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Analytical formulas are obtained for frequency-dependent effective elastic modulus and effective mass densi-
ty for a periodic layered structure. The proposed homogenization procedure is valid at sufficiently high frequen-
cies well above the lowest band gap in the acoustic spectrum of the structure. It is shown that frequency-
dependent effective parameters may take negative values either in different regions of frequencies or in the same 
quite narrow region. This property demonstrates that 1D elastic structure may behave in the limit of small Bloch 
wave vectors as a double-negative acoustic metamaterial. 
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1. Introduction 

Elastic periodic structures or phononic crystals originally 
were considered as passive environment where sound waves 
of certain region of frequencies cannot propagate because of 
presence of prohibited zones (band gaps) in their spectra of 
vibrations [1–3]. Now a variety of periodic elastic structures 
serve as principal elements of different acoustic devices op-
erating in the regions of frequencies where sound waves can 
propagate and where they exhibits “exotic” properties, like 
anomalous dispersion, negative refraction, strong anisotro-
py, etc. If these properties can be explained within the effec-
tive medium theory, it is worthwhile to calculate the effective 
parameters of this homogeneous medium. For longitudinal 
waves it is sufficient to know the effective mass density 

eff ( )ρ ω  and the effective elastic modulus eff ( )λ ω , which 
are the functions of frequency ω. For a long time a self-
consistent approach to homogenization of elastic compo-
sites proposed by Barryman for spherical [4] and ellipsoi-
dal scatterers [5] was widely used. This long-wavelength 
limit is valid for the composites with low concentration of 
scatterers in space, when the details of the microstructure of 
the composite are ignored. This approach also does not lead 
to frequency dispersion, giving the result for eff (0)ρ  and 

eff (0)λ , i.e., the quasistatic limit for the effective parame-
ters. Phononic band structure engineering and rapid devel-
opment of new acoustic and elastic metamaterials gave rise 
to more advanced effective medium theories. 

Homogenization theories based on plane or cylindrical 
wave expansions were developed in Refs. 6–11 for calcula-

tions of the effective parameters of two- and three-
dimensional elastic periodic structures in the quasistatic 
limit. The effective parameters are obtained by taking the 
limit 0, 0kω→ →  in the exact wave equation written for 
periodic structure, therefore they take into account all the 
details of distribution of elastic material within the corre-
sponding unit cell. 

The effective parameters obtained in the quasi-static 
limit are dispersionless and they are not valid for calcula-
tion of the bandgaps. The latter requires application of the 
dynamical methods. Frequency-dependent effective pa-
rameters for 2D elastic systems were calculated in Ref. 12. 
A two-scale approach proposed in this paper is valid for 
quite high frequencies ω and wave vector k  lying near the 
edges of the Brillouin zone. More general plane-wave ex-
pansion approach valid in 3D case and for arbitrary ω and k  
was developed by Norris et al. [13]. An alternative approach 
for calculation of the effective parameters of phononic 
metasolids with local resonances was proposed in Ref. 14. It 
was demonstrated that these structures are described by 
means of frequency-dependent and anisotropic effective 
mass density, stifness tensor, and a third rank coupling 
tensor that is a signature of a nonlocal Willis medium. 

So far, the approaches developed in Refs. 12–14 give the 
most complete description of a periodic structure by its ef-
fective parameters. The other side of wide generality of the 
reported results is that they require quite extensive numerical 
procedure. This is the reason why only one-dimensional 
structures were considered in Refs. 12,13 as examples of 
application of the proposed methods. Less general but more 
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feasible methods of homogenization of 2D and 3D phononic 
crystals are proposed in Refs. 15,16 and Ref. 17, respective-
ly. Unlike the exact results [13] these methods are based on 
different approximations. Nevertheless, they reproduce 
with high accuracy the band structures of 2D and 3D 
phononic crystals in the long-wavelength limit. 

