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The correlated electron model on a geometrically frustrated one-dimensional lattice with the spin-orbit cou-
pling is studied. The exact solution is obtained using the Bethe ansatz. Zig-zag interaction can produce incom-
mensurate charge and spin structures for large enough frustrating interactions. The spin-orbit coupling yields the
behavior of correlation functions, reminiscent of the Fulde—Ferrell-Larkin—Ovchinnikov (FFLO) features of real

type-1I superconductors.
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1. Introduction

There has been recently considerable interest in quasi-
one dimensional quantum correlated electron systems.
They manifest specific features of the low-temperature
behavior, absent in standard electron systems. The nature
of those specific features is in the enhancement of quantum
and thermal fluctuations of one-dimensional systems due
to the peculiarities of their density of states [1]. Fluctua-
tions usually destroy any order at nonzero temperatures
there. However strong electron—electron correlations ex-
hibit power-law decays in the ground state of such interact-
ing systems. Therefore, such powerful methods of theoreti-
cal physics as perturbation theories and mean-field
approximations are hardly applicable to strongly correlated
one-dimensional systems. Namely because of that low-
dimensional correlated electron systems are the best known
examples in which non-perturbative methods like the
renormalization group theory, Bethe's ansatz, bosonization,
conformal field theory, etc. have manifested their ad-
vantages. The advantage of theoretical studies of one-
dimensional systems is the possibility to obtain exact solu-
tions by using non-perturbative approaches, which are dif-
ficult to apply for higher-dimensional quantum many-body
models [2]. The results of exact calculations of one-
dimensional models can serve as a testing ground for the
use of perturbative and numerical methods in more realis-
tic situations.
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The interest in the behavior of electron and spin models
on geometrically frustrated lattices [3] is related to the pos-
sibility to find there, due to the frustration, the emergent
excitations with the fractional charges and spins, like in
quantum spin liquids [4]. For theoretical description in the
frustrated case it is also very hard to use standard mean
field or perturbative schemes of calculations, successfully
used for electron systems without frustration. Here rare
examples of exactly solvable models on frustrated lattices
also are very important. Zig-zag quantum chains have at-
tracted interest of physicists due to various aspects of their
characteristics. For example, zig-zag spin chains reveal
many interesting properties, including possible quantum
phase transitions to incommensurate phases [5], graphene
nanoribbons [6], superconductivity in zig-zag chains [7],
plasmonic systems [8], and ultracold atoms [9] on zig-zag
lattices. Zero-energy Majorana edge states were observed
in magnetic iron zig-zag chains on the surface of super-
conducting lead using spectroscopic imaging technique
[10], and, in zig-zag edge states for Bi bilayers [11]. Exci-
tations in the bulk of chains were gapped due to the prox-
imity effect of the s-wave superconducting lead substrate.
Such co-existence of the one-dimensionality, pairing and
geometrically frustrated lattices also motivated our study.
On the other hand, the Ising pairing anisotropy has been
recently observed in NbSe; atomic layers [12], which mo-
tivated our work, too.
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A spin-orbit (SO) interaction manifests itself as the effect
of an electric field on a moving charged particle with spin. It
is of special importance in spintronics, where the spin of
electrons in electronic devices is manipulated and detected.
In low-dimensions, the semiconductor device structure may
give rise to an internal electric field and hence a SO cou-
pling of the Rashba or Dresselhaus type [13]. It is important
to investigate the effects of the SO coupling together with
the interactions between particles. The SO coupling can be
also caused in correlated electron chains by strains of the
lattice [14]. Recently systems where the SO interactions
plays the crucial role in low-dimensional electron systems,
like edge or surface states of topological insulators [15] or
semiconductor nanowires [16], have attracted the attention
of researchers. For instance, ultracold atoms in optical latti-
ces [17] offer a great opportunity to investigate many body
quantum phenomena due to the very good experimental
control over the density of atoms, the purity of the system,
and inter-atomic interactions [18]. These systems can be
prepared almost free of impurities, the interaction strength
can be tuned by external parameters and the very low tem-
peratures enable experimentalists to study the various quan-
tum phases. For low-dimensional systems the properties are
very close to those of models, for which many exact results
have been obtained [19]. Spin-imbalanced ultracold gases of
atoms confined to one-dimensional optical traps have been
the subject of many recent studies. The transverse harmonic
confinement of the atoms leads to a confinement-induced
Feshbach-type resonance, which can be tuned to give rise to
an attractive local interaction whose strength can be varied
[20]. The confinement along the tube is weak and roughly
harmonic and in theoretical considerations it can be incorpo-
rated into the chemical potential of the atoms, giving rise to
phase separation [19]. Fermionic ultracold atoms with a lo-
cal inter-atomic interaction and spin imbalance can be de-
scribed by Bethe ansatz solvable models [21]. Recently
both, Abelian and non-Abelian gauge fields, have been ex-
perimentally realized for ultracold atomic bosonic [22] and
fermionic [23] gases using two-photon Raman processes. In
particular, the non-Abelian gauge field leads to an effective
SO interaction for ultracold atoms that can be considered
effective spin-1/2 fermions. In the studied e system, the
two spin-1/2 states are chosen as the two magnetic sublevels
with [T)=19/2,9/2) and N)=|9/2,7/2) (or alternatively the
two sublevels can be chosen as the second and third lowest
hyperfine levels in 6Li). Disregarding other levels, the stud-
ied system is effectively a spin-1/2 fermion system. In the
experiments [23] these states are coupled by a pair of Raman
beams. The resulting artificial SO interaction has induced
spin dephasing in the quantum spin dynamics of the
ultracold fermions.

