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Quantum quench for the biaxial spin system
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Dynamical non-equilibrium effects after a quantum quench in a quantum spin system, which permits exact
analytical solution in both closed and open cases, are studied. The exact analytic results are obtained for the bi-
axial paramagnet, both for the “easy axis”- and the “easy-plane”-like situations, and for the field directed along
both principal axes of the system. Quantum quench of the external magnetic field produces a nonlinear response.
For the closed system the average magnetic moment oscillates with time and with the final value of the external
field. Such oscillations exist also for the open system, connected to the bath, in the dynamical regime. For the
steady-state regime in the open case the oscillations are damped. Non-equilibrium effects yield specific hystere-

sis phenomena in the considered single spin system.
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1. Introduction

Quantum systems out of equilibrium, e.g., after abrupt
changes of their parameters, are basically not susceptible to
general principles of equilibrium systems [1]. This is why,
studies of non-equilibrium dynamics of quantum models are
necessary for the fundamental understanding of how me-
chanics emerges under the unitary time evolution. The time
evolution of quantum averages depends on the initial state
through the values of a large number of parameters of
the quantum system. It disagrees with the standard ensem-
bles of statistical mechanics which use few conserved val-
ues of the dynamical system and usually describe the be-
havior after relaxation. Theoretical studies of dynamical
characteristics of many-body quantum systems are more
difficult than of their static counterparts, because all eigen-
states contribute to dynamics, and there is no possibility to
limit the consideration by the low-energy eigenstates, as, e.g.,
in low-temperature thermodynamics. Since the dynamics
of a quantum system typically involve many excited eigen-
states, with a non-thermal distribution, the time evolution
of such a system provides an unique way for investigation
of non-equilibrium quantum statistical mechanics. Last de-
cade such new subjects like quantum quenches, thermal-
ization, pre-thermalization, equilibration, generalized Gibbs
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ensemble, etc. are among the most attractive topics of in-
vestigation in modern quantum physics. Abrupt changes of
some parameters, i.e., quantum quenches, in which the sys-
tem is prepared in an eigenstate of the initial Hamiltonian
and its time evolution driven by the final Hamiltonian, lead
to such a unitary time evolution, and the final (long time)
state strongly depends on the type of the system. Their
studies can provide the information of how fast correla-
tions spread in quantum systems, whether averages can
decay to some time-independent values, and which param-
eters can govern those processes. The study of the non-equi-
librium dynamics of quantum coherence is very important
for the modern theory of quantum computation, where na-
mely abrupt changes (gates) are used to govern the beha-
vior of ensembles of qubits [2]. On the other hand, the
study of sudden changes is very important in the context of
experiments on ultracold gases [3], ultrafast (e.g., THz)
pulses [4] realized in solids [5], or high magnetic field ex-
periments in pulse fields [6,7]. For ultracold gases, for in-
stance, the coherence is maintained for much longer times
than for usual condensed matter, and the time evolution of
a quantum system after abrupt changes has become a real-
istic concept. The analysis of nonlinear quantum dynamics
of isolated spins or small particles in the mean field ap-
proximation) was performed, e.g., in [8]. Nonlinear quan-
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tum dynamics of spins S =1 under action of short laser
pulses has been studied in [9], see also [10] (it was shown
there that such a dynamics can be totally longitudinal, i.e.,
with the evolution of the average value of the spin, and
average values of quadrupole variables).

The new field of technology, molecular spintronics, com-
bines the approaches and the advantages of spintronics and
molecular electronics. The main issue of the molecular spin-
tronics is the creation of small devices using one or several
magnetic molecules. Single molecule magnets or single
atom magnets can be used there. In such systems the mag-
netic relaxation time is very long at low temperatures [11].
Their single- or few-particle nature yields quantum effects
of their static and dynamic magnetic properties [12]. The
interest to single molecular magnets is caused by a small
number of degrees of freedom (due to absent exchange
between spins). Contrary, the spin-orbit coupling for a sin-
gle spin together with the crystalline electric field of non-
magnetic ligands governs the magnetic properties of the
system, yielding local spin symmetries.

