Спектры ЭПР четырехъядерного молекулярного комплекса симметрии *D*_{4*h*}

А.В. Журавлев

Донецкий физико-технический институт НАН Украины, пр. Науки, 46, г. Киев, 03680, Украина E-mail: alexander.zhuravlev01@gmail.com

Статья поступила в редакцию 27 апреля 2018 г., опубликована онлайн 26 сентября 2018 г.

Исследованы спектры ЭПР четырехъядерного молекулярного магнетика симметрии D_{4h} с ферромагнитным взаимодействием ближайших соседей и локальными взаимодействиями: Дзялошинского–Мориа (ВДМ), аксиальной и азимутальной анизотропией с учетом симметрии комплекса s = 1/2 ионов. Описана эволюция спектров ЭПР спинового тетрамера в зависимости от величин параметров спин-спиновых взаимодействий. Рассмотрено влияние спинового смешивания на расщепление линий спектра как внутримультиплетных, так и межмультиплетных переходов. Получены простые соотношения, связывающие параметры изотропного обменного взаимодействия, ВДМ и локальной анизотропии с соотношениями частот определенных линий спектра.

Ключевые слова: спиновый тетрамер, мультиплет, анизотропия, спин-спиновых взаимодействие.

1. Введение

В работе [1] нами проведены подробные исследования энергетических спектров и состояний s = 1/2 четырехъядерных молекулярных магнетиков (спиновых тетрамеров) симметрии D_{4h} при наличии взаимодействия Дзялошинского, аксиальной и азимутальной (двухосной) анизотропии в представлении локальных спин-спиновых взаимодействий. Большой интерес представляет сравнение выводов [1] с результатами экспериментальных исследований спиновых s = 1/2 тетрамеров. Одним из методов, позволяющих восстанавливать энергетические спектры и спиновые состояния, являются анализ спектров ЭПР молекулярных комплексов.

Спиновые кластеры, содержащие четыре иона с s = 1/2, исследованы теоретически [2–6] с использованием теории представлений группы вращений и техники неприводимых тензорных операторов. Построены схемы расщепления уровней энергии и формирования спиновых состояний тетрамеров под влиянием аксиальной и двухосной анизотропии, антисимметричного и альтернированного обменного взаимодействия. Используемые ограничения приближения сильного обмена [2–5] или изучение отдельно взятых мультиплетов [6] не позволили выявить эффекты смешивания спиновых состояний, и смешивания волновых функций состояний разных мультиплетов [1]. Влияние спин-спиновых взаимодействий на энергию уровней со спиновым смешиванием, при правильном описании остальных уровней, либо проигнорировано [6], либо описано некорректно [2–5].

К настоящему времени синтезировано и экспериментально исследовано большое количество комплексных металлоорганических соединений — тетрамеров меди, Cu(II)4, [7–15]. К сожалению, только небольшое число из них имеют ядро в форме правильного квадрата или близкую к ней [8–12,14], что позволяет провести сравнение экспериментальных данных с теоретическими результатами [1–6].

Четырехъядерный комплекс {[Cu(μ -L⁴)(H₂O)]-(ClO₄)}₄ (**1**) (HL¹ — 4-аминомасляная кислота) [8] с ядром, искажения которого находятся на линии $D_{4h}-T_d$, ближе к D_{4h} , имеет одну практически изотропную линию 3-см порошкового ЭПР без особенностей на ней, с фактором спектроскопического расщепления g = 2,12. Аналогичный спектр с g = 2,11 получен для соединений [Cu₄(PyPzOAP)₄](NO₃)₄ (**2**), [Cu₄(PzOAP)₄](ClO₄)₄ (**3**), (на основе бидентантных лигандов пиразола (PzOAP) с ядром Cu(II)₄ в форме квадрата [9]. Радикал нитронил нитроксида (HLnit) и амидиноксид (L2) формируют вытянутый тетраэдр с четырьмя ионами Cu(II) (**4**) в углах квадрата и строго перпендикулярными орбиталями $d_{x^2-y^2}$ [10]. Наблюдаемый в 8-мм диапазоне спектр

соответствует $g \cong 2,13$ при сложной форме линии. Ком-

плекс четырех лигандов бис(бипиридил)пиримидина с несколькими дополнительными радикалами и четырех ионов Cu(II), образующих почти идеальный квадрат для метилового и H-радикала (5), показывает в 8-мм диапазоне орторомбический спектр ($g_x = 2,209$, $g_y = 2,180$ и $g_z = 2,014$) с линией сложной формы [11]. Обнаружена слабая линия ЭПР сложной формы с удвоенным фактором спектроскопического расщепления [11]. В 3-см диапазоне для этих соединений наблюдается одна линия ЭПР без особенностей, что позволяет предположить отсутствие достаточного разрешения на данных частотах, возможно, как и в других соединениях с «изотропным» спектром [8,9].

