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Dynamical non-equilibrium effects after a quantum quench in a quantum spin system, which permits exact 
analytical solution in both closed and open cases, are studied. The exact analytic results are obtained for the bi-
axial paramagnet, both for the “easy axis”- and the “easy-plane”-like situations, and for the field directed along 
both principal axes of the system. Quantum quench of the external magnetic field produces a nonlinear response. 
For the closed system the average magnetic moment oscillates with time and with the final value of the external 
field. Such oscillations exist also for the open system, connected to the bath, in the dynamical regime. For the 
steady-state regime in the open case the oscillations are damped. Non-equilibrium effects yield specific hystere-
sis phenomena in the considered single spin system. 
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1. Introduction 

Quantum systems out of equilibrium, e.g., after abrupt 
changes of their parameters, are basically not susceptible to 
general principles of equilibrium systems [1]. This is why, 
studies of non-equilibrium dynamics of quantum models are 
necessary for the fundamental understanding of how me-
chanics emerges under the unitary time evolution. The time 
evolution of quantum averages depends on the initial state 
through the values of a large number of parameters of 
the quantum system. It disagrees with the standard ensem-
bles of statistical mechanics which use few conserved val-
ues of the dynamical system and usually describe the be-
havior after relaxation. Theoretical studies of dynamical 
characteristics of many-body quantum systems are more 
difficult than of their static counterparts, because all eigen-
states contribute to dynamics, and there is no possibility to 
limit the consideration by the low-energy eigenstates, as, e.g., 
in low-temperature thermodynamics. Since the dynamics 
of a quantum system typically involve many excited eigen-
states, with a non-thermal distribution, the time evolution 
of such a system provides an unique way for investigation 
of non-equilibrium quantum statistical mechanics. Last de-
cade such new subjects like quantum quenches, thermal-
ization, pre-thermalization, equilibration, generalized Gibbs 

ensemble, etc. are among the most attractive topics of in-
vestigation in modern quantum physics. Abrupt changes of 
some parameters, i.e., quantum quenches, in which the sys-
tem is prepared in an eigenstate of the initial Hamiltonian 
and its time evolution driven by the final Hamiltonian, lead 
to such a unitary time evolution, and the final (long time) 
state strongly depends on the type of the system. Their 
studies can provide the information of how fast correla-
tions spread in quantum systems, whether averages can 
decay to some time-independent values, and which param-
eters can govern those processes. The study of the non-equi-
librium dynamics of quantum coherence is very important 
for the modern theory of quantum computation, where na-
mely abrupt changes (gates) are used to govern the beha-
vior of ensembles of qubits [2]. On the other hand, the 
study of sudden changes is very important in the context of 
experiments on ultracold gases [3], ultrafast (e.g., THz) 
pulses [4] realized in solids [5], or high magnetic field ex-
periments in pulse fields [6,7]. For ultracold gases, for in-
stance, the coherence is maintained for much longer times 
than for usual condensed matter, and the time evolution of 
a quantum system after abrupt changes has become a real-
istic concept. The analysis of nonlinear quantum dynamics 
of isolated spins or small particles in the mean field ap-
proximation) was performed, e.g., in [8]. Nonlinear quan-
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tum dynamics of spins = 1S  under action of short laser 
pulses has been studied in [9], see also [10] (it was shown 
there that such a dynamics can be totally longitudinal, i.e., 
with the evolution of the average value of the spin, and 
average values of quadrupole variables). 

The new field of technology, molecular spintronics, com-
bines the approaches and the advantages of spintronics and 
molecular electronics. The main issue of the molecular spin-
tronics is the creation of small devices using one or several 
magnetic molecules. Single molecule magnets or single 
atom magnets can be used there. In such systems the mag-
netic relaxation time is very long at low temperatures [11]. 
Their single- or few-particle nature yields quantum effects 
of their static and dynamic magnetic properties [12]. The 
interest to single molecular magnets is caused by a small 
number of degrees of freedom (due to absent exchange 
between spins). Contrary, the spin-orbit coupling for a sin-
gle spin together with the crystalline electric field of non-
magnetic ligands governs the magnetic properties of the 
system, yielding local spin symmetries. 

