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Channel electron bubbles in low-temperature helium gas
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Self-localization of electrons caused by their interaction with helium vapor atoms in quasi-one-dimensional con-
ducting channels over liquid helium is theoretically studied. We have shown that channel electron bubbles of a large
size can exist at temperatures which are substantially lower than the critical temperature reported previously for
electron bubbles of three-dimensional and two-dimensional electron systems. The transition from a large-size bub-
ble to a small-size bubble is shown to be discontinuous, and a sort of bistability involving metastable states is de-
scribed. The analysis given explains a sharp decrease of electron mobility in quasi-one-dimensional channels on

liquid helium observed at T 2> 2,5 K.
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1. Introduction

Interaction of a free electron with a collection of helium
atoms leads to a remarkable self-localization effect: a lo-
calized electron and a strong reduction of the helium-gas
density in the vicinity of the electron form a self-sustained
complex called electron bubble [1]. The “bubble” concept
explained a sharp decrease of the electron mobility in a
dense helium gas with ny > négD) ~10%tcm3 (T > 3 K),
and helped with interpretation of electron and ion
mobilities in liquid helium. In the presence of a strong
magnetic field, the existence of large radius ions was
shown [2] to be possible at g < néaD). The description of
these ions is similar to the description of one-dimensional
(1D) polarons: any interaction forming a potential well
leads to a bound state. At T > 2.5K, the typical electron
interaction energy with helium vapor Uy is much larger
than temperature, therefore, even a small reduction of the
gas density can cause self-localization.

lons of a large radius coupled to a helium gas density
deformation can exist also in a two-dimensional (2D) elec-
tron system formed on the free surface of liquid helium (or
other cryogenic substrates), if a strong magnetic field is
applied perpendicularly to the interface [3]. In this case
electron localization is induced by external fields, while
electron interaction with the deformation of gas density
just eliminates the degeneracy of the electron spectrum in
the magnetic field. In the absence of the magnetic field, 2D
electron bubbles in helium gas reportedly [4] can appear
only if ny exceeds a critical value néZD) dependent on the
strength of electron localization in the perpendicular direc-
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tion. The theory of these cavities was used to explain local-
ization effects reported for 2D electrons on solid hydrogen
[5] where néZD) is much less than négD). Still, for electrons
bound to the free surface of liquid helium, the critical tem-
perature necessary for self-localization TC(ZD) estimated [6]
for the strong coupling regime appears to be close to that
of the 3D system (TC(ZD) ~ 3 K).

Recently, a strong mobility decrease of electrons
trapped in quasi-one-dimensional channel states over lig-
uid helium was observed [5] at comparatively low temper-
atures T > 2 K. This interesting behavior was attributed to
self-localization of channel electrons in dense helium va-
por. A theoretical analysis and numerical calculations [6]
performed for the strong coupling regime indicated that the
critical temperature Tc(lD) at which self-localization of
channel electrons can appear slightly exceeds 3 K, and it
depends very weakly on the pressing electric field E; . It
should be noted that the relatively small difference in the
critical temperatures found theoretically and in the experi-
ment (about 0.5 K) leads to a substantial difference in criti-
cal vapor densities (about two times) because the saturated
gas density exponentially depends on T. The origin of this
difference requires a theoretical explanation.

In strongly bound self-localized states [6], the electron
localization length along the channel (L,) was shown to be
surprisingly very close to the localization length in the
transverse direction (Ly). These remarkable results are in
contrast with naive expectations triggered by the theory of
large radius ions [2] which yields no density threshold and
Ly > Ly. Therefore, an additional theoretical analysis of
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electron self-localization in quasi-one-dimensional con-
ducting channels over liquid helium is necessary to explain
the differences in theoretical results reported previously
and describe the strong dependence of Tc(lD) on the width
of the conducting channel observed in the experiment [6].

In this work, following [4,6], we consider a theoretical
model which assumes strong electron localization in the
direction perpendicular to the surface caused by the image
potential and pressing electric field. Contrary to the previ-
ous treatments [2,4], the in-plane localization parameters
Ly and L, are not initially restricted by the conditions
Ly =Ly or Ly = Lo, where Ly is the transverse localization
length in the absence of the vapor density deformation.
The electron localization length in the perpendicular direc-
tion L, generally is also affected by the gas density defor-
mation. This model allows us to obtain analytical equations
which, in the weak coupling regime, describe bubble states
of electrons with L, > L, similar to large radius ions [2]
(here we still use the term “bubble state” even if the real
gas density reduction is small). It is important that these
states can exist at temperatures which are substantially
lower than 3 K which explains experimental observations.
At the same time, in the strong coupling regime, our equa-
tions yield L, ~ L, in accordance with numerical calcula-
tions of Ref. 6. Remarkably, the transition between solu-
tions of the weak and strong coupling regimes is
discontinuous, and a sort of bistability involving metasta-
ble states is predicted. Therefore, channel electron bubbles
represent an interesting case for the theory of polaron sys-
tems [7-9].

