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Dynamical effective parameters of elastic superlattice
with strong acoustic contrast between the constituents
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Analytical formulas are obtained for frequency-dependent effective elastic modulus and effective mass densi-
ty for a periodic layered structure. The proposed homogenization procedure is valid at sufficiently high frequen-
cies well above the lowest band gap in the acoustic spectrum of the structure. It is shown that frequency-
dependent effective parameters may take negative values either in different regions of frequencies or in the same
quite narrow region. This property demonstrates that 1D elastic structure may behave in the limit of small Bloch

wave vectors as a double-negative acoustic metamaterial.
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1. Introduction

Elastic periodic structures or phononic crystals originally
were considered as passive environment where sound waves
of certain region of frequencies cannot propagate because of
presence of prohibited zones (band gaps) in their spectra of
vibrations [1-3]. Now a variety of periodic elastic structures
serve as principal elements of different acoustic devices op-
erating in the regions of frequencies where sound waves can
propagate and where they exhibits “exotic” properties, like
anomalous dispersion, negative refraction, strong anisotro-
py, etc. If these properties can be explained within the effec-
tive medium theory, it is worthwhile to calculate the effective
parameters of this homogeneous medium. For longitudinal
waves it is sufficient to know the effective mass density
peff () and the effective elastic modulus A (©), which
are the functions of frequency . For a long time a self-
consistent approach to homogenization of elastic compo-
sites proposed by Barryman for spherical [4] and ellipsoi-
dal scatterers [5] was widely used. This long-wavelength
limit is valid for the composites with low concentration of
scatterers in space, when the details of the microstructure of
the composite are ignored. This approach also does not lead
to frequency dispersion, giving the result for pg (0) and
Aetr (0), i.e., the quasistatic limit for the effective parame-
ters. Phononic band structure engineering and rapid devel-
opment of new acoustic and elastic metamaterials gave rise
to more advanced effective medium theories.

Homogenization theories based on plane or cylindrical
wave expansions were developed in Refs. 6-11 for calcula-
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tions of the effective parameters of two- and three-
dimensional elastic periodic structures in the quasistatic
limit. The effective parameters are obtained by taking the
limit ® — 0, k — 0 in the exact wave equation written for
periodic structure, therefore they take into account all the
details of distribution of elastic material within the corre-
sponding unit cell.

The effective parameters obtained in the quasi-static
limit are dispersionless and they are not valid for calcula-
tion of the bandgaps. The latter requires application of the
dynamical methods. Frequency-dependent effective pa-
rameters for 2D elastic systems were calculated in Ref. 12.
A two-scale approach proposed in this paper is valid for
quite high frequencies o and wave vector k lying near the
edges of the Brillouin zone. More general plane-wave ex-
pansion approach valid in 3D case and for arbitrary ® and k
was developed by Norris et al. [13]. An alternative approach
for calculation of the effective parameters of phononic
metasolids with local resonances was proposed in Ref. 14. It
was demonstrated that these structures are described by
means of frequency-dependent and anisotropic effective
mass density, stifness tensor, and a third rank coupling
tensor that is a signature of a nonlocal Willis medium.

So far, the approaches developed in Refs. 12-14 give the
most complete description of a periodic structure by its ef-
fective parameters. The other side of wide generality of the
reported results is that they require quite extensive numerical
procedure. This is the reason why only one-dimensional
structures were considered in Refs. 12,13 as examples of
application of the proposed methods. Less general but more
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feasible methods of homogenization of 2D and 3D phononic
crystals are proposed in Refs. 15,16 and Ref. 17, respective-
ly. Unlike the exact results [13] these methods are based on
different approximations. Nevertheless, they reproduce
with high accuracy the band structures of 2D and 3D
phononic crystals in the long-wavelength limit.

Layered (one-dimensional) periodic structures are of spe-
cial interest as they are significantly easier and less expen-
sive to fabricate than 2D or 3D structures. Theoretical study
of acoustic properties of layered structures is also simplified
due to the well-known dispersion relation o = (k). For a
binary composite it has the following form [18]:
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Here d = a+b is the period of the structure containing two
layers of width a and b, c,(cy) is the speed of sound in the
layer a(b), and Z, = p4cy (Zy = pyCy) is the acoustic im-
pedance of the layer a (b). In an infinite periodic structure
Eqg. (1) defines the dispersion of a Bloch wave of pressure
propagating perpendicular to the layers, p(x,t)=
= Uy (x) exp[i(kx — ot].