Layered (one-dimensional) periodic structures are of spe-
cial interest as they are significantly easier and less expen-
sive to fabricate than 2D or 3D structures. Theoretical study 
of acoustic properties of layered structures is also simplified 
due to the well-known dispersion relation = ( )kω ω . For a 
binary composite it has the following form [18]: 

 
2 2

cos( ) = cos( )cos( ) sin( )sin( ).
2
a b

a b a b a b

Z Za b a bkd
c c Z Z c c

+ω ω ω ω
−   

  (1) 

Here =d a b+  is the period of the structure containing two 
layers of width a and b , ac ( bc ) is the speed of sound in the 
layer a(b ), and =a a aZ cρ  ( =b b bZ cρ ) is the acoustic im-
pedance of the layer a (b ). In an infinite periodic structure 
Eq. (1) defines the dispersion of a Bloch wave of pressure 
propagating perpendicular to the layers, ( , ) =p x t  

( ) exp[ ( ]ku x i kx t= −ω . 
In the quasi-static limit the effective density and elastic 

modulus of layered structure are easily calculated from 
Eq. (1) by taking the limit , 0kω →  and assuming that 

eff/ = = constk cω , 

 eff
eff

1 / /= , = .a b
a b

a b a d b d
d d

ρ ρ + ρ +
λ λ λ

 (2) 

These formulas are valid only for the lowest (acoustic) 
band, where dispersion of sound is linear, eff= c kω , 

eff eff eff= /c λ ρ . 
For higher (optical) bands, the effective parameters ex-

hibit dispersion, i.e., eff eff eff eff= ( ), = ( )ρ ρ ω λ λ ω . Fre-
quency-dependent effective parameters of 1D phononic 
crystals have been studied in many publications 
[12,13,16,19,20] where the results for eff ( )ρ ω  and eff ( )λ ω  
are presented in a graphical form. Analytical results for the 
effective parameters beyond the quasi-static limit (2) are 
still lacking, while for 1D case the dispersion Eq. (1) is 
known explicitly. 

Here we propose a method of homogenization which for 
periodic layered medium leads to simple analytical formulas 
for the effective parameters. We introduce the effective me-
dium through two principal equations of elastodynamics: 
equation of motion and Hooke's law. Propagating Bloch 
wave of pressure ( , )p x t  induces oscillations of every ele-
ment of the unit cell. Spatial period, phase and amplitude of 
these oscillations vary over the unit cell according to dis-
tribution of elastic material. Then, the acceleration .u ca  and 
deformation /V V∆  of any local infinitesimally small layer 
within the unit cell are also functions of x . Replacing a 

periodic medium by a homogeneous one we request that in 
the long-wavelength limit 1kd   both media exhibit the 
same dynamics. This requirement means that i) the average 
acceleration a  equals to average acceleration of the effective 
medium subject to propagating plane (not Bloch) wave with 
the same wave vector k  and ii) the average deformation 

/V V∆  equals to that of the effective medium. These two 
requirements provide that the unit cell as a whole moves as 
the corresponding part of the homogeneous effective medi-
um. Two effective parameters, eff ( )ρ ω  and eff ( )λ ω , are 
obtained as a result of the above-mentioned requirements. 
Similar homogenization scheme was proposed in Ref. 21 
for periodic arrangement of solid cylindrical scatterers. 

For a wide region of frequencies the proposed effective 
parameters lead to a nonlinear dispersion relation  

 eff eff eff eff= ( ), ( ) = ( ) / ( ),kc cω ω ω λ ω ρ ω  (3) 

which reproduces well the exact dispersion relation 
= ( )kω ω  obtained from Eq. (1), if 1kd  . This correspond-

ence is valid not only within the passing bands but also with-
in the band gaps where the wave vector k  is pure imaginary 
since one of the effective parameters becomes negative. For 
a given combination of elastic materials in the unit cell the 
proposed formulas predict the region of frequencies where 
both effective parameters are negative, i.e., the layered struc-
ture behaves as metamaterial with negative index of refrac-
tion. So far the explicit frequency dependencies of the effec-
tive parameters were reported for acoustic devices exhibiting 
negative refraction near the frequencies of the internal reso-
nances [22–24]. Reported here results is one more example 
of a periodic structure where the dispersion of the effective 
parameters can be calculated analytically. 