2. Free energy and basic equations

In the experiment [6], conducting channels with elec-
trons are formed above a liquid helium surface curved
by capillary forces between glass light guides. The elec-
tron wave function in the channel will be considered
as W(R) = f(2)o(y)w(x), where f(z)=2y¥?zexp (—y2)
describes electron localization in the direction perpendicu-
lar to the surface of liquid helium. In the limit of weak
coupling with the vapor atom density, y ~ v, where y; is
determined by the image potential (—A/z) and the electric
field E; . The parameter 1/y; represents the typical locali-
zation length in z-direction L, ~10~%cm. For the strong
coupling regime, one have to consider an increase in y
caused by the gas density deformation. The wave function
o(y) is affected by the transverse confining potential
mmSyZ/Z and by the redistribution of vapor atoms, while
y(x) describes an electron state along the channel.

In order to investigate self-localization of channel elec-
trons, consider the free energy of an electron bubble F
which consists of the electron contribution F, the free
energy of helium gas Fg,, and the interaction term Fp.
According to the conventional treatment [1,2,4,6], the elec-
tron free energy
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where r = (x, y) is a 2D vector, m is the electron mass, in

the absence of the vapor density reduction inside the bub-
ble, the frequency w determines the transverse localiza-

tion length Ly = /Ai/maeg , and
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represents the free energy of an electron due to its motion
in the perpendicular direction. The function f(z) does
not enter the integrand of Eq. (1) because of the normali-
zation condition J|f(z)|2 dz =1, still it was used for ob-
taining F, (y).

Considering the collection of vapor atoms as an ideal
gas, we can define the free energy of vapor atoms as

Fyas =InT In[g(T)n}dsR, (2)

where R =(r,z) is a 3D vector, n(R) is the local gas

density,
1 2mi2 |
TC
T)== ,
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e is Euler’s number, and M is the mass of a helium atom. The
interaction term depends on the electron wave function

2nh’a,
m

2
Fint = [n(R)¥(R) d°R, 3)
where ag ~ 0.62-108cm is the scattering length.

The helium gas density deformation is determined by a
sort of barometric formula [1]
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originating from variation of F with respect to n. Here ny
is the equilibrium density and
Znhzaon
Up = Tg ®)

is the typical interaction energy. Using Eq. (4), Fgas + Fint
can be transformed into

Fyas + Fint = NgT In[g(T)ng]x

xjexp[—:—?r|‘P(R)|2Jd3R, (6)
g

where  In[g(T)ng]<0. For saturated

In[g(T)ng]=-(@1+Q/T), where Q is the vaporization

pressure,

energy.
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Self-localization can appear when a change of the free
energy caused by localization AF =F(Ly,Ly,y)-
—F(o,Lg,v1) becomes negative (here L, and L, are lo-
calization lengths in the in-plane directions, and y — vy, if
the gas density deformation is absent). Taking into account
that the first two terms of the series expansion of Eq. (6)
are independent of L,, Ly, and y, one can represent
AFgas + AR s

AFgag + Ay = —ngTIn[ g (T

)ng ] X
U U
xj [exp[—%—(_)r|‘l’|2j—1+%—?r|‘P|2]d3R. )

This correction is responsible for the energy gain caused
by localization.

In order to obtain AR, as a function of the localization
parameters, we shall use the following trial wave functions

(y)= =+ e e 8)
o LN e P 2.2 )

W(x):ﬁexp —X—ZZ : 9)
T Ly 2L5

and assume that f (z) has the same shape as in the absence
of the gas density deformation (still, the actual value of y
to be found by variation). In this treatment,
AR = Fi(Ly, Ly, v) — Fer (00, Ly, v1) has a simple form

2 2 molll 2
AFe|:h2+h2+ Oy—h2+
4mly - 4mLy 4 2mL§
+F(v)=FL(n)- (10)

The fourth term in the right side of Eq. (10) represents the
energy of zero-point vibrations 7iwq/2 extracted. Obvious-
ly, the right side of Eq. (10) becomes zero when L, — oo,
Ly > Lo and y —y5. A finite L, together with Ly <L,
and y > y; only increase the positive contribution AF.

For the trial wave functions of Eqgs. (8) and (9), the
contribution AFy,s + AR given in Eqg. (7) can be repre-
sented as

AFgas + ARy =

2.
—Z%UO‘In[g(T)ng ]‘G[EGLYyJ, (11)

where 7 = yly,, Ré = 2h2a0y1/mT and

G(X):éi (D)7 (2n+2)! o

12
a1 (n+1)(n+1)>" -

The function G(x) differs from the similar function ®(x)
defined previously [6] only by the normalization factor
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2°/3 introduced for further convenience. The length pa-
rameter R has a weak dependence on temperature and

Rg(2.5K)~25-10""cm for
Rg(25K)~3.1-10'cm  for

usually it is very small:

E, =100V/cm, and
E, =2000Vv/cm.