In this study we consider the non-equilibrium dynamics
of a simple quantum mechanical system, the paramagnetic
quantum spin, which has the biaxial magnetic anisotropy in
the external magnetic field. The advantage of the consid-
ered model is its solvability: The characteristics of the mo-
del after the quantum quench is written explicitly, in the
closed form. The results are obtained for the “easy axis”-
like and for the “easy-plane”-like main magnetic anisotro-
py with the weak biaxial anisotropy, for the field directed
along the axis of the largest and the weakest magnetic ani-
sotropy. We show that for the closed system the quantum
quench produces oscillations of the average magnetic mo-
ment. Those oscillations persist with time and with the
value of the magnitude of the quantum quench with respect
to the value, determined by the parameters of the system
and the values of the initial and the final values of the field.
For the open system, which exchanges the energy with the
bath, such oscillations persist in the dynamical regime, for
small enough time values. For large values of time, in the
steady-state regime, the relaxation “smears out” the oscil-
lations. We show that the dependence of the steady-state
average magnetic moment on the values of the initial value
of the field and the final one are very different from the
field dependence of the same system in the stationary re-
gime. Also, we show that the behavior of the system for
switching on and off the field is also very different.

2. The Hamiltonian

Consider the Hamiltonian of the spin S with the biaxial
magnetic anisotropy in the external magnetic field

H =—HS, +DS? +ES>, (1)

where S, . are the operators of projections of the spin, D

and E are the magnetic anisotropy parameters, and H is

the external magnetic field (we use units in which the Bohr
magneton and the effective g-factors are equal to unity).

In the representation with the diagonal z-component for
S =1 we can write the Hamiltonian as

£

—H+D+E 0
2 2
H, = % H+D+§ 0|=
0 0 E
—2H E 0
EY. 1
= D+E 1+E E 2H 0 , (2)
0 0 -2D+FE

where / is the unity matrix. We see that the magnetic field
affects only the 2x2 subspace (with §, =+1). In that sub-
space (i.e., in the effective 2x2 matrix representation) the
effective Hamiltonian can be written as

7‘[6:—HGZ+§GX. 3)

The density matrix p=exp(—-H/T)/Tr[exp (H/T)],
where T is the temperature (we use units in which the
Boltzmann constant is unity), in this representation is

-1
Ps = [2sinh%+exp 2D_E} x

A € €
x| I cosh—+ o, sinh— |, 4
(peoZeoisms)
where fc is the unity matrix in the 2x2 subspace, and

o, =(H/¢)o,+(E/2¢)c,, with

2, 2
8:#, 5)

For the spin S =3/2 case we can write the expression
for the Hamiltonian in the diagonal in S, representation

H3/2—3E:Df+lx
—3H+4D BE 0 0
. VBE H+E 0 0 ©
0 0 -H+E ~BE |
0 0 E 3H+4D

One can see that the magnetic field acts independently in
two 2x2 subspaces (for S, =3/2,-1/2 and §, =-3/2,1/2,
respectively). In the effective 2x2®2x2 (let us denote it
as 0;—0,) representation for those two subspaces the effec-
tive Hamiltonians can be written as
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1 ~
My, = 5[;11,21%J_rcszl,z(zD—EJ—rzH)mxl,zﬁE] .
(7

The density matrix in this representation can be written as

-1
H 81 -H 82

=| 2exp—-cosh—+2exp——cosh—= X
Po.ay [ Por T Por T}

A H €1 , H . €1
x| I} exp—cosh—+ ¢.; exp—sinh—+
{ LEXPY p COSIT T O SRR S,

A -H 5% , -H . (%)
+ I, exp——cosh—=+o., exp — sinh —= |, 8
28Xp— 7 o2 - T} (®)

where i1,2 are the unity matrices in those two 2x2 subspaces,

and o, =[(HFD+E/2)/¢ 510,15 +(N3E/285)0, 5
with

\BE*+@D-EF2HY
. :

(€))

€1,2

3. Static characteristics

Then the quantum mechanical average value of the pro-
jection of the magnetic moment along z direction is calcu-
lated as M, =Tr (S,p). We can calculate that value using
the effective 2x2 representations written above. For the
spin S =1 we obtain (using p = ps)

H 2sinh (¢/T)
e 2cosh (e/T)+exp[(2D-E)/2T]

(10)

M=

It can be compared with the approximate expression [13]

H
NI

valid at low temperatures (here K is the anisotropy con-
stant in the basis plane). One can see that for the “easy
axis”-like case for S =1 the approximate expression is
reminiscent to the exact one. On the other hand, for the
“easy-plane” case the situation is different.