2. High-frequency homogenization scheme 

We consider a binary periodic composite of two elastic 
materials, a and b  shown in Fig. 1. The distribution of mate-
rials within the unit cell always can be selected symmetrical 
since the crystal as a whole possesses inverse symmetry. 
Propagating Bloch wave produces inhomogeneous distri-
bution of pressure within the unit cell. Labeling the layers 
in the unit cell by index n ( = 1,2,3n ), the pressure can be 
written as follows: 

Fig. 1. (Color online) Symmetric unit cell of a binary composite. 
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 ( , ) = ( )e , ( ) = e e ,ik x ik xi t n nn n n n np x t p x p x A B −− ω +   
  (4) 
where the wave vector = /n nk cω  and = /n n nc λ ρ  is 
speed of sound in the nth layer. A set of linear equations 
for six constants nA  and nB  is obtained from the continuity 
of velocity and pressure at the layer interfaces, = / 2x b±  

 = /2 = /2
( ) ( )1 1| = | ,

( = / 2) = ( = / 2),

n n
x b x b

n n

n n

dp x dp x
i dx i dx

p x b p x b

′
± ±

′

′

ωρ ωρ

± ±
 (5) 

and the quasiperiodicity condition (Bloch theorem), 
( ) = e ( )ikd

n np x d p x+ , at = ( ) / 2x a b− + . Since the equa-
tions in this set are homogeneous a nontrivial solution ex-
ists if the determinant vanishes, that leads to the dispersion 
Eq. (1). Once nA  and nB  are calculated, the pressure ( )np x  
in each layer can be expressed through, e,g., pressure at the 

left edge of the unit cell, ( )/2
1 1( ) = e

2
ik a baa bp A ++

− +  

( )/2
1e ik a baB − ++ . 
In the long-wavelength limit, 1kd   the Bloch wave in 

a periodic structure is weakly modulated and can be ap-
proximated by a plane wave that propagates in the equiva-
lent effective medium. We propose to obtain the density of 
the effective medium by equating the average acceleration 
of the unit cell to that of the effective homogeneous layer 
of width d , assuming that the amplitude of the plane wave 

coming from the left is 1( )
2

a bp +
− . The local acceleration of 

elastic medium at point x  is 1 ( )
( )

dp x
x dx

−
ρ

. Then, the aver-

age acceleration of the unit cell is obtained by integration  

 2
. .

2

( )1 1= =
( )

a b
n

u c a b
n

dp x
a dx

d dx x

+

+
−

−
ρ∫   

1 2 2
1 1 1 1(e 1) ( ) ( ) ( ) ,

2 2 2
ikd

a b a

a b b bp p p
d d

 +  = − − − − − − −   ρ ρ ρ   
  

  (6) 
Average acceleration of a homogeneous layer with density 

effρ  in the field of the plane wave 

1( ) = exp[ ( )]
2 2

a b a bp x p ik x+ + − + 
 

 is calculated in a 

similar way  

 2
eff

eff 2

1 ( )= =
a b

a b
dp xa dx

d dx

+

+
−

−
ρ ∫   

 ( )1
eff

1 ( ) e 1 .
2

ikda bp
d

+
= − − −

ρ
 (7) 

The pressure 1 2
a bp + − 

 
 can be selected as a constant 

through which all the unknowns nA  and nB  can be ex-

pressed. Then the distribution of pressure within the unit cell 

is proportional to 1 2
a bp + − 

 
 and this common factor is 

canceled when equating the accelerations given by Eqs. (6) 
and (7). Thus, the condition . . eff=u ca a  defines the effec-
tive density eff ( )ρ ω . 