In the quasi-static limit the effective density and elastic
modulus of layered structure are easily calculated from
Eg. (1) by taking the limit o,k >0 and assuming that
®/K = Cee = const,
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These formulas are valid only for the lowest (acoustic)
band, where dispersion of sound is linear, © = gk,

Ceff = ~/Meff | Peff -

For higher (optical) bands, the effective parameters ex-
hibit dispersion, i.e., peft = Peff (®), Aot = Aeff (). Fre-
quency-dependent effective parameters of 1D phononic
crystals have been studied in many publications
[12,13,16,19,20] where the results for pgs (@) and Agss (@)
are presented in a graphical form. Analytical results for the
effective parameters beyond the quasi-static limit (2) are
still lacking, while for 1D case the dispersion Eq. (1) is
known explicitly.

Here we propose a method of homogenization which for
periodic layered medium leads to simple analytical formulas
for the effective parameters. We introduce the effective me-
dium through two principal equations of elastodynamics:
equation of motion and Hooke's law. Propagating Bloch
wave of pressure p(x,t) induces oscillations of every ele-
ment of the unit cell. Spatial period, phase and amplitude of
these oscillations vary over the unit cell according to dis-
tribution of elastic material. Then, the acceleration a, . and
deformation AV /V of any local infinitesimally small layer
within the unit cell are also functions of x. Replacing a

periodic medium by a homogeneous one we request that in
the long-wavelength limit kd <1 both media exhibit the
same dynamics. This requirement means that i) the average
acceleration a equals to average acceleration of the effective
medium subject to propagating plane (not Bloch) wave with
the same wave vector k and ii) the average deformation
AV /V equals to that of the effective medium. These two
requirements provide that the unit cell as a whole moves as
the corresponding part of the homogeneous effective medi-
um. Two effective parameters, pq (0) and g (@), are
obtained as a result of the above-mentioned requirements.
Similar homogenization scheme was proposed in Ref. 21
for periodic arrangement of solid cylindrical scatterers.

For a wide region of frequencies the proposed effective
parameters lead to a nonlinear dispersion relation

© = KCeff (), Ceff (@) = hetf () / pefr (@), (3)
which reproduces well the exact dispersion relation

® = w(k) obtained from Eq. (1), if kd <« 1. This correspond-
ence is valid not only within the passing bands but also with-
in the band gaps where the wave vector K is pure imaginary
since one of the effective parameters becomes negative. For
a given combination of elastic materials in the unit cell the
proposed formulas predict the region of frequencies where
both effective parameters are negative, i.e., the layered struc-
ture behaves as metamaterial with negative index of refrac-
tion. So far the explicit frequency dependencies of the effec-
tive parameters were reported for acoustic devices exhibiting
negative refraction near the frequencies of the internal reso-
nances [22-24]. Reported here results is one more example
of a periodic structure where the dispersion of the effective
parameters can be calculated analytically.

2. High-frequency homogenization scheme

We consider a binary periodic composite of two elastic
materials, a and b shown in Fig. 1. The distribution of mate-
rials within the unit cell always can be selected symmetrical
since the crystal as a whole possesses inverse symmetry.
Propagating Bloch wave produces inhomogeneous distri-
bution of pressure within the unit cell. Labeling the layers
in the unit cell by index n (n =1,2,3), the pressure can be
written as follows:

Material a, water:

A, =210 Pa
p, = 1000 kg/m’
a=10 mm
al2 al2 B Material b, steel:
A,=2-10"Pa
x y y p, = 7900 kg/m’
b=1mm

Fig. 1. (Color online) Symmetric unit cell of a binary composite.
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ik, x —iknX

Pn(X) = Ave " +Bpe TN,
(4)
where the wave vector k, =w/c, and ¢, = A, /p, is
speed of sound in the nth layer. A set of linear equations
for six constants A, and B,, is obtained from the continuity
of velocity and pressure at the layer interfaces, x = b /2