В данной работе проведено исследование спектров ЭПР s = 1/2 спинового тетрамера симметрии D_{4h} (СТ- D_{4h}) в переменных локальных обменных и обменно-релятивистских спин-спиновых взаимодействий. Для СТ- D_{4h} вследствие его высокой симметрии сохраняется лишь 4 члена локально-анизотропного гамильтониана [16] не выше второго порядка по спину: изотропный обмен, взаимодействие Дзялошинского–Мориа (ВДМ), аксиальная и локальная азимутальная (двухосная) составляющие магнитной анизотропии. Спектры ЭПР исследованы для ориентации радиочастотного магнитного поля вдоль связи первой пары ионов комплекса.

2. Спиновый гамильтониан в компонентах локальных взаимодействий с учетом симметрийных ограничений

Гамильтонианы $CT-D_{4h}$ и в представлении лабораторной или молекулярной системы координат (МСК), и в представлении локальных систем (ЛСК) выглядят аналогично:

$$\hat{\tilde{H}} = \sum_{i} \hat{\tilde{H}}_{i} = \hat{\tilde{H}}_{is} + \hat{\tilde{H}}_{ax} + \hat{\tilde{H}}_{az} + \hat{\tilde{H}}_{as} + \hat{\tilde{H}}_{Z} , \qquad (1)$$

где все \hat{H}_i (*i* — индекс вида взаимодействия) соответствуют по порядку изотропному спин-спиновому взаимодействию, аксиальной и двухосной (ромбической или азимутальной) анизотропии, антисимметричному обменному и зеемановскому взаимодействиям. В первом случае подразумевается, что члены (1) выписаны в МСК, во втором — ЛСК. В локально-анизотропном гамильтониане все \tilde{H}_i описывают локальные взаимодействия, зависящие от ориентации локальных осей $\tilde{\mathbf{x}}_{i}^{(k)}$, $\tilde{\mathbf{y}}_{i}^{(k)}$ и $\tilde{\mathbf{z}}_{i}^{(k)}$ (k = 1–4) каждой из связей тетрамера. Приведение гамильтониана в представлении ЛСК к представлению МСК, согласно [16], через углы Эйлера с учетом симметрии комплекса дает ограничения на параметры локальных взаимодействий и значения углов Эйлера. Для СТ-D4h преобразованный к МСК (1) имеет вид [16]

$$\hat{\tilde{H}}_{is} = \sum_{k=1}^{4} \left(\tilde{J}_0 \hat{\mathbf{s}}^{(k)} \hat{\mathbf{s}}^{(k+1)} + \Lambda_{ax} \hat{\mathbf{s}}_z^{(k)} \hat{\mathbf{s}}_z^{(k+1)} + (-1)^{(k+1)} \Lambda_{az} \left(\hat{\mathbf{s}}_x^{(k)} \hat{\mathbf{s}}_x^{(k+1)} - \hat{\mathbf{s}}_y^{(k)} \hat{\mathbf{s}}_y^{(k+1)} \right) + \left(\hat{\mathbf{s}}^{(k)} \times \hat{\mathbf{s}}^{(k+1)} \right) \cdot d_z \mathbf{z} + \mu_B \mathbf{B} \hat{\mathbf{s}}^{(k)} \right), \quad (2)$$

где суммирование выполняется по связям ближайших соседей k, $\hat{\mathbf{s}}^{(k)}$ — спиновые операторы, $\hat{\mathbf{s}}^{(k)} = \hat{s}_x^{(k)}\mathbf{x} + \hat{s}_y^{(k)}\mathbf{y} + \hat{s}_z^{(k)}\mathbf{z}$, x, y, z — единичные векторы МСК (\mathbf{z} перпендикулярна плоскости СТ- D_{4h} , \mathbf{x} направлена вдоль связи $\hat{\mathbf{s}}^{(1)} - \hat{\mathbf{s}}^{(2)}$). Константы в (2) являются компонентами тензора локальных взаимодействий и описывают: \tilde{J}_0 — изотропное взаимодействие, Λ_{ax} и Λ_{az} — аксиальную и азимутальную (двухосную) анизотропию, а также взаимодействие с магнитным полем \mathbf{B} , μ_B — магнетон Бора. Антисимметричный обмен представлен взаимодействием Дзялошинского-Мориа, имеющим только одну компоненту с неизменным знаком константы ВДМ (d_z).