One more mechanical characteristic of elastic medium 
is the field of deformation. For a layered inhomogeneous 
system the relative change of volume of the unit cell is 
obtained from the Hooke’s law: 

 
2

. .
2

( )1= ,
( )

a b

n

a bu c

p xV dx
V d x

+

+
−

 ∆
   λ 

∫  (8) 

The same quantity for a homogeneous medium is given by  

 
2

effeff
2

1= ( ) .

a b
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V p x dx
V d

+

+
−

 ∆
   λ 

∫  (9) 

The equation 
. . eff

=
u c

V V
V V

   ∆ ∆
      
   

 defines the effective 

bulk modulus eff ( )λ ω . Thus, the proposed homogenization 
scheme is based on Eqs. (6)–(9) which establish equivalen-
cy in the dynamics of the unit cell and effective medium in 
the field of propagating sound wave. Apparently, that this 
method of homogenization is valid in the long-wavelength 
limit 1kd   and within a wide range of frequencies (not 
necessarily low). The latter means that the elastic field 
inside each material layer can be strongly inhomogeneous, 
i.e., the parameters = /a ak a a cω  and = /b bk b b cω  are not 
necessarily small. It is clear that the proposed method is 
valid not only for layered structures; it is equally applica-
ble for 2D [21] and 3D phononic crystals. In 1D case all 
the calculations can be done analytically and explicit ex-
pressions for the effective parameters are obtained. 

3. The effective parameters 

Solution of a homogeneous 6 6×  set of linear equations 
for the coefficients nA  and nB  is a trivial but combersome 
problem. Omitting simple algebra, we give the final results 
for the dynamic effective parameters for the most interest-
ing situation of high acoustic contrast between the constit-
uents, a bc c ,  

 

( )

eff
2

cot( )
2 2

( ) = ,
( / 2 ) 21 ( )sinsin / 2 4

a b
a a

a b

a a a

a aa b
c c

a c aa b
a c c

ω ω
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 ω ρ ω

+ − ω ρ 

 (10) 
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−
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 (11) 
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These formulas are valid in the long-wavelength limit 
1kd   for the structure with high acoustic contrast. The 

latter condition, / 1bb cω  , means that that the layer with 
more stiff material (layer b ) homogenizes, i.e. the acoustic 
field inside it is practically homogeneous. However, the 
field inside the softer layer can exhibit oscillatory pattern. 
This gives rise to frequency dispersion of the effective pa-
rameters. Of course, in the limit, , 0kω →  Eqs. (10), (11) 
are reduced to the result of the quasi-static limit Eq. (2). 

4. Frequency dispersion of the effective parameters

To study the dispersion of the effective parameters we 
select a structure containing layers of water (material a, 
thickness = 10a  mm) and steel (material b , thickness 
b = 1 mm). The acoustic contrast between these two mate-
rials is rather high: / 3.5b ac c ≈ . The geometrical and 
physical parameters of the unit cell are shown in Fig. 1. 
Due to high contrast and different thicknesses there is a 
wide range of frequencies where the obtained formulas for 
the effective parameters are valid. The homogenization 
condition for the water layer / < 1aa cω  is true for fre-
quencies 4

min / 2 < 2.5 10ω π ⋅  Hz. At such low frequencies 
the results (2) obtained in the quasi-static limit are valid. 
Indeed, the effective parameters in Fig. 2 do not exhibit 
essential dispersion up to 42 10⋅  Hz. Here the dispersion of 
sound is linear, see Fig. 2(c). At higher frequencies both 
effective parameters exhibit strong frequency dispersion, 

which originates from inhomogeneity of acoustic field in 
water layers. Unlike this, the field within the steel layers is 
homogeneous, i.e., / 1bb cω  . This condition is violated 
at frequencies higher than max / 2 = / 2 0.8bc bω π π ≈  MHz. 
Thus, within the range from 20 kHz to 0.8 MHz the effec-
tive parameters are frequency-dependent and they can be 
calculated using Eqs. (10) and (11). 