Ldp”(x)| B — 1 dpn'(X)| _
iwpn dx x=xb/2 i(Dpnr dx x=xb/21 (5)
Pr(x==2b/2) = py(x==b/2),
and the quasiperiodicity condition (Bloch theorem),
pp(x+d) = glkd Pn(X), at x =—(a+b)/2. Since the equa-
tions in this set are homogeneous a nontrivial solution ex-

ists if the determinant vanishes, that leads to the dispersion
Eq. (1). Once A, and By, are calculated, the pressure p, (x)

in each layer can be expressed through, e,g., pressure at the

left edge of the unit cell, pl(—aTer)= pea@ P2

P (X,1) = Py (x)et,

—iky (a+b)/2

+Be

In the long-wavelength limit, kd <1 the Bloch wave in
a periodic structure is weakly modulated and can be ap-
proximated by a plane wave that propagates in the equiva-
lent effective medium. We propose to obtain the density of
the effective medium by equating the average acceleration
of the unit cell to that of the effective homogeneous layer
of width d, assuming that the amplitude of the plane wave

coming from the left is — pl(a—;rb). The local acceleration of

1 dp(x)
p(x) dx
age acceleration of the unit cell is obtained by integration

elastic medium at point x is — . Then, the aver-

a+b
3 :_EJ‘T dpp(x) 1
T p, ()

__ L oikd_qy, by 1f1 1y by b
= pad(e 1) py( 2) d(pb pa][pZ(Z) Pa( 2)}:

(6)
Average acceleration of a homogeneous layer with density
peffiN the  field of the plane  wave

p(x) = pl(—a—;rbjexp[ik(x+a7m)] is calculated in a

similar way

1 a+bd()
_ T2 dp() -
dpess _a%b dx

Agff =
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The pressure p1[—a—;bj can be selected as a constant

through which all the unknowns A, and B, can be ex-
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pressed. Then the distribution of pressure within the unit cell

is proportional to pl(—a%bj and this common factor is

canceled when equating the accelerations given by Egs. (6)
and (7). Thus, the condition &, . = @ defines the effec-

tive density pgg (®).
One more mechanical characteristic of elastic medium
is the field of deformation. For a layered inhomogeneous

system the relative change of volume of the unit cell is
obtained from the Hooke’s law:

atb
-~ 2
[ﬂ} RN NP ©
Vo dfa;b A(X)
2
The same quantity for a homogeneous medium is given by
atb
AV 1 3
el B LA ©)
eff eff a+h

2
The equation AV [ AV defines the effective
v u.c. v eff

bulk modulus g (). Thus, the proposed homogenization
scheme is based on Egs. (6)—(9) which establish equivalen-
cy in the dynamics of the unit cell and effective medium in
the field of propagating sound wave. Apparently, that this
method of homogenization is valid in the long-wavelength
limit kd <1 and within a wide range of frequencies (not
necessarily low). The latter means that the elastic field
inside each material layer can be strongly inhomogeneous,
i.e., the parameters kya = wa/c, and kyb = wb/cy, are not
necessarily small. It is clear that the proposed method is
valid not only for layered structures; it is equally applica-
ble for 2D [21] and 3D phononic crystals. In 1D case all
the calculations can be done analytically and explicit ex-
pressions for the effective parameters are obtained.

3. The effective parameters

Solution of a homogeneous 6x 6 set of linear equations
for the coefficients A, and By, is a trivial but combersome
problem. Omitting simple algebra, we give the final results
for the dynamic effective parameters for the most interest-
ing situation of high acoustic contrast between the constit-
uents, ¢, < Cp,

paa s 2 o2

2c
Peff ((D) = 8 8 ’ (10)
(wal2cy) _2py . 2(%)
sin(wa/2c,) Pa SN a
bxgl + ak;l (anjsin (coaj
1 oa 2¢,
Aeft (©) = - (1)
(a+b) cos[wa]
2¢c,
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These formulas are valid in the long-wavelength limit
kd <1 for the structure with high acoustic contrast. The
latter condition, wb/c, <1, means that that the layer with
more stiff material (layer b) homogenizes, i.e. the acoustic
field inside it is practically homogeneous. However, the
field inside the softer layer can exhibit oscillatory pattern.
This gives rise to frequency dispersion of the effective pa-
rameters. Of course, in the limit, o,k — 0 Egs. (10), (11)
are reduced to the result of the quasi-static limit Eq. (2).