Variation of AF with respect to ¥, LX, and L, yields three
equations containing the derivative G’ (RGy/L y). This de-
rivative can be expressed from the equation 8AF/6LX =0 and
inserted into equations 0AF /oy =0 and 0AF/oLy = 0. This
procedure yields two simple relationships:

3
-3 Y0 -2 1 . YE_
1 viloly 71
12
2= (14)
o

where we introduced two dimensionless localization
lengths 1, = Ly /Ly, Iy = Ly/Lg, and two characteristic pa-

rameters yg = (3meEl/2hZ)1/3 and yq = mA/A?. It should

be noted that Eq. (14) was already given in Ref. 6. Equa-
tion (13) is a cubic equation whose solution can be found
in an analytical form. Together with Eq. (14) it establishes
the dependence 7(y). It is worth noting also that the all

parameters of these two equations do not depend on tem-
perature, if we neglect the weak temperature dependence
of the dielectric constant entering A.

Inserting the functions | (I ) and ¥(l,) given above in-
to the expression for G (RGy/L y) We obtain the final
equation for the dimensionless Iocalization length I,

Wep (Iy ) = (T), (15)

where we introduced the following notations

)=6 RG\/T

Wep (1y (16)

\/1— 14
and

_ amT '
3nng ‘In[ngg(T)]‘hzagyl

A7)

The dimensionless parameter « depends strongly on tem-
perature. It is large at low temperatures, and it becomes of
the order of unity when T ~ 2.6 K. Obviously, it decreases
with the pressing electric field because « oc 1/y;.

The parameter « plays an important role in the descrip-
tion of self-localization of channel electrons and establish-
es its remarkable relationship with self-localization in the
pure 2D electron system. For example, the characteristic
temperature T, defined by the equation «(T) =1 coincides
with the critical temperature TC(ZD) of self-localization in-
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duced by helium gas density in the pure 2D electron sys-
tem (y is fixed to y;) which is defined by the condition

Ng = n§2D), where [4]

amT

n@D) = .
:’m‘ln[g(T)ng ]‘hzaéy

(18)

Therefore, formally we can write k = néZD) Ing, though, as
correctly stated in Ref. 6, for 2D electrons on liquid heli-
um, it is impossible to fix y to vy, and the real critical pa-
rameters TC(ZD) and néZD) are determined by different equa-
tions. In the pure 2D system, electron bubbles can appear
only if ng > néZD) when the parameter « is less than unity.
There are no 2D electron bubbles at low temperatures where
«(T) > 1. For channel electrons with the transverse confining
potential, the possibility of existence of electron bubbles at
«(T) > 1 requires a detailed investigation of Eq. (15).
The saturated vapor density is usually described by

ng = (MT | 2mh? )3/2 e QT

In calculations of the present work, the vaporization energy
Q is fixed to 7.36 K in order to fit the experimental data
[10] on the saturated density of helium gas at T ~3 K. An
alternative formula [11] based on fitting experimental data
[12] gives somewhat smaller values of ng if T > 2 K.

3. Channel ions of a large size

First, it is reasonable to consider the limit of strong
electron binding to the interface and to assume that at low
enough ngy the parameter y is not affected by the gas den-

sity deformation (§ =1). This assumption is based on the
fact that the third term of Eq. (13) is small if ylzL% >1and

I, >1. The 3D effects in electron self-localization will be
described in the next Section. Under conditions of the ex-
periment [6], Rg < Ly, and, therefore, the parameter
Ré /L% entering the argument of G in Eq. (16) is very
small. Additionally, for large «(T) the left side of Eq. (15)
can be compared with «k only if I, —1 when the argument

4
y

entering Wey, (1) strongly increases. In this limiting case,
Eq. (15) and Eq. (15) yield the simplest solution

1 1/4
ly :(1——2j e =xly. (19)
K

of G' approaches zero (G’ — 1) while the factor 1/,/1-1

If the system is cooling, the parameter «(T) increases
and, therefore, I, -1 (L, — Lg) while I, becomes much
larger than unity (L, > Lg). In the opposite limit, when
«(T) —1, the both localization lengths I, and I, are rap-
idly shrinking.
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The sharp decrease of ly at T — T, means that the ap-
proximation G'(x) ~1 used for obtaining Eq. (19) fails in
the vicinity of T =T,. Since the next term in the sum of
Eg. (12) has the opposite sign, it reduces the shrink effect.
Thus, we have to consider a more accurate approximation:
G’(x)zl—285x/38. In this case, the omitted terms can
only increase G(x) and the effect of self-localization. In-
serting this approximation of G'(x) into Eq. (16) we obtain
a quartic equation for Ii:

8 6 1 52)4 2 02 -
ly +2Qly —[1—](—2—(2 jly —-20l5 -Q° =0, (20)
where
8 2
Q= (Zj & (21)
3) 2
Using Eqgs. (20) and (14) it is possible to find another use-
ful relationship
Q
I, = {1+|—2]Kly, (22)
y

valid only for the approximation G'(x) ~1-285x/38. This
equation extends the asymptote of I, given in Eq. (19).