В СТ- D_{4h} ориентация всех $\tilde{\mathbf{z}}_{i}^{(k)}$ одинакова, соответственно, локальные аксиальная анизотропия и ВДМ, зависящие в данном случае только от $\tilde{\mathbf{z}}_{i}^{(k)}$, одинаковы для всех пар ионов тетрамера. Переменной, действительно имеющей локальный характер в СТ- D_{4h} , является только угол ориентации осей $\tilde{\mathbf{x}}_{i}^{(k)}$ локальной азимутальной анизотропии, направленных вдоль диагоналей квадрата при неизменной величине Λ_{az} [1,16]. Далее в работе параметры (2), Λ_{ax} , Λ_{az} и d_z нормируются на константу изотропного обменного взаимодействия ближайших соседей \tilde{J}_0 , т.е. результаты работы приводятся в безразмерных «энергетических» единицах. Энергетические спектры $\text{CT-}D_{4h}$, как и спиновые состояния, подробно исследованы ранее [1] и в данной работе приводятся лишь схематически, по необходимости анализа спектров поглощения.

3. Частотнозависимые спектры тетрамера с аксиальной и локальной азимутальной анизотропией

$$(\Lambda_{ax} \neq 0, \Lambda_{az} \neq 0, d_z = 0, B = 0)$$

В ферромагнитном спиновом тетрамере ($\tilde{J}_0 < 0$) с изотропным спин-спиновым взаимодействием (ИССВ) энергетический спектр представлен уровнями с энергией (и кратностью вырождения, в скобках):

$$E_{\tilde{S}=2} = -1(5), \quad E_{\tilde{S}=1}^{(1,2)} = 0(6), \quad E_{\tilde{S}=1}^{(3)} = 1(3),$$
$$E_{\tilde{S}=0}^{(1)} = 0(1), \quad E_{\tilde{S}=0}^{(2)} = 2(1)$$
(3)

в обозначениях мультиплетов ИССВ.

Локальная азимутальная анизотропия смешивает состояния $|0\rangle$ и $|2\rangle$ на уровнях E_1 и E_7 (рис. 1 (б)), их

Рис. 1. (Онлайн в цвете) Энергетический спектр СТ- D_{4h} (а), (б) и спектр ЭПР (в), (г) в зависимости: (а), (в) от аксиальной анизотропии, (б), (г) от локальной азимутальной анизотропии при $\Lambda_{ax} = 0,2$. Обозначены на энергетических спектрах: пунктиром (голубым онлайн) состояния $|0\rangle$, сплошными линиями (зелеными онлайн) — состояния $|1\rangle$, (×) (красными онлайн) — состояния $|2\rangle$, полностью или частично заполняющие уровень. Пунктирная стрелка — ненаблюдаемый переход. На спектрах ЭПР обозначены: значками (×) (красными) — переходы с участием уровней с состояниями $|2\rangle$, штрихпунктиром (голубым) — переходы $|0\rangle \leftrightarrow |1\rangle$, жирным — линии низкотемпературного спектра.

усредненные магнитные квантовые числа $\langle M \rangle$ становятся нецелочисленными (подробности см. [1]), при этом обозначения (3) становятся некорректными. Смешанные спиновые состояния в этом случае будем обозначать M < 2 и M > 0.

Спектр ЭПР аксиально-анизотропного СТ- D_{4h} в нулевом магнитном поле представлен только внутримультиплетными переходами: $E_{\tilde{S}=2,M=2} \iff E_{\tilde{S}=2,M=1}$ и $E_{\tilde{S}=1,M=1}^{(3)} \iff E_{\tilde{S}=1,M=0}^{(3)}$, совпадающими по частоте, а также $E_{\tilde{S}=2,M=2} \iff E_{\tilde{S}=2,M=1}$ (в обозначениях по номерам уровней рис. 1(б): «2 \iff 3», «9 \iff 10» и «3 \iff 4» соответственно). Частота верхней линии («2 \iff 3» и «9 \iff 10») в «энергетических» единицах строго равна Λ_{ax} .