In this study we consider the non-equilibrium dynamics 
of a simple quantum mechanical system, the paramagnetic 
quantum spin, which has the biaxial magnetic anisotropy in 
the external magnetic field. The advantage of the consid-
ered model is its solvability: The characteristics of the mo-
del after the quantum quench is written explicitly, in the 
closed form. The results are obtained for the “easy axis”-
like and for the “easy-plane”-like main magnetic anisotro-
py with the weak biaxial anisotropy, for the field directed 
along the axis of the largest and the weakest magnetic ani-
sotropy. We show that for the closed system the quantum 
quench produces oscillations of the average magnetic mo-
ment. Those oscillations persist with time and with the 
value of the magnitude of the quantum quench with respect 
to the value, determined by the parameters of the system 
and the values of the initial and the final values of the field. 
For the open system, which exchanges the energy with the 
bath, such oscillations persist in the dynamical regime, for 
small enough time values. For large values of time, in the 
steady-state regime, the relaxation “smears out” the oscil-
lations. We show that the dependence of the steady-state 
average magnetic moment on the values of the initial value 
of the field and the final one are very different from the 
field dependence of the same system in the stationary re-
gime. Also, we show that the behavior of the system for 
switching on and off the field is also very different. 

2. The Hamiltonian 

Consider the Hamiltonian of the spin S  with the biaxial 
magnetic anisotropy in the external magnetic field 

 2 2= z z xHS DS ES− + + , (1) 

where ,x zS  are the operators of projections of the spin, D  
and E  are the magnetic anisotropy parameters, and H  is 

the external magnetic field (we use units in which the Bohr 
magneton and the effective g -factors are equal to unity). 

In the representation with the diagonal z -component for 
= 1S  we can write the Hamiltonian as 
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0
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where Î  is the unity matrix. We see that the magnetic field 
affects only the 2 2×  subspace (with = 1zS ± ). In that sub-
space (i.e., in the effective 2 2×  matrix representation) the 
effective Hamiltonian can be written as 

 = .
2z x
EHσ − σ + σ  (3) 

The density matrix = exp ( / ) / Tr [exp ( / )]T Tρ −  , 
where T  is the temperature (we use units in which the 
Boltzmann constant is unity), in this representation is 

 
12= 2sinh exp

2
D E

T T

−

σ
ε − ρ + ×  

  

 ˆ cosh sinhzI
T T′σ
ε ε ′× + σ 

 
, (4) 

where Îσ  is the unity matrix in the 2 2×  subspace, and 
= ( / ) ( / 2 )z z xH E′σ ε σ + ε σ , with 

 
2 24= .
2

H E+
ε  (5) 

For the spin = 3 / 2S  case we can write the expression 
for the Hamiltonian in the diagonal in zS  representation 

 3/2
3 1ˆ=

4 2
E D I+

+ ×   

 

3 4 3 0 0
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0 0 3 3 4

H D E

E H E

H E E

E H D

 − +
 
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. (6) 

One can see that the magnetic field acts independently in 
two 2×2 subspaces (for = 3 / 2, 1/ 2zS −  and = 3 / 2, 1/ 2zS − , 
respectively). In the effective 2 2 2 2× ⊗ ×  (let us denote it 
as 1σ – 2σ ) representation for those two subspaces the effec-
tive Hamiltonians can be written as 
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 1,2 1,2 1,21,2
1 ˆ= (2 2 ) 3 .
2 z xI H D E H Eσ  ± σ − + σ     

  (7) 
The density matrix in this representation can be written as 

 
1

1 2
,1 2

= 2exp cosh 2exp cosh
2 2
H H
T T T T

−

σ σ
ε ε− ρ + ×  

  

 1 1
1 1
ˆ exp cosh exp sinh

2 2z
H HI
T T T T

ε ε ′× + σ +
  

 2 2
2 2

ˆ exp cosh exp sinh ,
2 2z
H HI
T T T T

ε ε− − ′+ + σ 
 (8) 

where 1,2Î  are the unity matrices in those two 2 2×  subspaces, 

and 1,2 1,2 1,2 1,2 1,2= [( / 2) / ] ( 3 / 2 )z z xH D E E′σ ± ε σ + ε σ  
with 

 
2 2

1,2
3 (2 2 )

= .
2

E D E H+ −
ε



 (9) 

3. Static characteristics 

Then the quantum mechanical average value of the pro-
jection of the magnetic moment along z  direction is calcu-
lated as = Tr ( )z zM S ρ . We can calculate that value using 
the effective 2 2×  representations written above. For the 
spin = 1S  we obtain (using = σρ ρ ) 

 0
2 sinh ( / ) .