For the spin S =3/2 we get (using p = pcl’cz)

(§) = (11)

M o =[exp (H /2T) cosh (g / T)+
+exp (—H /2T) cosh (g, / 2T)] Ty

x (exp (H /2T) {w sinh (g, / T) +
€]
, cosh (g /2T)}+exp (_H/ZT)[(H+D—E/2)X
2 82
x sinh (&, /T)—MD. (12)

We can also calculate the projection of the average
magnetic moment along x direction. For this purpose we
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Fig. 1. (Color online) Calculated magnetic field dependences of
the projections of the magnetic moment M for S=1 at 7'=0.1.
For the “easy axis” case D =1, with the small biaxial anizotropy
E =-0.1 the solid black line shows the field is directed along z
axis; the dashed blue line shows the field is directed along x axis.
For the “easy-plane” case D= -1, with the small in-plane an-
izotropy E = —0.1 the dashed-dotted orange line shows the field is
directed along z axis; the dotted red line shows the field is di-
rected along x axis.

replace x <> z in the Hamiltonian . Hence, the answers
for the quantum mechanical averaged value of the x-
projection of the magnetic moment M , can be obtained by
the formal replacement D <> E in Egs. (10) and (12).
Figures 1 and 2 manifest the magnetic field dependenc-
es of the z- and x-projections of the magnetic moments for
the “easy axis” D =—1 and “easy-plane” paramagnet with

1.5_ ...... /_________
TR //r;’_—
P
7 !
/
/ 1
|: / ;
1.OH: , '
/
M, / il
/ ;
o ;
o5 -
,-/
n
.
'/
i/
ol , |
0 5 .
H

Fig. 2. (Color online) The same as in Fig. 1 but for § =3/2. The
parameters and the notations are the same as in Fig. 1.
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the weak biaxial magnetic anisotropy £ = —0.1 at low tem-
perature 7=0.1 for S=1 and 3/2, respectively. We see
that for different directions of the field the magnetic field
behavior manifests different features. We point out that
the change of the sign of the weak biaxial anisotropy
does not produce essential changes in the magnetic field
behavior. At higher temperatures (of order of the maximal
value of the magnetic anisotropy) all those features are
“smeared out”.

4. Dynamics after the quantum quench

Now consider the following situation. Suppose at £ =0
we change the value of the magnetic field from H; (valid at
t<0) to Hy (valid for #>0), known as the quantum
quench. Dynamics of any quantum system can be describe-
ed in two ways. In the first way one considers the time
evolution of the considered operator (using the Heisenberg
equations), and then average the obtained time-dependent
value of the operator with respect to the wave function (for
the pure state), or the density matrix (for the mixed state).
The other way, is to find the time evolution of the wave
function (using the Schrodinger equation) or the density
matrix (using the Liouville equation), and then average the
considered operator with the obtained time-dependent wave
function or the density matrix. In the case of exact calcula-
tions both ways yield the same answer.

To describe dynamics of the studied spin system under
the action of the linearly polarized ac magnetic field let us
use, for instance, the first approach. The Liouville equation
for density matrix p has the form ip =[H,p], where [.,.]
denotes the commutator. Such a behavior is characteristic
for a closed system. However, as a rule, the spin system is
not isolated. For example, there are processes, which take
the energy from the system, i.e., relaxation processes.
The relaxation can be considered in a number of ways.
The reason for the relaxation of the density matrix is the
interaction of the considered system with some environ-
ment; such an interaction takes the energy from the system,
i.e., our considered system is the open one. For example,
for the studied quantum spin system the lattice (i.e., the
elastic subsystem of the crystal) can serve as such an envi-
ronment.