Азимутальная анизотропия, появляющаяся в дополнение к аксиальной ($\Lambda_{ax} \neq 0$, $\Lambda_{az} \neq 0$, $d_z = 0$), вызывает отделение уровней со спин-смешанными состояниями: $E_{\tilde{S}=2,M<2}$ от $E_{\tilde{S}=2,M=2}$ (E_1 от E_2) и $E_{\tilde{S}=0,M>0}^{(1)}$ от $E_{\tilde{S}=1,M=0}^{(1,2)}$ (E_7 от E_6). На рис. 1(б) они отмечены крестиками $|2\rangle$, наложенными на пунктирную линию $|0\rangle$. Первое расщепление приводит к появлению линии ЭПР $E_{\tilde{S}=2,M<2} \leftrightarrow E_{\tilde{S}=2,M=1}$ («1 \leftrightarrow 3») с нелинейной зависимостью от Λ_{az} (рис. 1(г). Второе — к возникновению межмультиплетного перехода $E_{\tilde{S}=2,M=1} \leftrightarrow E_{\tilde{S}=0,M>0}^{(1)}$ («3 \leftrightarrow 7») с вероятностью, стремящейся к нулю при $\Lambda_{az} \rightarrow 0$ и растущей линейно вплоть до \cong 0,1 при $\Lambda_{az} = 0,5.$ Примечательно, что экспериментально азимутальную анизотропию можно определить не только по положению, как для $E_{\tilde{S}=2,M<2} \leftrightarrow E_{\tilde{S}=2,M=1}$ («1 \leftrightarrow 3»), но и по интенсивности линии $E_{\tilde{S}=2,M=1} \leftrightarrow E_{\tilde{S}=0,M>0}^{(1)}$ («3 \leftrightarrow 7»). Частоты переходов $E_{\tilde{S}=1,M=1}^{(1,2)} \leftrightarrow E_{\tilde{S}=1,M=0}^{(1,2)}$ («5 \leftrightarrow 6» и «6 \leftrightarrow 8») линейно зависят от Λ_{az} при довольно значительной интенсивности. Появляется также крайне слабая, ненаблюдаемая линия $E_{\tilde{S}=2,M=1} \leftrightarrow$ $\leftrightarrow E_{\tilde{S}=0}^{(2)}$ («3 \leftrightarrow 11») с $\Delta E_{3,11} (\Lambda_{ax} = 0.2) = 3,156$ и вероятностью перехода $P_{3,11} (\Lambda_{ax} = 0.2) \cong 1,4\cdot10^{-4}$ (не показана на рис. 1), растущей с увеличением Λ_{ax} .

В спектрах поглощения при очень низких температурах наблюдаемыми окажутся либо линии «1 \leftrightarrow 3» и «2 \leftrightarrow 3», если Λ_{az} мало, либо только «1 \leftrightarrow 3» в противном случае. При повышении температуры, в области $kT \approx \Lambda_{ax}$ появятся «3 \leftrightarrow 4» и «3 \leftrightarrow 7». Следует учитывать малую разность заселенности уровней перехода «3 \leftrightarrow 4», из-за чего ожидается слабая интенсивность соответствующей линии.

4. Частотнозависимые спектры тетрамера с взаимодействием Дзялошинского

$$(\Lambda_{ax} \neq 0, \Lambda_{az} = 0, d_z \neq 0, B = 0)$$

Взаимодействие Дзялошинского не влияет на основное состояние СТ- D_{4h} как в случае $\tilde{J}_0 < 0$, так и $\tilde{J}_0 > 0$ [6]. ВДМ расщепляет уровень $E_{\tilde{S}=1}^{(1,2)}$ на состояния с различным M (E_4 , E_6 и E_7), и кроме того, выделяется $E_{\tilde{S}=0,M>0}^{(1)}$ (E_5) — рис. 2(а). Уровень $E_{\tilde{S}=1,M=0}^{(3)}$ (E_9), отщепляемый аксиальной анизотропией от $E_{\tilde{S}=1}^{(3)}$ (E_8), дополнительно смещается ВДМ.

В спектре ЭПР СТ- D_{4h} с аксиальной анизотропией и ВДМ ($\Lambda_{ax} \neq 0, d_z \neq 0, \Lambda_{az} = 0$, рис. 2(б)) в нулевом магнитном поле переход $E_{\tilde{S}=1,M=1}^{(3)} \leftrightarrow E_{\tilde{S}=1,M=0}^{(3)}$ («8 \leftrightarrow 9») совпадает с переходом «1 \leftrightarrow 3» случая $\Lambda_{ax} \neq 0, \Lambda_{az} \neq 0$, $d_z = 0$ (рис. 1(г)). Тем не менее он является переходом между другими, высоколежащими уровнями из-за чего в низкотемпературном спектре отсутствует. Линии «4 \leftrightarrow 6» («6 \leftrightarrow 7») и «8 \leftrightarrow 9» переходов $E_{\tilde{S}=1,M=0}^{(1,2)} \leftrightarrow$ $\leftrightarrow E_{\tilde{S}=1,M=1}^{(1,2)}$ не пересекаются. Все остальные линии спектра относятся к переходам между теми же уровнями, что и в случае $\Lambda_{ax} \neq 0, \Lambda_{az} \neq 0, d_z = 0$, с учетом изменения нумерации уровней. Рассуждения предыдущего раздела относительно спектра при конечных температурах для них сохраняются.