2 cosh ( / ) exp [(2 ) / 2 ]z
H TM

T D E T
ε

=
ε ε + −

 (10) 

It can be compared with the approximate expression [13] 

 
2 2

,HS
H K

〈 〉 ≈
+

 (11) 

valid at low temperatures (here K  is the anisotropy con-
stant in the basis plane). One can see that for the “easy 
axis”-like case for = 1S  the approximate expression is 
reminiscent to the exact one. On the other hand, for the 
“easy-plane” case the situation is different. 

For the spin = 3 / 2S  we get (using , 21
= σ σρ ρ ) 

 [0 1= exp ( / 2 ) cosh ( / )zM H T Tε +   

 ] 1
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 1
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cosh ( / 2 ) ( / 2)exp ( / 2 )
2

T H D EH T
ε + −+ + − × ε 

  

 2
2

cosh ( / 2 )
sinh ( / ) .

2
TT ε × ε −  

 (12) 

We can also calculate the projection of the average 
magnetic moment along x  direction. For this purpose we 

replace x z↔  in the Hamiltonian . Hence, the answers 
for the quantum mechanical averaged value of the x-
projection of the magnetic moment xM  can be obtained by 
the formal replacement D E↔  in Eqs. (10) and (12). 

Figures 1 and 2 manifest the magnetic field dependenc-
es of the z - and x-projections of the magnetic moments for 
the “easy axis” = 1D −  and “easy-plane” paramagnet with 

Fig. 1. (Color online) Calculated magnetic field dependences of 
the projections of the magnetic moment 0M  for = 1S  at = 0.1T . 
For the “easy axis” case = 1D , with the small biaxial anizotropy 

= 0.1E −  the solid black line shows the field is directed along z  
axis; the dashed blue line shows the field is directed along x  axis. 
For the “easy-plane” case = 1D − , with the small in-plane an-
izotropy = 0.1E −  the dashed-dotted orange line shows the field is 
directed along z  axis; the dotted red line shows the field is di-
rected along x  axis. 

Fig. 2. (Color online) The same as in Fig. 1 but for = 3 / 2S . The 
parameters and the notations are the same as in Fig. 1. 
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the weak biaxial magnetic anisotropy = 0.1E −  at low tem-
perature = 0.1T  for = 1S  and 3/2, respectively. We see 
that for different directions of the field the magnetic field 
behavior manifests different features. We point out that 
the change of the sign of the weak biaxial anisotropy 
does not produce essential changes in the magnetic field 
behavior. At higher temperatures (of order of the maximal 
value of the magnetic anisotropy) all those features are 
“smeared out”. 

4. Dynamics after the quantum quench 

Now consider the following situation. Suppose at = 0t  
we change the value of the magnetic field from iH  (valid at 

0t ≤ ) to fH  (valid for > 0t ), known as the quantum 
quench. Dynamics of any quantum system can be describe-
ed in two ways. In the first way one considers the time 
evolution of the considered operator (using the Heisenberg 
equations), and then average the obtained time-dependent 
value of the operator with respect to the wave function (for 
the pure state), or the density matrix (for the mixed state). 
The other way, is to find the time evolution of the wave 
function (using the Schrödinger equation) or the density 
matrix (using the Liouville equation), and then average the 
considered operator with the obtained time-dependent wave 
function or the density matrix. In the case of exact calcula-
tions both ways yield the same answer. 