4. Frequency dispersion of the effective parameters

To study the dispersion of the effective parameters we
select a structure containing layers of water (material a,
thickness a=10 mm) and steel (material b, thickness
b =1 mm). The acoustic contrast between these two mate-
rials is rather high: c,/c, ~3.5. The geometrical and
physical parameters of the unit cell are shown in Fig. 1.
Due to high contrast and different thicknesses there is a
wide range of frequencies where the obtained formulas for
the effective parameters are valid. The homogenization
condition for the water layer wa/c, <1 is true for fre-
quencies o, / 21 < 2.5-10* Hz. At such low frequencies
the results (2) obtained in the quasi-static limit are valid.
Indeed, the effective parameters in Fig. 2 do not exhibit
essential dispersion up to 2.10* Hz. Here the dispersion of
sound is linear, see Fig. 2(c). At higher frequencies both
effective parameters exhibit strong frequency dispersion,

which originates from inhomogeneity of acoustic field in
water layers. Unlike this, the field within the steel layers is
homogeneous, i.e., wb/c, < 1. This condition is violated
at frequencies higher than oyay / 2n = ¢, / 27b ~ 0.8 MHz.
Thus, within the range from 20 kHz to 0.8 MHz the effec-
tive parameters are frequency-dependent and they can be
calculated using Egs. (10) and (11).

Of course, these results are valid only in the long-
wavelength limit, i.e., in the vicinity of the I"-point. There-
fore, the parts of the graphs lying in the region of frequen-
cies corresponding to the edges of the Brillouin zone (where
kd close to w) should be ignored. Within the band gap
(shaded region close to the I'-point in the Fig. 2(c)) the
effective elastic modulus is negative but the effective den-
sity is positive. This leads to pure imaginary phase veloci-

ty, Vpn = /2eff / Pefr » therefore the system is opaque —

sound wave does not propagate. The effective elastic mod-
ulus remains negative even below the lower edge of the
gap (=96 kHz). The effective density vanishes exactly at
this frequency, going to negative values below it. Thus,
there is a narrow region of frequencies where both effective
parameters are negative and the structure is transparent to
sound. This narrow region (below 100 kHz) is light shaded
in the left and central panels. One more very narrow region
with double-negative parameters lies near 370 kHz. Note
that within these regions the dispersion of sound is anoma-
lous, i.e., the phase and group velocities have opposite di-
rections. Negative values of pess and Ao give rise to neg-

(b)

(a)
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Effective medium: Water — steel composite:
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Fig. 2. (Color online) Effective density p.¢ (o) (a); effective compliance x;flf (w) (b); dispersion curves for the water-steel periodic
structure (solid lines) and for the effective medium (dashed lines) with parameters calculated using Eqgs.(10) and (11) (c). Bandgap re-
gion is dark-shaded on (c). Two narrow regions (near 100 and 370 kHz) of double-negative effective parameters are light-shaded in (a)

and (b) panels.
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ative refraction first predicted by Veselago for dielctrics
with negative permittivity and permeability [25]. Negative
refraction of sound was experimentally observed in 2D
phononic crystals [26-28]. We are not aware of experi-
mental observation on negative refraction in layered elastic
structures. Double negative effective parameters for a lay-
ered structure were theoretically predicted in Ref. 20.

5. Dispersion relation for sound wave
in the long-wavelength limit

Dispersion of sound propagating in a homogeneous (ef-
fective) medium is obtained from the relation:

o_ - Aetf (©)
o (o) 42

Plugging Egs. (10) and (11) into Eg. (12) gives an ex-
plicit form of k(w) function. The Bloch wave vector k()
is real only if peg and Ao are of the same sign.