The temperature dependent parameter Q is very small
(usually ©<0.02). Still, it is necessary to keep it in
Eqg. (20) to extend the solution to the range T ~T,. The
numerical evaluation of Eq. (20) is not difficult, still it is
possible to find a simple analytical solution valid up to the
point T =T,. Neglecting the two terms proportional to Q2
in Eq. (20) allows reducing this equation to a cubic equa-
tion whose solution can be represented as

2= 1 2cos(B) 20

y = _K_Z—\/§ 3 (23)
\/§(Z+1/K2)Q
B = —arccos — =7
2
3 (1—1/|< )

Numerical calculations indicate that the analytical solution
of Eq. (23) practically coincides with the exact solution of
Eq. (20) even at T — T,. Similarly, it is easy to find also an
analytical solution valid at T >T, but in this range soon
one needs to consider the higher terms of the expansion
series of Eq. (12).

The numerical solution of Eq. (20) is shown in Fig. 1 as
a solid (blue) line. In this figure, the analytical solution
given in Eq. (23) cannot be distinguished from the numeri-
cal solution up to T = 2.66 K. As expected, the asymptote
of Eqg. (19) (dotted blue line) deviates from the solid line
when the parameter «(T) — 1. It is noticeable also that at
T <T, the localization length along the channel I,(T)
(dashed red line) increases with lowering T much faster

Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 10
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Fig. 1. (Color online) The dimensionless localization lengths
Iy and Iy vs temperature calculated for E; =2000V/cm,
Lp=0.2-10" S¢m and different approximations: the asymptote of
Eq. (19) based on the one-term approximation for G(x) (dotted
blue line), the solution of Eq. (20) based on the two-terms
approximation for G(x) [solid blue (ly) and dashed red (Iy)], the
numerical solution of Eq. (15) using the exact form of G(x)
(solid olive line).

than ly(T) whose value is limited by 1. The critical point
T =T, is shown by the vertical pink arrow which separates
the regimes of the weak and strong coupling.

The numerical solution of Eq. (15) including the all
terms of the function G(x) and using the assumption
v = v; (electron localization in the vertical direction is not
affected by the vapor density deformation) is shown in
Fig. 1 as the solid (olive) curve. At low temperatures (
T <T,) this solution coincides with the solid blue curve
obtained employing only two first terms of the sum given
in Eq. (12). In the opposite regime (T >T,), it is situated
a bit lower than the numerical solution of Eq. (20). It is
remarkable that in this regime the analytical solution of the
reduced cubic equation (similar to that given in Eq. (23))
accidentally is close to the exact solution represented by
the olive curve. Anyway, we can conclude that the first
two terms of G'(x) give reasonable description of elec-
tron self-localization in a wide range of temperatures if y
is fixed to y;.

With an increase of Ly the transition range near T =T,
becomes sharper, and in the limiting case Ly — oo, the
solution of Eq. (20) transforms into the solution of the pure
2D problem [4]. Since the parameter « defined by Egs.
(17) and the critical density né D) depend on the eIectron
localization length in the perpendicular direction L, ~y1 )
the critical temperature T, decreases with the pressing elec-
tric field E;. Under typical experimental conditions, T,
can be varied from about 3.2 K (E; =100 V/cm) to about
2.7 K (E; =2000 Vicm).
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Inserting the solutions 1, and I, obtained into
AF = AFg + AFg,s + ARy determined by Egs. (10) and
(11) we found that AF(T) <0 for all temperatures. If
T=T. and Ly=02: 10°cm, the absolute value
|AF(T,)|~1K. The binding energy |AF(T)| decreases
strongly with Ly and for Ly =10~ 4cm it becomes very
close to the binding energy of 2D electron bubbles ob-
tained neglecting changes in y induced by localization:

‘In[ngg (T )]‘ nghzao [l— n@P) Jz 29

4m Ng

AF@D) =

where ng > néZD) and

= i(éjg ~06
20\ 2

Thus, the theory based on the assumption y = y; indicates
that channel electron bubbles (their localization lengths
and the free energy) continuously transform into pure 2D
electron bubbles with a strong decrease in the transverse
confining potential. On the other hand, Fig.1 indicates that
in the channel geometry, there is no a threshold for the
electron bubble creation which differs from the result ob-
tained for 2D bubbles [4,6]. Therefore, the electron bub-
bles of large size are possible in a channel geometry at low
temperatures where the parameter «(T) is large.