To describe dynamics of the studied spin system under 
the action of the linearly polarized ac magnetic field let us 
use, for instance, the first approach. The Liouville equation 
for density matrix ρ has the form = [ , ]iρ ρ  , where [.,.] 
denotes the commutator. Such a behavior is characteristic 
for a closed system. However, as a rule, the spin system is 
not isolated. For example, there are processes, which take 
the energy from the system, i.e., relaxation processes. 
The relaxation can be considered in a number of ways. 
The reason for the relaxation of the density matrix is the 
interaction of the considered system with some environ-
ment; such an interaction takes the energy from the system, 
i.e., our considered system is the open one. For example, 
for the studied quantum spin system the lattice (i.e., the 
elastic subsystem of the crystal) can serve as such an envi-
ronment. 

Dynamics of the density matrix of our open system for 
general Markovian processes is described by the Lindblad 
master equation [14] (here we write it in the diagonal form) 

 
2 1

† †

=1

1= [ , ] { , }
2

N

j j jj j
j

i i
−  ρ ρ + γ ρ + ρ 

 
∑      , (13) 

where N  is the dimension of the system, {.,.} denotes the 
anticommutator, and the orthonormal and traceless opera-
tors j  are the Lindblad (jump) operators. For = 0jγ  the 

Lindblad equation is, obviously, the Liouville equation. In 

the model of random collisions [15] one can write the 
Lindblad operators as 0= ( ) | |j jj j j′ρ 〉〈 , and suppose 

that all jγ  are equal, which yields 

 0= [ , ] ( ) .i iρ ρ + γ ρ −ρ   (14) 

This form of the master equation was first suggested by 
Karplus and Schwinger [16]. It was used to describe the 
relaxation processes of quantum systems under the action 
of the ac electromagnetic field. It describes the interaction 
of the considered system with the bath, with the relaxation 
of the density matrix to 0ρ  in the steady state. It is useful to 
substitute = exp ( )t′ρ γ ρ; we obtain 0= [ , ] exp ( )i t′ ′ρ ρ + γ γ ρ  . 
The used approximation implies equal relaxation times for 
all eigenmodes of the system. It is equivalent to the Bloch 
form of relaxation in the theory of the nuclear magnetic 
resonance [17]. Two relaxation times as in the Bloch ap-
proach can be easily introduced in the above scheme by 
using different relaxation rates for diagonal and non-dia-
gonal components of the density matrix. One can also gen-
eralize the approach using, e.g., Torrey’s phenomenological 
theory [18], which adds diffusion processes to the Bloch 
equations. It is possible to show that the effect of the linear 
relaxation in the Bloch form is similar to the effect of the 
relaxation in the Landau–Lifshitz form for magnetic sys-
tems [19]. Here we are interested mostly in the homogene-
ous response, and can neglect the spatial dependence of 
relaxation. 

5. Closed system 

The response to the quantum quench is strictly nonline-
ar for the studied model. After some algebra similar to 
the one, developed in Ref. 20 we obtain for = 0γ  for the 
closed system for = 1S  

 ,
2sinh ( / )( ) =

2cosh ( / ) exp [(2 ) / 2 ]z z i
TM t M

T D E T
ε

+ ×
ε + −

  

 
2

2
2 sin ( ) ,

2
f

f
i f

E H
t× ε

ε ε
 (15) 

where we use units in which = 1 , and , ,= ( = )i f i fH Hε ε . 
We see that the average magnetic moment oscillates with 
time and with the magnitude fH  of the quantum quench. 
For instance, Fig. 3 shows the oscillations of the average 
value of the magnetic moment along z  direction for = 1S  
“easy axis”-like case with = 1D −  and = 0.1E −  at = 0.1T  
for = 0iH . 

For = 3 / 2S  the calculated dependence is 

 [, 1( ) exp ( / 2 )cosh ( / )z z i i iM t M H T T= + ε +   

 ]
2

1
2

3
exp ( / 2 )cosh ( / 2 )

2
f

i i
H E

H T T −+ − ε ×  
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 2
1 12

1 1

1exp ( / 2 ) sin ( ) sinh ( / )i f i
i f

H T t T
 × ε ε × ε ε 

  

 1

1

( / 2) cosh ( / 2 )
2

i i

i

H D E T − + ε
× + −ε 

  