Dynamics of the density matrix of our open system for
general Markovian processes is described by the Lindblad
master equation [14] (here we write it in the diagonal form)

N7-1
. . 1,
zp—[H,p]+zZlv,(cjpcj+5{c}ﬁj,p}j, (13)
J=
where N is the dimension of the system, {.,.} denotes the

anticommutator, and the orthonormal and traceless opera-
tors [,j are the Lindblad (jump) operators. For y ;=0 the

Lindblad equation is, obviously, the Liouville equation. In

the model of random collisions [15] one can write the
Lindblad operators as L; = ,/(po)jj | /)j'|, and suppose
that all y; are equal, which yields

ip=[H,pl+iv(pg —p)- (14)

This form of the master equation was first suggested by
Karplus and Schwinger [16]. It was used to describe the
relaxation processes of quantum systems under the action
of the ac electromagnetic field. It describes the interaction
of the considered system with the bath, with the relaxation
of the density matrix to py, in the steady state. It is useful to
substitute p’ = exp (y¢) p; we obtain ip' =[H,p']+yexp (vf)py.
The used approximation implies equal relaxation times for
all eigenmodes of the system. It is equivalent to the Bloch
form of relaxation in the theory of the nuclear magnetic
resonance [17]. Two relaxation times as in the Bloch ap-
proach can be easily introduced in the above scheme by
using different relaxation rates for diagonal and non-dia-
gonal components of the density matrix. One can also gen-
eralize the approach using, e.g., Torrey’s phenomenological
theory [18], which adds diffusion processes to the Bloch
equations. It is possible to show that the effect of the linear
relaxation in the Bloch form is similar to the effect of the
relaxation in the Landau-Lifshitz form for magnetic sys-
tems [19]. Here we are interested mostly in the homogene-
ous response, and can neglect the spatial dependence of
relaxation.

5. Closed system

The response to the quantum quench is strictly nonline-
ar for the studied model. After some algebra similar to
the one, developed in Ref. 20 we obtain for y =0 for the
closed system for S =1

M.()=M., + 2sinh (¢/T) 5
* 2cosh (e/T)+exp[(2D-E)/2T]
E’H,
x——Lsin? (e 1), (15)
2
2g;€7

where we use units in which 27=1, and ¢; , =&(H = H; r).
We see that the average magnetic moment oscillates with
time and with the magnitude H r of the quantum quench.
For instance, Fig. 3 shows the oscillations of the average
value of the magnetic moment along z direction for S =1
“ecasy axis”-like case with D =-1 and £ =-0.1 at T =0.1
for H; =0.
For S =3/2 the calculated dependence is

M, ()=M_; +[exp (H;/2T)cosh (gy; /T)+

-1 3HfE2
+exp (—H; / 2T)cosh (&5, / 2T)] - =
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Fig. 3. (Color online) Calculated magnetic field dependence
of the z-projection of the magnetic moment M on the magnitude
of the quantum quench H  and time 7 at H; =0 for the closed
S =1 “easy axis”-like system (D =-1, E=-0.1)at 7 =0.1.
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82[ 2

—exp (—H;/2T) sin® (z—:zft) |:sinh (g4, /T) x

where & 5; r =& ,(H = H, ). Notice that for §=3/2
we observe the interference of oscillations with two
frequences, & ,, unlike the case for §=1, where the
magnetic moment oscillates with only one frequency & .
Figure 4 shows the example of oscillations of the average
value of the magnetic moment along x direction for
S =3/2 “easy-plane”-like case with £ =1 and D =—-0.1 at
T=0.1for H; =0.

We see that the magnitude of the oscillations of the x-pro-
jection is larger than the one for the z-projection of the
magnetic moment. Notice that for large values of H ,
the magnitude of oscillations decay, see Figs. 3 and 4.