4. 3D effects and self-localization bistability

A very important result was obtained in Ref. 6: for elec-
trons on liquid helium near TC(ZD), the vapor density defor-
mation affects crucially the electron localization length in
the perpendicular direction L, and Eq. (24) becomes inap-
plicable to the electron system. This means that describing
channel electron bubbles at T ~ T, we have to consider 3D
effects and take into account changes of y induced by the
gas density deformation.

In the general case, we need to solve Eq. (15) taking in-
to account the increase of the localization parameter y in-
duced by self-localization. Already the structure of Eq. (13)
indicates that a substantial increase in ¥ above the unity

should lead to a strong decrease of I, and I,. The cubic
equation for ¥ can be solved analytically
13 1/3
:(q+«/5) +(q—\/5) +Y—°, (25)
311
where
4
3 — 3
q(ly)z—y°3+—y°(2 2|y2)+LE3, (26)
27y;  12vilgly  2yg
3
2 3(1-13
1 |70 ( y)
P(I,)=q?(1,)-—| &+ "21| . (27)
y y
)= ) e oz
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The function P(ly) changes its sign at I =I; =0.142
(for Lo =0.2.1O’50m) becoming negative if I, <I;. For
P <0, the solution has a trigonometric form similar to that
found in the preceding Section for I, [Eq. (23)].

The dependence y(l) found above should be inserted
into Egs. (16). Thus, the final equation for ly has the form
Wen(ly) =, where Wey(ly) includes the all terms of
G'(x). The solutions of this equation for three typical tem-
peratures are illustrated in Fig. 2. As expected, the function
Wen Iy, T) depends rather weakly on temperature (here we
fixed dielectric constants of liquid helium and vapor to their
values at T = 2.5 K). Changing T affects noticeably Wep (1)
only in the range of small I, (I, < 0.2). At the same time, the
parameter «(T) shown in Fig. 2 by three horizontal lines has
a very strong dependence on T . Therefore, at a low tempera-
ture (for example, T = 2.25 K) there is only one solution of
the equation Wep, (1) = « illustrated in the figure by the olive
circle. At the chosen temperature (T = 2.25K) the intersec-
tion of the horizontal line 1 (2.25K) with W, (1) approxi-
mated by the assumption ¥ =1 (black dotted line) yields prac-
tically the same result for 1.

Contrary to the curve calculated for ¥ =1, the exact
function Wep (Iy) is not monotonous, and in a certain tem-
perature range there are three solutions of the equation
Wen (Iy) = x, as shown in Fig. 2 for T = 2.56 K. Only two
of these solutions indicated by filled red circles represent
minima of AF. Therefore, in this temperature range, there
is self-localization bistability, and the transition to the
strong coupling regime is not continuous. At substantially
higher temperatures, there is only one solution with a small

1.8

K(2.25 K)

1.6 -

1.4

1.2

W(l,)

1.0

0.8

0.6 1

Fig. 2. (Color online) Graphical solution of the equation
Wch(ly) =« [Eq. (15)] for Ly =0.2-10°cm and three typical
temperatures. The dashed horizontal lines represent « at different
T. Their cross-points with curves representing Wep, (Iy) yield the
solutions for Iy shown by circles. The black dotted curve repre-
sents Wep (Iy) for the approximation y = y1. The black solid curve
is calculated for the pure 2D system with y = vy4.
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ly indicated in the figure by the blue circle calculated for
T =3K. In this range, the approximate solution given by
the intersection with the dotted curve deviates substantially
from the exact solution.

The numerical solutions of the equation Wep (Iy) =«
are shown in Fig. 3 as functions of temperature. In the limit
of low temperatures, the high branch shown by the solid
blue curve approaches the approximate solution obtained
for the assumption 7 =1 (dotted curve). The low branch
shown by the solid red curve is quite distant from the dot-
ted curve. The transition from the high branch to the low
branch obviously cannot be continuous. Figure 3 indicates
that there is a bistability range restricted by two vertical
arrow-lines. Here we still use the term “bistability” in spite
of the fact that at certain temperatures the branches can
become metastable.

The free energy gain AF induced by self-localization is
shown in Fig. 4 for different values of the transverse con-
fining potential indicated by different Ly. The two branch-
es are shown by separate lines of the same color. For
Ly = 0.2-107°cm, the high and low branches (black solid
lines) have a cross-point at about 2.54 K. At higher tem-
peratures, the high-branch line becomes metastable, and
eventually it reaches the end-point. On the left side from the
cross-point, the low-branch line is metastable and, moreo-
ver, soon AF becomes positive. With an increase of L, the
cross-point shifts up and right as shown by dashed (blue,
L, =0.3-10°cm) and dash-dotted (olive, Ly =10">cm)
lines. The high-branch line eventually (Ly — o) approaches
the zero line, while the low-branch line approaches the
solid red line calculated for the 2D electron system. In
should be noted that in Fig. 4, the low-branch line calculat-
ed for Ly = 10™>cm cannot be distinguished from the red
line calculated for Ly = 0.

r high
— low
I - YT
[, high
NA I .‘.u
0.5+
0 1 1 1 1 1 1 1 1 1
2.5 3.0
T, K

Fig. 3. (Color online) The numerical solutions of Eq. (15) Iyﬂ')
calculated for Lg = 0.2-10°cm . The dotted line represents the
result of the approximation y =y .
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...................
.......