Dispersion of sound obtained from Rytov equation (1)
and from the effective-medium theory Eq. (12) is plotted in
Fig. 2(c). Comparison of these two series of the curves
shows that the effective medium theory reproduces the exact
result within a wide range of wave vectors, 0 <kd < 0.5.
This is true not only for the propagating bands but also for
the bandgap, where the wave vector is pure imaginary. This
agreement is a strong evidence that the proposed homogeni-
zation scheme leads to the correct values of the effective
parameters.

It follows from the graphs in Fig. 2 that the lower edge
of the band gap (= 96 kHz) coincides with the frequency
where pess (0) = 0 and the higher edge (=140 kHz) coin-
cides with the frequency where 1/ A4 () =0. The same
tendency continues for the gaps lying at higher frequencies
and it can be explained as follows. The frequencies of the
bandgap edges at the I"-point are the solutions of Eq. (1) at
k =0. For high-contrast materials (wb/c, < 1) the right-
hand side of the dispersion Eq. (1) is reduced to

sin(wa/ 2¢, )[ paa+ppb(wa/ 2c, )cot(wa/2c,)]=0.
(13)

The factor in square brackets vanishes exactly at the same
frequencies when pgg (@) = 0. It follows from the band
structure in Fig. 2 that equation p¢ () = 0 defines a series
of optical frequencies for the even bands. The optical fre-
quencies for the odd bands are given by zeros of the factor
sin(wa/ 2c, ) in Eqg. (13). While these frequencies are not
exactly the solutions of the equation nglf (w) =0, but these
two series of frequencies lie close to each other since
b/\, <alk,, at least for several low-lying optical fre-
quencies. For the higher bands the factor 2c, / wa reduces
the contribution of the term with sin(wa/ 2c,) in Eq. (11),
therefore the compliance ke’% (o) does not vanish exactly
at the optical frequencies of the odd bands.
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6. Conclusions

In summary, it is proposed a new analytical approach
for homogenization of acoustic superlattices which is valid
in the long-wavelength limit but not necessarily low fre-
quencies. The effective acoustic parameters of a homoge-
neous medium are introduced by equating the dynamics of
the unit cell of the structure to the dynamics of the homo-
geneous layer of the same width . The calculated effective
parameters — elastic modulus and mass density — exhibit
strong frequency dependence. It is shown that the disper-
sion relation for longitudinal sound propagating parallel to
the  superlattice axis can be obtained from

® = KyfAgtf (0) / pess (0) . For the long-wavelength sound

this dispersion relation asymptotically coincides with the
exact dispersion relation obtained from the Rytov equation.
The proposed method can be equally applied to shear hori-
zontal waves. It is shown that a layered structure may serve
as a metamaterial with negative index of refraction. Unlike
the known 2D acoustic metamaterials exhibiting negative
refraction due to internal resonances, negative refraction in
a layered 1D structure is due to anomalous dispersion.
Demonstration of the effect of negative refraction will re-
quire calculation of the effective parameters for sound
wave propagating at arbitrary angle with respect to the
superlattice axis. Since a layered structure homogenizes to
a uniaxial crystal, the mass density becomes a second-rank
tensor. These calculations will be published elsewhere.
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[uHaMmiyHi edbekTUBHI NapameTpu NPYXHOT HagrpaTku
3 aKyCTUYHO Pi3HUMW KOMMOHEHTaMM

0. 3y6oB, Bahram Djafari-Rouhani, A. KpoxiH

Otpumano aHamiTHYHi GOPMYIIH IS YACTOTHO-3ISKHUX ede-
KTHBHOTO MOJIYJIS IPYXHOCTI Ta e()eKTHBHOI MILTFHOCTI Nepioand-
HOI [IapyBaToi CTPYKTYpH. 3alpOIOHOBAaHA MPOLEAypa TOMOTeHi-
3amii cmpaBe;yIMBa IPH  JOCHTH BHCOKMX YacTOTax, IO
MEePEBUILYIOTh YacTOTY epiIoi 3a00pOHEHOT 30HH B aKyCTHYHOMY
criektpi cTpykrypu. [lokasaHo, 0 3ayiekHI BiJ 9acTOTH edek-
THBHI MapaMeTpy MOXYTh HaOyBaTH BiJ'€MHHX 3Ha4YeHb abo B
PI3HMX YaCTOTHHX 00J7acTsX, a00 B OJHIN JOCUTH By3bKiil 06iac-
Ti. L[s BIacTUBICTh MOKa3ye, IO OJJHOBUMIpHA MPYXKHA CTPYKTY-
pa B MeXi Malux OJIOXOBCHKHX XBHJIBOBHX BEKTOPIB MOXKE IIOBO-
JMTHCS SIK aKyCTHYHMI MeTamaTepual, y sKoro oouasa edextu-