5. Частотно-зависимые спектры тетрамера с ВДМ, аксиальной и локальной азимутальной анизотропией

 $(\Lambda_{ax} \neq 0, \Lambda_{az} \neq 0, d_z \neq 0, B = 0)$

Рассмотрим случай воздействия всех трех спинспиновых взаимодействий $\text{CT-}D_{4h}$ на энергетический спектр при изменяющейся величине d_z и фиксированных $\Lambda_{ax} = 0,2$, $\Lambda_{az} = 0,5$ (рис. 3). Тогда зависимости рис. 3 является продолжением рис. 1. ВДМ дополнительно расщепляет уровни $E_{\tilde{S}=1,M=1}^{(1,2)}$ (рис. 3(а)), образованные

Рис. 2. Энергетический спектр (а) и спектр ЭПР (б) СТ- D_{4h} в зависимости от константы взаимодействия Дзялошинского– Мориа. Номера уровней энергии указаны цифрами у линий, спиновые состояния — полуугловыми скобками. Обозначения на рисунке соответствуют рис. 1.

азимутальной анизотропией из $E_{\tilde{S}=1}^{(1,2)}$ ИССВ (рис. 1(б)). Переходы $E_{\tilde{S}=1,M=0}^{(1,2)} \leftrightarrow E_{\tilde{S}=1,M=1}^{(1,2)}$ в тетрамере с $\Lambda_{az} = 0$, дающие линии «5 \leftrightarrow 6» и «6 \leftrightarrow 8») (рис. 1(г)), расшепляется ВДМ на 2 линии, нижнюю «7 \leftrightarrow 6», «7 \leftrightarrow 9» и верхнюю «7 \leftrightarrow 5», «7 \leftrightarrow 10». Остальные линии СТ- D_{4h} с $\Lambda_{az} = 0$ переходят в спектр с $\Lambda_{az} \neq 0$ без принципиальных изменений («2 \leftrightarrow 3», «3 \leftrightarrow 4», «8 \leftrightarrow 11», «11 \leftrightarrow 12», рис. 3).

Довольно интенсивная линия $E_{\tilde{S}=2,M=2} \leftrightarrow E_{\tilde{S}=2,M=1}$ («2 \leftrightarrow 3») связана только с азимутальной анизотропией (см. рис. 1), $\Delta E_{2,3} = \Lambda_{az}$. А вот переход $E_{\tilde{S}=2,M=1} \leftrightarrow$ $\leftrightarrow E_{\tilde{S}=0}^{(1)}$ «3 \leftrightarrow 8» с вероятностью $P_{2,3} \sim 0,1$ не наблюдается в системе с $\Lambda_{ax} \neq 0$, $\Lambda_{az} = 0$, $d_z \neq 0$ (рис. 2). В отличие от тетрамера с $\Lambda_{ax} \neq 0$, $\Lambda_{az} \neq 0$, $d_z = 0$ соответствующий переход («3 \leftrightarrow 7») имеет монотонно возрастающую, а не падающую зависимость от Λ_{az} . Кроме того, существует 3 ненаблюдаемых линии (на рис. 3 не показаны): $\Delta E_{1,11} =$ $= 2,562 (P_{1,11} \cong 7 \cdot 10^{-3})$, $\Delta E_{3,12} = 2,2-2,562 (P_{3,12} \cong 7 \cdot 10^{-3})$ и $\Delta E_{3,13} = 3,136 (P_{3,13} \cong 1,4 \cdot 10^{-4})$.

Низкотемпературный спектр представлен одной линией, «1 \leftrightarrow 3». С повышением температуры вначале возникает резонанс «2 \leftrightarrow 3», а затем, в области $kT \approx \Lambda_{ax}$, «3 \leftrightarrow 8» и «низкочастотный» «3 \leftrightarrow 4». Отметим, что в антиферромагнитном тетрамере ($J_0 > 0$) как при $\Lambda_{ax} \neq 0$, $\Lambda_{az} \neq 0$, $d_z \neq 0$, так и в частных случаях основное состояние является «немым», и до температур $kT \approx J_0$ спектр ЭПР не наблюдается.