L H | L
2.4 2.6 2.8
T, K

Fig. 4. (Color online) The free energy gain AF caused by self-
localization vs temperature calculated for different transverse
confining potentials indicated in the legend by Ly in units
10~2cm . The dotted red line represents the unstable (US) solu-
tion of the 2D electron system. The dash-dot-dot line represents
the asymptotic solution [4] (AS) based on the assumption y = y1
and given in Eq. (24).

The solid red line (Ly = ) in Fig. 4 obtained using the
all terms of the function G(x) remarkably has nothing in
common with the result of calculations based on the as-
sumption y = y; and restricted by the first two terms of the
sum defining G(x) in Eqg. (12) (wine dash-dot-dot line).
This seems strange and requires additional explanations
because, for a large in-plane localization radius
Locl/ /ng —n, (this can also be seen from the solid black

line of Fig. 2), the argument of the function G(x) is small.
This means that the usual self-verification procedure fails
in this particular case.

The free energy AF of the 2D electron system with y
affected by self-localization is described by two parame-
ters: ¥ and the in-plane localization radius L. These pa-
rameters satisfy two equations which are found similar to
Egs. (13) and (15):

1 22 i 3
=P Tog2 TE (28)
L Y T1 Y1
Wop (371 L) = K(T)’ (29)
where
/[ R§7
Wop (‘7’ L) =7G ? ) (30)

and the parameters «(T) and Rg are defined above. Re-
markably, the expression for W, can be also obtained
directly from Eq. (16) for Wy, considering the limiting case

Ly — o which allows us to neglect I§ in the square root ex-
pressions. Here, it is instructive to solve Eq. (29) with regard
to the parameter ¥ by inserting Eq. (28) into Eq. (30). The
resulting equation W, () = « is solved numerically, and its
solutions are shown in Fig. 4 by the solid and dotted red lines.
The dotted line represents an unstable solution given here by
way of illustration. The solid red line represents a stable solu-
tion obtained using the all terms of G(x).

It is interesting that the solid red line of Fig. 4 is shifted
substantially to the left from the result based on the asymp-
totic form of G(x) and it does not approach the critical
point T, defined above by the condition ny = néZD). This
strange situation is explained by Fig. 5 where the resulting
function W, (7) is shown for three different temperatures.
It is very important that for electrons on liquid helium the
function W, (7) has a maximum in the range y/y; >1.
Therefore, when «(T) meets this maximum, 2D electron
bubbles appear already with the parameter y which is sub-
stantially larger than vy, and, therefore, with a finite (!) ra-
dius L determined by Eq. (28). In a certain temperature
range, there are two solutions of the equation W, (7) = x
shown in Fig. 5 by red circles. The left circle represents an
unstable solution (here L increases with T) which can
reach the point T,, as illustrated in Fig. 4 by the red dotted
curve. The stable solution (the red filled circle) appears at
T <T, and it eventually leads to AF <0 (see the red solid
line in Fig. 4).

It should be emphasized that for 2D electrons on liquid
helium, the self-verification procedure of finding a solution
of the equation W, (L) =« is not sufficient and it can
bring to a wrong result. For example, assuming that at a
critical point 2D electron bubbles appear with a large radi-

K(2.35 K)

(2.57 K)

Y,

Fig. 5. (Color online) Graphical solution of the equation
Wop (7) = x describing 2D electron bubbles for E; = 2000 V/cm.
The dashed horizontal lines represent «k at different T . Their
cross-points with curves representing Wop () at three tempera-
tures yield the solutions for ¥ shown by circles. The dotted pink
curve represents Wop (y) for electrons on solid hydrogen.
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us L, we seemingly can neglect 112 in Eqg. (28), obtaining
v = vy, and disregard higher terms in the expansion series
for G'(x). As a result, one obtains L% >0 when
ng — néZD) which justifies the initial assumption. The later
is valid also for the exact form of G (x), as can be seen
from the solid black curve (marked with 2D) in Fig. 2.
Nevertheless, the accurate solution, taking into account 3D
effects, at the critical point leads to a finite and rather small
L ~3.4-10~" cm, as follows from Fig. 5. This means that a
sort of polaronic phase transition can exist in the 2D elec-
tron system on liquid helium.

