-
servations of self-localized electron states in conducting 
channels over liquid helium at relatively low temperatures 
( 2.5 KT  ) [6]. The free energy of electron bubbles of a 
large size is shown to depend strongly on the strength of 
the transverse confining potential which qualitatively 
agrees with the experimental dependence of the critical 
temperature on the radius of curvature of liquid helium in 
the conducting channels [6]. 

The author acknowledges valuable discussions with 
S.S. Sokolov. 
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Пузирковi стани електронiв в провiдних каналах 
за наявностi гелiевого газу 

Ю.П. Монарха 

Теоретично дослiджено автолокалiзацiю електронiв в 
квазiодновимiрних провiдних каналах над рiдких гелiем, викли-
кана iх взаемодiєю з атомами гелiевого газу. Показано, що в 
таких каналах пузирковi стани електронiв великого розмiру 
можуть iснувати при температурах, iстотно менших, нiж 
критичнi температури, знайденi ранiше для електронних 
пузиркiв в тривимiрних i двовимiрних системах. Показано та-
кож, що перехiд вiд пузиркових станiв великого розмiру до пу-
зиркових станiв малого розмiру не є безперервним, що означае 
наявнiсть метастабiльних станiв i свого роду бiстабiльностi сис-
теми. Приведений теоретичний аналiз пояснює рiзке падiння 
рухливостi електронiв в квазiодновимiрних каналах над рiдким 
гелiем, виявлене при T  2,5 К. 

Ключові слова: пузирковi стани електронiв, гелiевий газ, 
автолокалiзацiя, поверхневi електрони, провiдні канали. 

Пузырьковые состояния электронов в проводящих 
каналах при наличии гелиевого газа 

Ю.П. Монарха 

Теоретически исследована автолокализация электронов в 
квазиодномерных проводящих каналах над жидких гелием, 
вызванная их взаимодействием с атомами гелиевого газа. По-
казано, что в таких каналах пузырьковые состояния электро-
нов большого размера могут существовать при температурах, 
существенно меньших, чем критические температуры, най-
денные ранее для электронных пузырьков в трехмерных и 
двумерных системах. Показано также, что переход от пузырь-
ковых состояний большого размера к пузырьковым состояни-
ям малого размера не является непрерывным, что подразуме-
вает наличие метастабильных состояний и своего рода 
бистабильности системы. Приведенный теоретический ана-
лиз объясняет резкое падение подвижности электронов в 
квазиодномерных каналах над жидким гелием, обнаружен-
ное при T  2,5 К. 

Ключевые слова: пузырьковые состояния электронов, гелиевый 
газ, автолокализация, поверхностные электроны, проводящие 
каналы. 
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