In the present study we find the solution to the new Be-
the ansatz integrable model of interacting electrons on the
one-dimensional lattice with nearest- (NN) and next-
nearest neighbor (NNN) hoppings (equivalent to the zig-
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zag lattice) and SO interactions. The Ising type of the ani-
sotropy gives rise to a gap for low-energy unbound elec-
tron states at small values of the magnetic field. The model
is reminiscent to the type-II superconductor, because in
that region of applied field only spin-singlet Cooper-like
pairs are gapless; for larger values of the field both pairs
and unbound electron states are gapless, and, finally, for
larger field the system is in the spin-polarized phase. For
the large value of the parameter, which describes the inter-
chain or NNN hoppings and couplings, the model mani-
fests additional quantum phase transitions to phases with
inhomogeneously distributed charge and/or spin densities.
At low temperature, as usually, quantum phase transitions
reveal themselves as square root features in the behavior of
the magnetic and charge susceptibility and the specific
heat. The SO coupling manifests itself in the finite size
corrections, important for asymptotic behavior of correla-
tion functions.

2. The considered model

Let us start with the consideration of a one-dimensional
lattice with spin-1/2 electrons and SO interaction

Hy = _Z[t,(wj'ﬂ,oszﬁ + W;’Gw-"“"’)+
jo

+ igc(w}ﬂ,cwjﬁ - ‘“.Tfﬁ"’f“’“ )] ’ M

where wj,c creates the electron at site j with the spin pro-
jection © =T,0, ¢ is the hopping integral, and g the SO
interaction parameter. The terms of the Hamiltonian can be
combined into an effective complex hopping parameter [24]

Hy = —Z(f‘lfj‘ﬂ,c‘l’j,c +Hc), (2)

Jjo

where ¢t =¢t"+igo = w/t’2 + g% /4 exp(i2nod) and the phase
factor ¢ = (1/m)arctan(g/2¢") is caused by the SO interac-
tion. A gauge transformation removes the phase factor from
the Hamiltonian for the open chain, or transfers it into a
spin-dependent twisted boundary condition for the ring.
Such a gauge transformation can be performed also for the
case in which double occupation of each site is excluded
with the hopping term replaced by H, = ZHJO j+1, Where
J