Of course, these results are valid only in the long-
wavelength limit, i.e., in the vicinity of the Γ-point. There-
fore, the parts of the graphs lying in the region of frequen-
cies corresponding to the edges of the Brillouin zone (where 
kd  close to π) should be ignored. Within the band gap 
(shaded region close to the Γ-point in the Fig. 2(c)) the 
effective elastic modulus is negative but the effective den-
sity is positive. This leads to pure imaginary phase veloci-
ty, ph eff eff= /V λ ρ , therefore the system is opaque — 
sound wave does not propagate. The effective elastic mod-
ulus remains negative even below the lower edge of the 
gap ( 96≈  kHz). The effective density vanishes exactly at 
this frequency, going to negative values below it. Thus, 
there is a narrow region of frequencies where both effective 
parameters are negative and the structure is transparent to 
sound. This narrow region (below 100 kHz) is light shaded 
in the left and central panels. One more very narrow region 
with double-negative parameters lies near 370 kHz. Note 
that within these regions the dispersion of sound is anoma-
lous, i.e., the phase and group velocities have opposite di-
rections. Negative values of effρ  and effλ  give rise to neg-

Fig. 2. (Color online) Effective density eff ( )ρ ω  (a); effective compliance 1
eff ( )−λ ω  (b); dispersion curves for the water-steel periodic 

structure (solid lines) and for the effective medium (dashed lines) with parameters calculated using Eqs.(10) and (11) (c). Bandgap re-
gion is dark-shaded on (c). Two narrow regions (near 100 and 370 kHz) of double-negative effective parameters are light-shaded in (a) 
and (b) panels. 
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ative refraction first predicted by Veselago for dielctrics 
with negative permittivity and permeability [25]. Negative 
refraction of sound was experimentally observed in 2D 
phononic crystals [26–28]. We are not aware of experi-
mental observation on negative refraction in layered elastic 
structures. Double negative effective parameters for a lay-
ered structure were theoretically predicted in Ref. 20. 

5. Dispersion relation for sound wave  
in the long-wavelength limit 

Dispersion of sound propagating in a homogeneous (ef-
fective) medium is obtained from the relation:  

 eff
ph

eff

( )
= = .

( )
V

k
λ ωω
ρ ω

 (12) 

Plugging Eqs. (10) and (11) into Eq. (12) gives an ex-
plicit form of ( )k ω  function. The Bloch wave vector ( )k ω  
is real only if effρ  and effλ  are of the same sign. 

Dispersion of sound obtained from Rytov equation (1) 
and from the effective-medium theory Eq. (12) is plotted in 
Fig. 2(c). Comparison of these two series of the curves 
shows that the effective medium theory reproduces the exact 
result within a wide range of wave vectors, 0 < < 0.5kd . 
This is true not only for the propagating bands but also for 
the bandgap, where the wave vector is pure imaginary. This 
agreement is a strong evidence that the proposed homogeni-
zation scheme leads to the correct values of the effective 
parameters. 

It follows from the graphs in Fig. 2 that the lower edge 
of the band gap ( 96≈  kHz) coincides with the frequency 
where eff ( ) = 0ρ ω  and the higher edge ( 140≈  kHz) coin-
cides with the frequency where eff1/ ( ) = 0λ ω . The same 
tendency continues for the gaps lying at higher frequencies 
and it can be explained as follows. The frequencies of the 
bandgap edges at the Γ-point are the solutions of Eq. (1) at 

= 0k . For high-contrast materials ( / 1bb cω  ) the right-
hand side of the dispersion Eq. (1) is reduced to  

 ( ) ( ) ( )sin / 2 / 2 cot / 2 = 0.a a b a aa c a b a c a c ω ρ +ρ ω ω    

  (13) 

The factor in square brackets vanishes exactly at the same 
frequencies when eff ( ) = 0ρ ω . It follows from the band 
structure in Fig. 2 that equation eff ( ) = 0ρ ω  defines a series 
of optical frequencies for the even bands. The optical fre-
quencies for the odd bands are given by zeros of the factor 