We compared W, as the function of L (properly nor-
malized) with the respective curve Wey, (1)) given in Fig. 2
and found that W, (L/Lg) practically coincides with the
solid red curve in the range I, <0.3 which includes the
maximum. At larger L/Ly, it decreases approaching unity
from the upper side, in contrast with the solid black curve
(2D) calculated for y = y;.

Another important point is that the position of the maxi-
mum of W, () strongly depends on R and v, shifting left
when y; increases. For the 2D electron system on liquid heli-
um, v, is relatively small, and, therefore, the maximum ap-
pears at y/y; >1. The situation changes drastically for elec-
trons on the surface of solid hydrogen. In this case, as shown
by the pink dotted line of Fig. 5, the maximum is shifted into
the unphysical range y < y;, and a stable solution with a large
radius L appears at «(T) <1 (T >TC(2D)) in agreement with
the approximation y = y; and the results of Ref. 4.

It is instructive to compare W, (¥) with the similar
function for channel electrons W, (y) which can be ob-
tained from Eq. (16) expressing I, and ly as functions of .

K(2.35 K)

14

Wch(y/ Y1 )

Y

Fig. 6. (Color online) Graphical solution of the equation Wy, (¥) = «
describing channel electron bubbles for E; =2000V/cm and
Lp=0.2 :1075¢m . The dashed horizontal lines represent « at dif-
ferent T . Their cross-points with curves representing We, (7) for
three different temperatures yield the solutions for ¥ shown by cir-
cles. The dotted red line is calculated for Ly = 0.5 107¢em.
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Remarkably, W, () shown in Fig. 6 also has a maximum
positioned approximately at the same value of §. This
means that self-localization bistability of channel electrons
and and the appearance of 2D bubbles at a critical point
with a finite radius have the same origin. The important
difference is that Wy, (¥) does not approach unity when
¥ — 1, but strongly increases which leads to a solution with
ly ~1. The preliminary analysis indicates that self-
localization bistability exists also for conducting channels
with a symmetrical confining potential U(I’)ocrz, and,
therefore, it can be relevant also to large radius ions in-
duced by a strong magnetic field [2].

The theory developed here, as well as the theories re-
ported previously [4,6], disregards the correction to the
free energy of helium gas proportional to |Vn(r, z)|2 which
qualitatively can be considered as a sort of surface tension
contribution. This term is expected to be small for bubbles
of a large size, but in the opposite limit it can be substan-
tial. This can affect the critical temperature for 2D electron
bubbles. Anyway, the 2D model obviously cannot explain
the strong dependence of the critical temperature on the
strength of the confining potential observed in the experi-
ment conducted using quasi-one-dimensional channels on
liquid helium [6]. The strong decrease of |AF| with Ly ob-
tained here for the high-branch solution and shown in Fig.
5 correlates with these experimental results. Still, there is
an interesting question whether self-localized states with
|AF| substantially smaller than T can affect the mobility of
channel electrons. The experimental data [6] unambiguous-
ly prove that a sharp reduction of electron mobility exist
also at T ~ 2.5 K for sufficiently large Ly 2> 0.5-10°cm.
Under these conditions, |AF| is rather small as compared to
T, and it seems that one can not expect a predominant
population of bubble states at such low temperatures.

The electron-bubble states discussed here remind
fluctuon states of electrons in disordered systems [13,14]
whose internal parameters can be easily changed. In these
states, electrons are bound to a fluctuation of density or an
internal parameter. If fluctuons can be considered as 3D
quasiparticles, the ratio of equilibrium numbers of self-
localized electrons (fluctuons) and free electrons is propor-
tional (besides the well-known exponential factor) to the
mass factor (M ¢ my¥2 where M ¢ is the effective mass of
a fluctuon [13]. Therefore, for channel electron bubbles
with the effective mass My, one can expect that the ratio

Np _ My (AF)
I el TPV iy 31
N m T @

where N, and N, are the number of electron bubbles and
free electrons, respectively. Assuming that the bubble ef-
fective mass My, is much larger than the free electron mass
m, we conclude that the ratio Ny, /N, can be large even for
a small binding energy |AF|. In this case, the transition
temperature observed in the experiment can be associated
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with a sharp increase of the bubble effective mass. Addi-
tionally, it should be noted that channel electrons on liquid
helium is a highly correlated system, therefore, even a
small fraction of Ny, can substantially reduce conductivity
of the entire system.

5. Conclusions

In this work, we presented the theoretical analysis of
bubble electron states caused by a dense helium gas in
quasi-one-dimensional conducting channels over liquid
helium. The theory reported unambiguously proves that in
addition to channel ions of a small size found previously
[6] there is a possibility of existence of channel electron
bubbles of a large size under usual experimental condi-
tions. These two solutions are shown to be separate, and in
the transition regime there is a sort of self-localization
bistability involving metastable states. We established a
remarkable relationship between the bistability of channel
electron bubbles and the unusual onset of the 2D bubble
creation with a finite radius on the free surface of liquid
helium. These theoretical results explain experimental ob-
servations of self-localized electron states in conducting
channels over liquid helium at relatively low temperatures
(T ~25K) [6]. The free energy of electron bubbles of a
large size is shown to depend strongly on the strength of
the transverse confining potential which qualitatively
agrees with the experimental dependence of the critical
temperature on the radius of curvature of liquid helium in
the conducting channels [6].