Mo = -2 Pyl oW +HOP . (3)
o

where P;=(1-n; _)(1-njy _s) (With n; 5= wj-,c\uj’c)
is the projection operator which excludes the double occu-
pation at each site. Here we propose the new exactly solv-
able correlated electron model on the zig-zag one-
dimensional lattice with the following interaction
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and [.,.] denotes the commutator. The operator B modi-
fies the hopping and the transverse interaction amplitudes
by the factor cos(0). The model is the generalization of
the anisotropic [25] supersymmetric #—J model (with
J =2¢t) [26] (the parameter 1 describes the “easy-axis”
magnetic anisotropy) for the case of the NN and the NNN
interactions and hoppings with the SO coupling. The chain
with the NN and NNN bonds is equivalent to the zig-zag
chain. The parameter 0 is responsible for the inclusion of
the NNN connections. Obviously for 6 =0 we obtain the
Hamiltonian of the anisotropic supersymmetric ¢ —J chain
with only NN hoppings and couplings. The three-site terms
in the Hamiltonian in the second line in Eq. (4) violate the
time-reversal and parity symmetries separately, while the
Hamiltonian is, naturally, invariant with respect to the
product of those symmetries. Those terms are total time
derivatives in the classical sense (i.e., they do not change
the classical equations of motion for the classical counter-
part of the considered system), and they are only important
in the quantum mechanical aspects. In the limit 1 — 0 the
Hamiltonian is reduced to the su(1]|2)-symmetric ¢—J
model with the SO coupling (which, naturally, distin-
guishes the direction z itself). It can be seen by the rescal-
ing of the Hamiltonian 6 — 16’ with the finite 6’ before
taking the limit M — 0. Notice also that the Hamiltonian is
periodic in 6. In the limiting case N=0 and 6 =0 the
Hamiltonian is reduced to the su(1|2)-symmetric ¢—J
model with the SO coupling [27]. On the other hand, for
N=0 and ¢ =0 the model describes the limiting case of
N =2 coupled supersymmetric ¢ —J chains [28].

The model remains exactly solvable if we add to the
Hamiltonian H the Zeeman term and the term with the
chemical potential n* (for the grand canonical ensemble)

Hl__z,( (nj1=n;  )+u Zﬂij (6)

where H’ is the external magnetic field (the model is ex-
actly solvable only if the field is directed along the axis of
the magnetic anisotropy and the direction, distinguished by
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the SO interaction). The SO coupling manifests itself two-
fold: First, it (trivially) renormalizes the common multipli-
er, and, second, it produces the phase shift ¢ . Below we
concentrate on the nontrivial effect of the SO-caused phase
shift. Hence, in what follows we put =1, and renormal-
ize the values of the chemical potential W — fu and
H’ — tH for simplicity.

3. The Bethe ansatz

Using the algebraic Bethe ansatz method described in
Ref. 2 we can prove that the Hamiltonian ‘H +H; is diago-
nalized by Bethe's ansatz in terms of two sets of parame-
ters, {v j}y=1 and {Aa}g]:l, with N being the number of
electrons, and M being the number of spin down elec-
trons. Those parameters are called rapidities; they describe
unbound electrons and spinons, respectively. It can be
shown that the ground state is described by N -2M un-
bound electron states with the real rapidities v; and M
spin-singlet Cooper-like pairs (bound states) for which
charge rapidities are complex conjugated pairs [25] To the
exponential accuracy exp(—L), where 2L is the length of
the system, the rapidities of pairs can be written as
Uy, = Ay £iM/2 . The rapidities satisfy the following Bethe
ansatz equations

sin(v, +m/2) sin(o; —8+m/2) )"
sin(v; —m/2) sin(v; —0-in)/2 |

M sin(v; — Ag +in/2)

—-Ag-in/2)’

— ¢ imd :
B=1 sin(v i

sin(A -v; +in) sin(A, -v; -0+in) L
sin(Ag —0; —im) sin(Ag —v; —0-im) |

sin(Aq, — v +in/2) sin(Ay — v, —0+in/2) y
sin(Aq, — v +in/2) sin(Ay — v, —0-in/2)

M sin(Ag, —Apg +in)
X .
B=1 sin(Ag, —Ag —im)

(7

The number of particles N and the magnetization N/2 - M
are controlled by the chemical potential and the external
magnetic field, respectively. The energy the state is given by

N-2M

1- cos(ZUj )cosh(n) 1- cos(2v; - 20) cosh(n)]

E=-=2Y
i3\ cosh()—cos(2v;) cosh(n)-cos(20; —26)

M .12
H sinh (1) _
( )= 2cos m)az1( sin*(Aq) +sinh*()
sinh2(M)
— - ’ 8
sinz(koc —9)+sinh2(n)J 3 v
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We also see that the Bethe ansatz equations are periodic in
0, ie. it is enough to consider O in the domain
-t<O<Tm.

Notice that equations (7) are written for the ring geome-
try. For the open chain they have similar structure with
standing waves instead of plane waves for the ring, with the
SO interaction-caused phase factor trivially removed by a
gauge transformation, and, hence, in what follows we con-
sider the more generic case of the ring geometry.