It is possible to calculate the average in time value,
about which the quantum mechanical magnetic moment
oscillates after the quantum quench. For § =1 we get

2
2sinh (¢/T E°H
<M>z =Mz,i+ ( ) 2f
2cosh(e/T)+exp[(2D—E)/2T] deiey
(17)
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Fig. 4. (Color online) Calculated magnetic field dependence
of the x-projection of the magnetic moment M on the magnitude
of the quantum quench H ¢ and time 7 at H; =0 for the closed
§ =3/2 “easy-plane”-like system (D =—-0.1, E=1)at T =0.1.

and for S =3/2 we obtain
(M), =M, ;+[exp (H; /2T)cosh (¢y; / T)+
L\ 3H E?
+exp (—H; / 2T)cosh (gy; / 2T)] ~ —=——x

x[exp(Hi/2T) 12

€181 s
y (H;-D+E/2) N cosh (g; /2T) 3
€y 2

{sinh (g; /T)x

—exp (_Hi /2T) |:Si1’lh (821' /T) X
€82 f
(H; +D—E/2) cosh (e /2T)D

€r; 2

(18)

Equations (15)—(18) describe totally dynamical behavior
for the closed system.

Figures 5 and 6 show the dependences of the average in
time values, about which magnetic moments oscillate on
the values of the initial H; and final H £ values of the
magnetic field at 7 = 0.1. In Fig. 5 the S =1 case is shown
for the “easy axis”-like case (D =—1 and E = —0.1) for the
X-projection.

In Fig. 6 the §=3/2 case is shown for the “easy-
plane”-like case (D =1and E = —0.1) for the z-projection.

These results show that the average value of the mag-
netic moment is mostly determined by the initial value of
the magnetic field H;, and the final value H , plays an
essential role if it has the sign, different from the sign of
H;, and for H; = 0.
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Fig. 5. (Color online) Calculated dependences of the x-projection
of the average in time value of the magnetic moment M on
the magnitude of the quantum quench H 7 and the initial value of
the field H; for the closed S =1 “easy axis”-like system (D = -1,
E=-0.1)atT=0.1.

6. Open system

If the considered system is the part of the larger subsys-
tem (the bath), i.e., we deal with the open system case, we
need to take into account the relaxation processes due to
the exchange of the energy between the bath and our sub-
system, see above. For example, we can use the Karplus—
Schwinger form of the Lindblad master equation for the
density matrix, where the linear relaxation vy is introduced.
The result is equivalent to the standard Bloch approach to
the equations of motion for spin projections. Notice that
the inclusion of the linear relaxation implies multiplication
of the time-dependent parts of Egs. (15) and (16) by the
multiplier exp (—y#), and those equations are valid for
t< yfl in the dynamical regime. In the steady-state regime
t> y_l after some calculations we obtain for spin § =1

M;t M+ 2sinh(e/T) y
* 2cosh(e/T)+exp[(2D—-E)/2T]
E’H
X— (19)

2¢; (a? + yz)

Here we have supposed that the system decays to the state
with H = H;.

The dependence of the steady-state magnetic moment
M on the magnitude of the quantum quench H f for
H; =0 (i.e., the switching on the field) for S =1 for two
directions of the magnetic field and for the “easy axis” and
the “easy-plane” cases (with the weak biaxial magnetic
anisotropy) is shown in Fig. 7.

1506

Fig. 6. (Color online) Calculated dependences of the z-projection
of the average in time value of the magnetic moment M on the
magnitude of the quantum quench H ! and the initial value of the
field H; for the closed S =3/2 “easy-plane”-like system (D =1,
E=-0.1)at7T=0.1.
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Fig. 7. (Color online) Calculated magnetic field dependences
of the projections of the magnetic moment M on the magnitude
of the quantum quench H fat H;=0 (switching on the field) in
the steady-state regime for S =1 at 7= 0.1 with y=0.01. For the
“easy axis” case D=1, with the small biaxial anizotropy
E =-0.1 the solid black line shows the field is directed along
z axis; the dashed blue line shows the field is directed along
x axis. For the “easy-plane” case D =1, with the small in-plane
anizotropy E =-0.1 the dashed-dotted orange line shows the
field is directed along z axis; the dotted red line shows the field is
directed along x axis.
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We see that the average magnetic moment decays in the
steady-state regime with the magnitude of the quantum
quench. The oscillations, characteristic for the dynamical
regime and the closed system, are exhausted.