The author acknowledges valuable discussions with
S.S. Sokolov.
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My3npkoBi CTaHU eneKkTPOHIB B NPOBIAHNX KaHanax
3a HasiBHOCTI renieBoro rasy
KO.M. MoHapxa
TeoperHdHO  JOCIIIKCHO — ABTOJIOKANI3ALiI0  ENEKTPOHIB B
KBa3i0IHOBUMIPHHUX MPOBIIHUX KaHAJIAX HAJ PIIKUX rellieM, BUKIU-
KaHa iX B3aeMOJi€r0 3 aroMamu reiieBoro rasy. Ilokasaso, 1o B
TaKUX KaHajlaX ITy3UPKOBI CTaHM EJIEKTPOHIB BEIHKOIO PO3MIpy
MOXYTh ICHyBaTH NpH TeMIepaTrypax, IiCTOTHO MEHIINX, HiX
KPUTHYHI TEMIIepaTypy, 3HAWICHI paHilie Uil  eJeKTPOHHHX
Iy3UpKiB B TPHBUMIPHHX 1 JBOBHMIpPHHX cHcTeMax. [lokazaHo Ta-
KO, L0 TIepeXi/l BiJ My3UPKOBUX CTAaHIB BEJUKOrO PO3MIpY IO ITy-
3UPKOBHX CTaHIB MaJOro po3Mipy He € Ge3lepepBHHM, IO O3HAYae
HasIBHICTh METAaCTa0UIBHUX CTaHIB i CBOrO pofy 0icTabiibHOCTI cHc-
temu. [IpuBeneHni TeOpeTHYHMI aHAJ3 MOSICHIOE Pi3Ke MamiHHS
PYXJIMBOCTI €JICKTPOHIB B KBa3i0OJHOBUMIPHUX KaHajaX Haj PiaKum
remieM, BusiBieHe ipu T 2 2,5 K.

KirouoBi ciioBa: my3WpKOBI CTaHH ENEKTPOHIB, TeNieBHi ras3,
aBTOJIOKAI3ALlisl, TOBEPXHEBI €IEKTPOHH, TIPOBiHI KaHAJH.

|_|y3blpbKOBbIe COCTOAHNA 3N1EKTPOHOB B NpoBOAALLNX
KaHanax npu Hanun4nm rerimeBoro ra3a

KO.M. MoHapxa

Teopernyecku HcceOBaHAa aBTOJIOKANIU3ALUS 3ICKTPOHOB B
KBa3MOJAHOMEPHBIX MPOBOASAIIMX KaHAAX Haj JKUJIKUX TelHeMm,
BBI3BAaHHAs UX B3aUMOJECHCTBHEM C aTOMaMH reieBoro rasa. Io-
Ka3aHo, YTO B TaKUX KaHaJaX ITy3BIPHKOBBIE COCTOSHHS BIIEKTPO-
HOB OOJIBIIIOTO pa3Mepa MOTYT CYyIIECTBOBATh IIPH TeMIIepaTypax,
CYLIECTBEHHO MEHBIIHNX, YeM KPHTHYECKHE TEMIIEpaTyphl, Hail-
JICHHBIC paHee UL DJIECKTPOHHBIX ITy3bIPHKOB B TPEXMEPHBIX U
JBYMEPHBIX cucTeMax. [Toka3aHo Takxke, YTO MePexo]] OT My3bIpb-
KOBBIX COCTOSIHMI OOJIBIIOrO pa3sMepa K IMy3BIPHKOBBIM COCTOSTHH-
SM MaJIOTO pa3Mepa He SIBISETCS HEMPEPBIBHBIM, UTO MOJpa3yMe-
BacT HalMYHe MeTacTaOMIBHBIX COCTOSIHUM M CBOETO poja
OucTaOMIBbHOCTH cUcTeMbl. [IpuBeneHHBIN TeopeTHdeckuil aHa-
a3 OOBACHAET PEe3Koe MaJeHHE IOJBMKHOCTH DJIEKTPOHOB B
KBa3HOJHOMEPHBIX KaHaJdaX HaJ >KHUIKHUM TelueM, oOHapyXeH-
moempu T 2 2,5 K.

KiroueBble cioBa: My3BIPHKOBBIE COCTOSHUS JIEKTPOHOB, TeUEBBIH
ras, aBTOJOKAIU3ALMs, HOBEPXHOCTHBIC 3JIEKTPOHBI, IPOBOASAIIME
KaHaJbL.
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