6. Полевые зависимости спектров тетрамера с ВДМ, аксиальной и локальной азимутальной анизотропией

$$(\Lambda_{ax} \neq 0, \Lambda_{az} \neq 0, d_z \neq 0, B \neq 0)$$

Расщепление уровней спектра в магнитном поле, ориентированном вдоль оси *z* МСК, показано на рис. 3(б), (г), как продолжение спектров рис. 3(а), (в) для B = 0, $d_z = 0,2$. Всего 2 уровня энергии $E_{\tilde{S}=1,M=1}^{(1,2)}$ расщепляются магнитным полем: E_3 и E_{11} (рис. 3(б)). Дублет $E_{\tilde{S}=1,M=0}^{(1,2)}$ (E_7) не расщепляется и не смещается, а остальные уровни и при B = 0 расщеплены до синглетов. $E_{\tilde{S}=2M=2}$ и $E_{\tilde{S}=2M<2}$ (E_1 и E_2) испытывают сильное разнонаправленное смещение с нелинейной зависимостью от B_z . Усредненное значение $\langle M \rangle$ для $E_{\tilde{S}=2M<2}$, уменьшенное азимутальной анизотропией ([1]), стремится к значению $\langle M \rangle = 2$ с ростом магнитного поля, поэтому наклон зависимостей $E_1(B_z)$ и $E_2(B_z)$ приближается

Puc. 3. Энергетический спектр (a), (б) и спектр ЭПР (в), (г) CT- D_{4h} при $\Lambda_{ax} \neq 0$, $\Lambda_{az} \neq 0$, $d_z \neq 0$. Магнитное поле $B_z = 0$ (a), (в) и $B_z \neq 0$ при $d_z = 0,2$ (отмечено вертикальными штриховыми линиями) (б), (г). Номера уровней энергии указаны цифрами у линий, спиновые состояния — полуугловыми скобками. Обозначения уровней и переходов соответствуют рис. 1, ненаблюдаемые переходы не показаны.

к свойственному $E_{\tilde{S}=2,M=2}$. Сдвиги остальных уровней, кроме E_{12} и E_{13} , не реагирующих на магнитное поле невелики и слабо нелинейны.

 B_z -компонента магнитного поля расщепляет 6 линий спектра ЭПР тетрамера с $\Lambda_{ax} \neq 0$, $\Lambda_{az} \neq 0$, $d_z \neq 0$ (рис. 3(г)), определяющихся переходами с уровней (на уровни) $E_3(B_z = 0)$ и $E_{11}(B_z = 0)$. Расщепляются все переходы с участием состояний $|2\rangle$ (линии с крестиками на рис. 3(в), (г)), а также переходы «З \leftrightarrow 4» и «11 \leftrightarrow 12». Всего в спектре имеется 14 линий, ветвь нулевой частоты отсутствует.

Единственная линия «1 \leftrightarrow 3» низкотемпературного спектра при $B_z = 0$ расщепленна магнитным полем на 2. При повышении температуры переходы «2 \leftrightarrow 3» и далее «3 \leftrightarrow 4», «3 \leftrightarrow 8» дают также по 2 линии ЭПР. Но в магнитном поле область температур проявления переходов «2 \leftrightarrow 3», «3 \leftrightarrow 8», «3 \leftrightarrow 4» смещается: $kT \cong \Lambda_{ax} + \mu_B B_z$. Последнее происходит из-за смещения вниз полем основного состояния ферромагнитного СТ- $D_{4h} E_{\tilde{S}=2M<2}$. Уровни $E_{\tilde{S}=1,M=1}^{(1,2)}$, довольно далеко разнесенные ВДМ от E = 0, дополнительно смещаются магнитным полем. В результате совпадающие по частоте «7 \leftrightarrow 5» и «7 \leftrightarrow 10», а также «7 \leftrightarrow 6» и «7 \leftrightarrow 9» могут иметь очень разные интервалы температур, при которых они наблюдаемы.

7. Заключение

Поскольку все особенности частных случаев отражаются в спектрах ЭПР тетрамера с $\Lambda_{ax} \neq 0$, $\Lambda_{az} \neq 0$, $d_z \neq 0$, ограничимся обсуждением именно данной системы (рис. 3).