BHI ITapaMeTpH BiJ’ €MHI.

KirouoBi ciioBa: mpyxHa Haarpatka, MOIYI HPYXKHOCTI, Hepio-
JIMYHa I1apyBaTa CTPYKTypa.

OuHamuyeckme acpbdekTVBHbIE NapaMeTpbl YNpyromn
CBEpXpELUETKN C aKyCTUYECKN PasfnyHbIMU
KOMMOHEHTamu

KO. 3yboe, Bahram Djafari-Rouhani, A. KpoxuH

HOHy‘{eHbI AHAJIMTUHYCCKUC JUI 4aCTOTHO-

thopmyIBI
3aBUCHMBIX 3G (PEKTUBHOIO MOIYJS yHpYroctd u 3G QGpexkTuBHON
IUIOTHOCTU TNEPHOAUYECKON CIOMCTOH CTpyKTypHl. IIpemioxen-
Has IpolLeaypa TOMOTCHU3ALUH CHpaBelIMBa MPH JOCTATOYHO
BBICOKMX YacTOTaX, MPEBHINIAIOIINX YAaCTOTY IEPBOH 3ampemnieH-
HOM 30HBI B aKyCTHUECKOM CHEKTpe CTpPYKTyphl. IlokazaHo, uTO
3aBUCAIINE OT YacTOTHI ((EeKTHBHBIC MapaMeTpsl MOTYT IpH-
HHMaTh OTPHLATENbHbIE 3HAUEHHS JINOO B Pa3IMYHBIX YaCTOTHBIX
obyacTsax, MO0 B OJHOH JOCTaTOYHO y3Koi oGmactu. JlanHOoe
CBOIICTBO MOKa3bIBAET, YTO OJHOMEpHAs yIpyras CTPYKTypa B
Tpeziesie ManbIX OJOXOBCKHX BOJIHOBBIX BEKTOPOB MOXET BECTH
ce0sl KaKk aKyCTHUYECKUI MeramaTepuall, y KoToporo oba addex-
THBHBIX IIapaMeTpPa OTPHUIATCIIBHEL

KnrodeBble croBa: ympyrasi CBEpXpelleTka, MOAYIH YIPYTOCTH,
MEePUOUYECKAs CIIOUCTAs CTPYKTypa.

Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 12


https://doi.org/10.1103/PhysRevB.92.174110
https://doi.org/10.1088/1367-2630/13/9/093018
https://doi.org/10.1103/PhysRevB.89.064309
https://doi.org/10.1063/1.4981129
https://doi.org/10.1103/PhysRevB.83.104103
https://doi.org/10.1063/1.4794314
https://doi.org/10.1007/s00707-013-0870-x
https://doi.org/10.1016/j.physleta.2009.10.013
https://doi.org/10.1103/PhysRevLett.104.054301
https://doi.org/10.1038/natrevmats.2016.1
https://doi.org/10.1063/PT.3.3198
https://doi.org/10.1070/PU1968v010n04ABEH003699
https://doi.org/10.1103/PhysRevB.73.193101
https://doi.org/10.1103/PhysRevB.73.193101
https://doi.org/10.1103/PhysRevB.79.214305
https://doi.org/10.1121/1.4744974
https://doi.org/10.1209/0295-5075/103/54001
https://doi.org/10.1063/1.3261758

	1. Introduction
	2. High-frequency homogenization scheme
	3. The effective parameters
	4. Frequency dispersion of the effective parameters
	5. Dispersion relation for sound wave  in the long-wavelength limit
	6. Conclusions
	Acknowledgments