 2
2 22

2 2

1exp ( / 2 ) sin ( ) sinh ( / )i f i
i f

H T t T− − ε ε ×ε ε
  

 2

2

( / 2) cosh ( / 2 )
2

i i

i

H D E T + − ε
× −  ε  

, (16) 

where 1,2 , 1,2 ,= ( = )i f i fH Hε ε . Notice that for = 3 / 2S  
we observe the interference of oscillations with two 
frequences, 1,2 fε , unlike the case for = 1S , where the 
magnetic moment oscillates with only one frequency fε . 
Figure 4 shows the example of oscillations of the average 
value of the magnetic moment along x  direction for 

= 3 / 2S  “easy-plane”-like case with = 1E  and = 0.1D −  at 
= 0.1T  for = 0iH . 
We see that the magnitude of the oscillations of the x-pro-

jection is larger than the one for the z -projection of the 
magnetic moment. Notice that for large values of fH  
the magnitude of oscillations decay, see Figs. 3 and 4. 

It is possible to calculate the average in time value, 
about which the quantum mechanical magnetic moment 
oscillates after the quantum quench. For = 1S  we get 

 
2

, 2
2sinh ( / )=

2cosh( / ) exp [(2 ) / 2 ] 4
f

z z i
i f

E HTM M
T D E T

ε
〈 〉 +

ε + − ε ε
  

  (17) 

and for = 3 / 2S  we obtain 

 [, 1= exp ( / 2 )cosh ( / )z z i i iM M H T T〈 〉 + ε +  

 ]
2

1
2

3
exp ( / 2 )cosh ( / 2 )

4
f

i i
H E

H T T −+ − ε ×  

 12
1 1

1exp ( / 2 ) sinh ( / )i i
i f

H T T
 × ε × ε ε 

  

 1

1

( / 2) cosh ( / 2 )
2

i i

i

H D E T− + ε × + −ε 
  

 22
2 2

1exp ( / 2 ) sinh ( / )i i
i f

H T T


− − ε ×
ε ε 

  

 2

2

( / 2) cosh ( / 2 )
.

2
i i

i

H D E T + − ε
× −  ε  

 (18) 

Equations (15)–(18) describe totally dynamical behavior 
for the closed system. 

Figures 5 and 6 show the dependences of the average in 
time values, about which magnetic moments oscillate on 
the values of the initial iH  and final fH  values of the 
magnetic field at = 0.1T . In Fig. 5 the = 1S  case is shown 
for the “easy axis”-like case ( = 1D −  and = 0.1E − ) for the 
x-projection. 

In Fig. 6 the = 3 / 2S  case is shown for the “easy-
plane”-like case ( = 1D  and = 0.1E − ) for the z -projection. 

These results show that the average value of the mag-
netic moment is mostly determined by the initial value of 
the magnetic field iH , and the final value fH  plays an 
essential role if it has the sign, different from the sign of 

iH , and for = 0iH . 

Fig. 3. (Color online) Calculated magnetic field dependence 
of the z-projection of the magnetic moment M  on the magnitude 
of the quantum quench fH  and time t  at = 0iH  for the closed 

= 1S  “easy axis”-like system ( = 1D − , = 0.1E − ) at = 0.1T . 

Fig. 4. (Color online) Calculated magnetic field dependence 
of the x -projection of the magnetic moment M  on the magnitude 
of the quantum quench fH  and time t  at = 0iH  for the closed 

= 3 / 2S  “easy-plane”-like system ( = 0.1D − , = 1E ) at = 0.1T . 
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6. Open system 

If the considered system is the part of the larger subsys-
tem (the bath), i.e., we deal with the open system case, we 
need to take into account the relaxation processes due to 
the exchange of the energy between the bath and our sub-
system, see above. For example, we can use the Karplus–
Schwinger form of the Lindblad master equation for the 
density matrix, where the linear relaxation γ  is introduced. 
The result is equivalent to the standard Bloch approach to 
the equations of motion for spin projections. Notice that 
the inclusion of the linear relaxation implies multiplication 
of the time-dependent parts of Eqs. (15) and (16) by the 
multiplier exp ( )t−γ , and those equations are valid for 

1<t −γ  in the dynamical regime. In the steady-state regime 
1t −γ  after some calculations we obtain for spin = 1S  

 st
,

2sinh( / )=
2cosh( / ) exp [(2 ) / 2 ]z z i

TM M
T D E T

ε
+ ×

ε + −
  

 
2

2 2 .
2 ( )

f

i f

E H
×

ε ε + γ
 (19) 

Here we have supposed that the system decays to the state 
with = iH H . 