( )sin / 2 aa cω  in Eq. (13). While these frequencies are not 
exactly the solutions of the equation 1

eff ( ) = 0−λ ω , but these 
two series of frequencies lie close to each other since 

/ /b ab aλ λ , at least for several low-lying optical fre-
quencies. For the higher bands the factor 2 /ac aω  reduces 
the contribution of the term with ( )sin / 2 aa cω  in Eq. (11), 
therefore the compliance 1

eff ( )−λ ω  does not vanish exactly 
at the optical frequencies of the odd bands. 

6. Conclusions 

In summary, it is proposed a new analytical approach 
for homogenization of acoustic superlattices which is valid 
in the long-wavelength limit but not necessarily low fre-
quencies. The effective acoustic parameters of a homoge-
neous medium are introduced by equating the dynamics of 
the unit cell of the structure to the dynamics of the homo-
geneous layer of the same width . The calculated effective 
parameters — elastic modulus and mass density — exhibit 
strong frequency dependence. It is shown that the disper-
sion relation for longitudinal sound propagating parallel to 
the superlattice axis can be obtained from 

eff eff= ( ) / ( )kω λ ω ρ ω . For the long-wavelength sound 
this dispersion relation asymptotically coincides with the 
exact dispersion relation obtained from the Rytov equation. 
The proposed method can be equally applied to shear hori-
zontal waves. It is shown that a layered structure may serve 
as a metamaterial with negative index of refraction. Unlike 
the known 2D acoustic metamaterials exhibiting negative 
refraction due to internal resonances, negative refraction in 
a layered 1D structure is due to anomalous dispersion. 
Demonstration of the effect of negative refraction will re-
quire calculation of the effective parameters for sound 
wave propagating at arbitrary angle with respect to the 
superlattice axis. Since a layered structure homogenizes to 
a uniaxial crystal, the mass density becomes a second-rank 
tensor. These calculations will be published elsewhere. 
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Динамічні ефективні параметри пружної надгратки 
з акустично різними компонентами 

Ю. Зубов, Bahram Djafari-Rouhani, А. Крохін 

Отримано аналітичні формули для частотно-залежних ефе-
ктивного модуля пружності та ефективної щільності періодич-
ної шаруватої структури. Запропонована процедура гомогені-
зації справедлива при досить високих частотах, що 
перевищують частоту першої забороненої зони в акустичному 
спектрі структури. Показано, що залежні від частоти ефек-
тивні параметри можуть набувати від’ємних значень або в 
різних частотних областях, або в одній досить вузькій облас-
ті. Ця властивість показує, що одновимірна пружна структу-
ра в межі малих блоховських хвильових векторів може пово-
дитися як акустичний метаматериал, у якого обидва ефекти-
вні параметри від’ємні. 

Ключові слова: пружна надгратка, модулі пружності, періо-
дична шарувата структура. 

Динамические эффективные параметры упругой 
сверхрешетки с акустически различными 

компонентами 

Ю. Зубов, Bahram Djafari-Rouhani, A. Крохин 

Получены аналитические формулы для частотно-
зависимых эффективного модуля упругости и эффективной 
плотности периодической слоистой структуры. Предложен-
ная процедура гомогенизации справедлива при достаточно 
высоких частотах, превышающих частоту первой запрещен-
ной зоны в акустическом спектре структуры. Показано, что 
зависящие от частоты эффективные параметры могут при-
нимать отрицательные значения либо в различных частотных 
областях, либо в одной достаточно узкой области. Данное 
свойство показывает, что одномерная упругая структура в 
пределе малых блоховских волновых векторов может вести 
себя как акустический метаматериал, у которого оба эффек-
тивных параметра отрицательны. 

Ключевые слова: упругая сверхрешетка, модули упругости, 
периодическая слоистая структура. 
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