For the case S =3/2 we get

M3 =M_; +[exp (H; /1 2T) cosh (e, / T) +
2
HfE

X

-1
+exp (—H 7 / 2T)cosh (g5 /2T) |

x| exp (H,/2T)
' & (&1 +77)

(Hy =D+E/2) cosh(g,/2T)
L " : —
glf 2

{sinh (&1 /T)x

—exp (—H /2T)+2){sinh (&2 /T)x

(837 +v
H;+D-E/2) cosh(g, /2T
X( r ) (a7 /2T) R
82f 2

Figure 8 shows the dependence on the magnitude of the
quantum quench H f of the steady-state value of the aver-
age magnetic moment for S=3/2 after switching the
magnetic field from H; =0 for the “easy axis” and the
“easy-plane” anisotropy (with the weak biaxial anisotropy)
for z and x directions of the magnetic field. The parame-
ters and the notations are the same as in Fig. 7. The aver-
age magnetic moment decays in the steady-state regime
with the magnitude of the quantum quench as for S=1.
However, the value of the average magnetic moment in the

steady-state regime for S =3/2 can become negative.

0.6

0.4 H

st

0.2 H

[
0 20 40 60
[—]f

Fig. 8. (Color online) The same as in Fig. 7 but for § =3/2. The
parameters and the notations are the same as in Fig. 7.
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Fig. 9. (Color online) Calculated magnetic field dependences of
the projections of the magnetic moment M on the magnitude of
the quantum quench H s starting from H; =35 (switching off
the field) in the steady-state regime for S =3/2 at 7 =0.1 with
y=0.01. The parameters and the notations are the same as in
Fig. 7.

On the other hand, for switching off the field from
H; =5 the dependence of the steady-state average magnet-
ic moment on the magnitude of the quantum quench Hy is
shown in Fig. 9 for § =3/2. The parameters and the nota-
tions are the same as in Fig. 7. It turns out that the average
magnetic moment goes to zero not at H , =—H; as it is
naively expected; zero value of the average magnetic mo-
ment is determined by the values of the magnetic anisotro-
py constants. Then, at large negative values of H £ the

| ~—y — =
~ f/
\ /
VI
0.5+ \ |
HL
1L
1L
st
M0 | |
1L
i
11
—0.5F 1L
il
|
il
I I [ I
-20 -10 0
H,

Fig. 10. (Color online) The same as in Fig. 9 but for §=1. The
parameters and the notations are the same as in Fig. 7.
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average magnetic moment gets the value determined by
H=H,.

For S =1 the dependences for switching off the field
are shown in Fig. 10. Notice that the dependences are simi-
lar for D = *1. It turns out that for S =1 the steady-state
magnetic moment for H , =—H; when switching off the
field becomes negative (unlike the case S =3/2). Also,
unlike S =3/2 the steady-state magnetic moment is mini-
mal at H ; =—H;. Then, for large negative values of H,
it gets the value determined by H = H;, as for § =3/2.

Those effects are the manifestation of the specific hys-
teresis phenomenon, which is known to be totally dynam-
ical in single molecular magnets [21].

7. Summary

In summary, we have studied dynamical non-equilibrium
effects in a quantum spin system, which permits exact ana-
lytical solution in both closed and open cases, i.e., if the
system is isolated, or it is connected to the bath. The exact
analytic results are obtained for the bi-axial paramagnet,
both for the “easy axis”- and the “easy-plane”-like situa-
tions, and for the field directed along both principal axes of
the system.

We have shown that quantum quench of the external
magnetic field produces a nonlinear response. Namely, for
the closed system the average magnetic moment oscillates
with time and with the final value of the external field. The
value of the magnetic moment, around which oscillations
persist, is mostly determined by the initial value of the
field. Such oscillations exist also for the open system, con-
nected to the thermostat, in the dynamical regime. For the
steady-state regime in the open case the oscillations are
“smeared out”. We have shown that such dynamical effects
produce specific hysteresis phenomena in the considered
single spin system.
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KBaHTOBe rapTyBaHHS 4BOBICHUX KBAHTOBUX
CMiHOBUX CUCTEM