The dependence of the steady-state magnetic moment 
M  on the magnitude of the quantum quench fH  for 

= 0iH  (i.e., the switching on the field) for = 1S  for two 
directions of the magnetic field and for the “easy axis” and 
the “easy-plane” cases (with the weak biaxial magnetic 
anisotropy) is shown in Fig. 7. 

 

Fig. 5. (Color online) Calculated dependences of the x -projection 
of the average in time value of the magnetic moment M  on 
the magnitude of the quantum quench fH  and the initial value of 
the field iH  for the closed = 1S  “easy axis”-like system ( = 1D − , 

= 0.1E − ) at = 0.1T . 

Fig. 6. (Color online) Calculated dependences of the z-projection 
of the average in time value of the magnetic moment M  on the 
magnitude of the quantum quench fH  and the initial value of the 
field iH  for the closed = 3 / 2S  “easy-plane”-like system ( = 1D , 

= 0.1E − ) at = 0.1T . 

Fig. 7. (Color online) Calculated magnetic field dependences 
of the projections of the magnetic moment M  on the magnitude 
of the quantum quench fH  at = 0iH  (switching on the field) in 
the steady-state regime for = 1S  at = 0.1T  with = 0.01γ . For the 
“easy axis” case = 1D , with the small biaxial anizotropy 

= 0.1E −  the solid black line shows the field is directed along 
z axis; the dashed blue line shows the field is directed along 
x axis. For the “easy-plane” case = 1D , with the small in-plane 
anizotropy = 0.1E −  the dashed-dotted orange line shows the 
field is directed along z  axis; the dotted red line shows the field is 
directed along x  axis. 
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We see that the average magnetic moment decays in the 
steady-state regime with the magnitude of the quantum 
quench. The oscillations, characteristic for the dynamical 
regime and the closed system, are exhausted. 

For the case = 3 / 2S  we get 

 st
, 1= exp ( / 2 ) cosh ( / )z z i f fM M H T T+ ε +   

 
2

1
2

3
exp ( / 2 )cosh ( / 2 )

2
f

f f
H E

H T T
−

+ − ε ×   

 12 2
1 1

1exp ( / 2 ) sinh ( / )
( )

f f
i f

H T T
 × ε × ε ε + γ 

  

 1

1

( / 2) cosh ( / 2 )
2

f f

f

H D E T − + ε
× + −

ε 
  

 22 2
2 2

1exp ( / 2 ) sinh ( / )
( )

f f
i f

H T T


− − ε ×
ε ε + γ 

  

 2

2

( / 2) cosh ( / 2 )
.

2
f f

f

H D E T + − ε
× −  ε  

 (20) 

Figure 8 shows the dependence on the magnitude of the 
quantum quench fH  of the steady-state value of the aver-
age magnetic moment for = 3 / 2S  after switching the 
magnetic field from = 0iH  for the “easy axis” and the 
“easy-plane” anisotropy (with the weak biaxial anisotropy) 
for z  and x  directions of the magnetic field. The parame-
ters and the notations are the same as in Fig. 7. The aver-
age magnetic moment decays in the steady-state regime 
with the magnitude of the quantum quench as for = 1S . 
However, the value of the average magnetic moment in the 
steady-state regime for = 3 / 2S  can become negative. 

On the other hand, for switching off the field from 
= 5iH  the dependence of the steady-state average magnet-

ic moment on the magnitude of the quantum quench fH  is 
shown in Fig. 9 for = 3 / 2S . The parameters and the nota-
tions are the same as in Fig. 7. It turns out that the average 
magnetic moment goes to zero not at =f iH H−  as it is 
naively expected; zero value of the average magnetic mo-
ment is determined by the values of the magnetic anisotro-
py constants. Then, at large negative values of fH , the 

Fig. 9. (Color online) Calculated magnetic field dependences of 
the projections of the magnetic moment M  on the magnitude of 
the quantum quench fH  starting from = 5iH  (switching off 
the field) in the steady-state regime for = 3 / 2S  at = 0.1T  with 

= 0.01γ . The parameters and the notations are the same as in 
Fig. 7. 