Наиболее интересной особенностью спектра является точное соответствие частоты умеренно низкотемпературного ($kT \approx \Lambda_{az}^2$) перехода «2 \leftrightarrow 3» и аксиальной анизотропии (в «энергетических» единицах):

$$\Lambda_{ax} = \Delta E_{2,3}.$$
 (4)

Следующее характерное свойство спектра позволяет по линиям переходов «7 \leftrightarrow 6, 9» и «7 \leftrightarrow 5, 10» вычислить параметры Λ_{az} и d_z :

$$\Lambda_{az} = \left(\Delta E_{7,5} + \Delta E_{7,6}\right)/2, \quad d_z = \left(\Delta E_{7,5} - \Delta E_{7,6}\right)/2.$$
(5)

Переход «З \leftrightarrow 8», наблюдаемый при температурах выше $kT \approx \Lambda_{ax} + \Lambda_{az}^2$, и высокотемпературный «8 \leftrightarrow 11» позволяют найти величину параметра ИССВ:

$$J_0 = \left(\Delta E_{3,8} + \Delta E_{8,11}\right)/2 , \qquad (6)$$

Таким образом, без сложных вычислений, симуляции и подгонки спектров оказывается возможным определить основные параметры спинового тетрамера симметрии D_{4h} . Кроме того, для анализа экспериментальных спектров можно использовать аналитические выражения для уровней со спин-смешанными состояниями ([1]) и остальных уровней ([2–6]). Например, разность частот $\Delta E_{2,3} - \Delta E_{3,4}$ однозначно определяется величиной Λ_{az} , но зависимость нелинейна, что предполагает использование формул [1].

Приведенные соотношения справедливы в рамках ограничений данной работы. Влияние анизотропии g-фактора и членов гамильтониана 4-го порядка по спину может существенно исказить описанную выше картину спектра $CT-D_{4h}$, что особенно критично при интерпретации порошковых спектров. Тем не менее исследования ЭПР на монокристаллах в магнитном поле различной ориентации позволили бы вычленить подобные факторы.

Экспериментальные исследования ЭПР молекулярных комплексов Cu(II)₄ симметрии D_{4h} или близкой к ней, приведенные во Введении, позволяют сделать ряд выводов о спин-спиновых взаимодействиях в магнитных молекулярных комплексах. В исследованиях на порошках соединений **1**, **2**, **3** и **4** [8–10] обнаружена одна практически изотропная линия, в **1**, **2**, **3** (3-см ЭПР) — простой формы, в **4** (8-мм диапазон, [10]) — сложной. В дополнительных исследованиях показано, что орбитали $d_{x^2-y^2}$ всех ионов Cu(II) 4 строго перпендикуляр-

ны плоскости комплекса, что предполагает необходимость учета локальной анизотропии. А вот 8-мм ЭПР 5 показывает в 8-мм диапазоне орторомбический спектр с линией сложной формы, а также линию с удвоенным g-фактором [11]. При этом 3-см ЭПР показывает одну линию ЭПР без особенностей, что позволяет авторам сделать заключение о неэффективности 3-см ЭПР в молекулярных магнетиках. Последнее, вероятно, справедливо и для исследований 1, 2, 3, 4.

Формальное прочтение спектров 1, 2, 3 подводят к выводу о сугубо изотропном спектре данных комплексов (в пределе $\Lambda_{ax} \rightarrow 0$, рис. 1 (в) остается только линия изотропного спектра). Спектр 4 может указывать на некоторые дополнительные, очень слабые взаимодействия, порядок величины которых соответствует расстоянию между компонентами спектра, т.е. $\approx 10^{-3} \cdot J_0$ и меньше. Какие спин-спиновые взаимодействия ответственны за сложную структуру линии ЭПР 4? Это невозможно установить без дополнительных исследований, в частности, в высокочастотной области, вплоть до $1, 5 \tilde{J}_0$. То же самое относится и к ЭПР соединений 1, 2, 3.

Интерпретация спектров 5 позволяет соотнести 2 линии с влиянием аксиальной анизотропии — рис. 1(в). Следует отметить, что даже аксиально-анизотропный спектр во внешнем поле предполагает 4 линии, обнаружение которых требует подробного исследования частотно-полевой зависимости спектра монокристаллов в магнитном поле, параллельном оси z комплексов. При отличии параметров Λ_{ax} , Λ_{az} , и d_z в несколько раз (а они могут отличаться и на порядки) линии, связанные с сильным взаимодействием, располагаются, в основном, на гораздо более высоких частотах (в диапазонах выше 8-мм) — рис. 3(г). А то, что отдельные, более слабые линии спектра могут быть не обнаружены, говорит сравнение 3-см и 8-мм спектров состава 5 [11].

Следует отметить, что данные [8–11] получены в исследованиях вновь синтезированных молекулярных комплексов, в которых основное внимание уделяется синтезу соединений, их основным химическим свойствам и структуре молекул. Измерения ЭПР выполнены не более чем в рамках стандартных исследований, характерных для таких работ. В целях вычленения основных составляющих спин-спиновых взаимодействий, в том числе локальных, необходимы более подробные исследования частотно-полевых зависимостей спектров ЭПР монокристаллов спиновых тетрамеров Cu(II) в широком диапазоне частот и полей.