A.A. 3B4riH

JocnimkeHo AuHaMiuHI HEPiBHOBaXKHI e()eKTH Micist KBaHTO-
BOTO TapTyBaHHsS B KBAHTOBHX CIIIHOBHX CHCTEMaX, SIKi JOIYyC-
KaloTh TOYHI aHAJITUYHI PilIEHHS SK B 3aKPUTOMY, TakK i y Biik-
puTOMy BHIaJIKaX. TOYHI aHANITHYHI pIMICHHS OTPHMaHi IS
JIBOBICHOTO IIapaMarHeTHKa SK B JICTKOIUIOLIMHHUX, TaK i JIETKO-
BICHIH CHTyamisiX 1 IJIs TOJIs, IPHUKIIaJCHOTO B3JOBX JIBOX TOJO-

BHUX ocell cucTeMu. KBaHTOBE rapTyBaHHs 30BHIIIHIM MarHiT-
HHM I0JIEM IIPU3BOAUTH JI0 HEJNiHIHOTO BiAryky. Jiust 3aKkpHToi
CHCTEMH Cepe[Hili MarHiTHHH MOMEHT OCIMIIIOE i3 4acoM Ta 3
(iHaNEHUM 3HAYEHHSM 30BHIMIHBOro moms. Taki ocruumimii ic-
HYIOTb TaKOX 1 Y BIZIKpHTiil CHCTEMI, II[0 KOHTAKTY€ 3 TepMOCTa-
TOM, B IMHAMIYHOMY peXuMi. I CTaJoro pexuMy y BiAKpHUTIH
cuctemi ocrmnil npurdideHi. HepiBHOBaXkHI eekTH CTBOpIO-
I0Th crenudivHi TicTepe3ncHi SBHUIIA B JaHiH MOHOCIIHOBIH cHC-
TeMi.

KirodoBi crioBa: KBaHTOBE rapTyBaHHs, ABOBICHA MarHiTHa aHi-
30TpoIIisi, IMHAMIYHHHI TicTepe3Hc.

KBaHTOBagd 3akanka ABYOCHbIX KBAHTOBbIX
CMUHOBbLIX CUCTEM

A.A. 3BarvH

HccnenoBansl TMHAMUYECKHE HEPAaBHOBECHBIC YPQEKTHI MO-
CJI¢ KBAaHTOBOM 3aKaJIKH B KBAHTOBBIX CIIMHOBBIX CHCTEMaX, KO-
TOpBIE JIOIYCKAIOT TOYHBIC aHAJUTHYECKUE PEIICHHs] KaK B 3a-
KPBITOM, TaK U B OTKPBITOM CIy4asx. TOYHbIE aHATUTHYECKUE
pelIeHus MOJIyueHbl JJIsl IBYOCHOrO NapaMarHeTuka Kak B JIer-
KOIJIOCKOCTHOH, TaK M JIETKOOCHOM CUTYallUsIX W JUIS TOJIS, IPU-
JIO)KEHHOT'O BJOJb JBYX TJaBHBIX ocel cucreMbl. KBaHTOBas
3aKajKa BHEIIHUM MarHUTHBIM [OJIEM NPUBOJUT K HEIUHEHHOMY
OTKJIUKY. {11 3aKpbITON CUCTEMBI CpeIHUI MarHUTHBI MOMEHT
OCLIJUIUPYET CO BpEMEHEM U ¢ (PMHAIBHBIM 3HAYCHHUEM BHEIIIHE-
ro noys. Takue OCHMIIISILMM CYIIECTBYIOT TaKK€ U B OTKPBITOMH
cUCTeMe, KOHTAKTHUPYIOIIEH ¢ TepMOCTaTOM, B IMHAMHYECKOM
pexxume. s ycTaHOBMBIIEIOCS peKMMa B OTKPBITOH cucTeMe
OCLWJUISILMK ToAaBieHbl. HepaBHOBecHbIe 3(QQeKThl CO31ar0T
CHeHU(pUUYECKHE THCTCPE3UCHBIC SBJICHHS B PAacCMaTPUBACMOI
MOHOCITMHOBOM CHCTEME.

KiroueBble croBa: KBaHTOBas 3aKallka, [BYOCHAsh MarHUTHAs
AQHM30TPOIHS, AMHAMUYECKHUI THCTEPE3NC.
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