Fig. 8. (Color online) The same as in Fig. 7 but for = 3 / 2S . The 
parameters and the notations are the same as in Fig. 7. 

Fig. 10. (Color online) The same as in Fig. 9 but for = 1S . The 
parameters and the notations are the same as in Fig. 7. 
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average magnetic moment gets the value determined by 
= iH H . 
For = 1S  the dependences for switching off the field 

are shown in Fig. 10. Notice that the dependences are simi-
lar for = 1D ± . It turns out that for = 1S  the steady-state 
magnetic moment for =f iH H−  when switching off the 
field becomes negative (unlike the case = 3 / 2S ). Also, 
unlike = 3 / 2S  the steady-state magnetic moment is mini-
mal at =f iH H− . Then, for large negative values of fH , 
it gets the value determined by = iH H , as for = 3 / 2S . 

Those effects are the manifestation of the specific hys-
teresis phenomenon, which is known to be totally dynam-
ical in single molecular magnets [21]. 

7. Summary 

In summary, we have studied dynamical non-equilibrium 
effects in a quantum spin system, which permits exact ana-
lytical solution in both closed and open cases, i.e., if the 
system is isolated, or it is connected to the bath. The exact 
analytic results are obtained for the bi-axial paramagnet, 
both for the “easy axis”- and the “easy-plane”-like situa-
tions, and for the field directed along both principal axes of 
the system. 

We have shown that quantum quench of the external 
magnetic field produces a nonlinear response. Namely, for 
the closed system the average magnetic moment oscillates 
with time and with the final value of the external field. The 
value of the magnetic moment, around which oscillations 
persist, is mostly determined by the initial value of the 
field. Such oscillations exist also for the open system, con-
nected to the thermostat, in the dynamical regime. For the 
steady-state regime in the open case the oscillations are 
“smeared out”. We have shown that such dynamical effects 
produce specific hysteresis phenomena in the considered 
single spin system. 
 _______  
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Квантове гартування двовісних квантових 
спінових систем 

А.А. Звягін 

Досліджено динамічні нерівноважні ефекти після кванто-
вого гартування в квантових спінових системах, які допус-
кають точні аналітичні рішення як в закритому, так і у відк-
ритому випадках. Точні аналітичні рішення отримані для 
двовісного парамагнетика як в легкоплощинних, так і легко-
вісній ситуаціях і для поля, прикладеного вздовж двох голо-

вних осей системи. Квантове гартування зовнішнім магніт-
ним полем призводить до нелінійного відгуку. Для закритої 
системи середній магнітний момент осцилює із часом та з 
фінальним значенням зовнішнього поля. Такі осциляції іс-
нують також і у відкритій системі, що контактує з термоста-
том, в динамічному режимі. Для сталого режиму у відкритій 
системі осциляції пригнічені. Нерівноважні ефекти створю-
ють специфічні гістерезисні явища в даній моноспіновій сис-
темі. 

Ключові слова: квантове гартування, двовісна магнітна ані-
зотропія, динамічний гістерезис. 

Квантовая закалка двуосных квантовых 
спиновых систем  

А.А. Звягин 

Исследованы динамические неравновесные эффекты по-
сле квантовой закалки в квантовых спиновых системах, ко-
торые допускают точные аналитические решения как в за-
крытом, так и в открытом случаях. Точные аналитические 
решения получены для двуосного парамагнетика как в лег-
коплоскостной, так и легкоосной ситуациях и для поля, при-
ложенного вдоль двух главных осей системы. Квантовая 
закалка внешним магнитным полем приводит к нелинейному 
отклику. Для закрытой системы средний магнитный момент 
осциллирует со временем и с финальным значением внешне-
го поля. Такие осцилляции существуют также и в открытой 
системе, контактирующей с термостатом, в динамическом 
режиме. Для установившегося режима в открытой системе 
осцилляции подавлены. Неравновесные эффекты создают 
специфические гистерезисные явления в рассматриваемой 
моноспиновой системе. 

Ключевые слова: квантовая закалка, двуосная магнитная 
анизотропия, динамический гистерезис.
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