- А.В. Журавлев, ФНТ, 41, 244 (2015) [Low Temp. Phys. 41, 186 (2015)].
- M. Mackowiak and M. Kurzynski, *Phys. Status Solidi B* 51, 841 (1972).
- 3. M. Kurzynski, Phys. Status Solidi B 55, 755 (1973).
- M. Kurzynski and L. Kowalewski, *Phys. Status Solidi B* 68, 97 (1975).
- M.I. Belinskii and B.Ya. Kuyavskaya, *Fiz. Tverd. Tela* 18, 1822 (1976).
- О.В. Кравчина, А.И. Каплиенко, А.Г. Андерс, Д.А. Червинский, Ю.Г. Пашкевич, А. Orendachova, and M. Kajnakova, *ФНТ* 33, 1298 (2007) [*Low Temp. Phys.* 33, 987 (2007)].
- J. Stankowsky and M. Mackowiak, *Phys. Status Solidi B* 51, 449 (1972).
- E. Colacio, M. Ghazi, R. Kivekäs, and J. M. Moreno, *Inorg. Chem.* 39, 2882 (2000).
- T.N. Mandal, S. Roy, S. Konar, A. Jana, S. Ray, K. Das, R. Saha, M.S. El Fallah, R. J. Butcher, S. Chatterjeee, and S. Kumar Ka, *Dalton Trans.* 40, 11866 (2011).
- K.V. Shuvaev, S. Sproules, J.M. Rautiainen, E.J.L. McInnes, D. Collison, C.E. Ansona, and A.K. Powell, *Dalton Trans.* 42, 2371 (2013).
- W. Bietsch, A. Mirea, T. Kamleiter, M. Weiss, U.S. Schubert, C.H. Weidl, C. Eschbaumer, I. Ovchinnikov, and N. Domracheva, *Mol. Phys.* 100, 1957 (2002).
- Y. Singh , R.N. Patel, Y.P. Singh, A.K. Patel, N. Patel, R. Singh, R.J. Butcher, J.P. Jasinsk, E. Colacio, and M.A. Palacios, *Dalton Trans.* 46, 11860 (2017).
- N. Karabocek, A. Kucukdumlu, E. Senses, S. Karabocek, and R. Ozcimder, *R. Synth. React. Inorg. Met.-Org. Nano-Met. Chem.* 41, 1095 (2011).
- M.A. El-Sayed, H.A. Elwakeil, A.H. Abdel Salam, and H.A. Elbadawy, *Open J. Inorganic Chemistry* 6, 66 (2016).
- M.S. Ray, A. Ghosh, A. Das, M.G.B. Drew, J. Ribas-Ariño, J. Novoa, and J. Ribas, *Chem. Commun.* 1102 (2004).
- R.A. Klemm and D.V. Efremov, *Phys. Rev. B* 77, 184410 (2008).

Спектри ЕПР чотирьохядерного молекулярного комплексу симетрії *D*_{4h}

О.В. Журавльов

Дослідженно спектри ЕПР чотирьохядерного молекулярного магнетика симетрії D_{4h} з феромагнітною взаємодією найближчих сусідів та локальними взаємодіями: Дзялошінского-Моріа (ВДМ), аксіальної та азимутальної анізотропії з урахуванням симетрії комплексу s = 1/2 іонів. Описана еволюція спектрів ЕПР спінового тетрамера в залежності від величин параметрів спін-спінових взаємодій. Розглянуто вплив спінового змішування на розщеплення ліній спектра як внутрімультіплетних, так і міжмультіплетних переходів між рівнями тетрамера. Отримано прості співвідношення, що зв'язують параметри ізотропної обмінної взаємодії, ВДМ та локальної анізотропії із співвідношеннями частот певних ліній спектра.

Ключові слова: спіновий тетрамер, мультіплет, анізотропія, спін-спінова взаємодія.

EPR spectra of *D*_{4*h*} symmetry four-nuclear molecular complex

A.V. Zhuravlev

EPR spectra of spin s= $\frac{1}{2}$ four-nuclear single molecular magnet of D_{4h} symmetry were studied for the nearest neighbors isotropic ferromagnetic exchange and Dzyaloshinskii-Moria interaction as well as axial and local azimuthal anisotropy. Dependence of EPR spectra on Hamiltonian parameters of a spin tetramer is described. Influence of spin mixing on the splitting of spectral lines was considered for inter-multiplet and intra-multiplet transitions. This study resulted in obtaining simple relations between resonance frequencies of particular spectral lines and parameters of local Hamiltonian.

Keyword: spin tetramer, multiplet, anisotropy, soin-spin interaction.