4. The ground state

The ground state is organized by the filling of Fermi
seas (i.e. states with negative energies) with N —2M un-
bound electron states with real v; rapidities, and M
Cooper-like pairs with complex conjugated rapidities. In
the thermodynamic limit L, N,M — o with fixed ratios
N/L and M/L the ground state is given by the solution of
two Fredholm integral equations for the density of un-
bound electron states p(v) (p,(v) is the density of the
holes) and density of pairs 6’(A) (67,(A) is the density of
holes for pairs)

2n[p, (0)+p(v)]= f(v,n/2)+ f(v-6,1/2) -
—[dAr(@-Am/2)0(A)
2n[6’(A)+06'(A)] = f(A,M+ f(A-8,1m)—

~[dzf(A=zm)0(2) - [dvf(A-v,02)p),  (9)

where f(x,y)=2sinh(2y)/[cosh(2y)—cos(2x). The in-
tegrations in Eqgs. (9) is over the values of A, v, and z,
for which energies of states are negative, see below. In the
thermodynamic the energy of the system is

1—cos(2v)cosh(n) N
cosh (M) — cos(20)

€., = —ZJdUp(v)(

+ 1—cos(2v—26)cosh(n) |
cosh(n) —cos(2v—-26)

sinh’(n)
sin2(A) +sinh2(M)

—~2cosh(m) [dAG(A) (4 -

sinh (M) J | (10)

"~ sin2(A—0)+sinh2(1)

We can introduce the “dressed” energies for unpaired
electron states €(v) and pairs ‘Y(A), which are deter-
mined from the following set of integral equations,

e(k) = f(v,n/2)+ f(v-8, n/2)—u—%_

_L'[dA\y(A)f(v— AM/2),
2n

YA =AM+ f(A-6,m) -2 -

—ijdz F(A =z ) W(z)- - [dv f(A-0./2)e(@).
21 2n
(11)

We see that unbound electron states carry spin 1/2 and
the charge —e, while the Cooper-like singlet pairs carry
zero spin and the charge —2e. We also see that the SO-
induced phase factor ¢ does not enter the characteristics of
the system in the thermodynamic limit in the ground state; it
manifests itself in the finite size corrections [2], see below.

Investigating Eqgs. (11) we see that for the external
magnetic fields /4 < H_. only paired states are populated,
where

H,=-2u+2f(n,n/2)+2f(nt-06,1/2)-

—%jdA F(m—AM/2)¥(A). (12)
The energies of unbound electron states are gapped. We
can say that H_. is one-half of the minimal external mag-
netic field necessary to depair the Cooper-like singlet pair
state.

On the other hand, if the magnetic field is larger than
H the magnetization is saturated (it is equal to N/2),
and only unbound electron states are populated, where

H,=-2u+2f(n,n/2)+2f(nt-06,1/2). (13)

At those critical values of the field the system under-
goes the second order quantum phase transitions. Such a
behavior is reminiscent of the type-II superconductor in the
external magnetic field, because for H < H_ there are
only Cooper-like pairs in the system; for H,.<H < H|
pairs and unbound electron states coexist, and, finally, for
H > H there are only unbound electron states. We em-
phasize, however that in the one-dimensional electron sys-
tem with short-range interactions there is no true super-
conducting order with off-diagonal long-range ordering.
Instead, correlation functions of Cooper-like pairs and un-
bound electron states decay with power laws at long times
or distances, see below.

Let us first concentrate on the region with H < H,
(i.e., 2M = N), where only spin-singlet pairs exist (let us
call this phase the gapped one). In this case the Bethe
equations in the thermodynamic limit can be reduced to

216" (A)+6'(A)] = F(A M+ f(A-0,1)~
~[dzf(A-zm)0(z),

YA =AM+ f(A-6,m) -2~

—Ljdz FA=zm¥(). (14)
2n
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It is easy to show that the quantum numbers fill the interval
beginning from its edges for any 1. On the other hand, for
any nonzero O the “bare” energy o A= f(A,M)+

+f(A—-6,m)—21 shows two- or four-minima behavior,
depending on the value of the parameter 0, see Fig. 1 for the
“symmetrized” case A — A+06/2. It means that the filling
of the Fermi seas depends on the value of the chemical po-
tential (band filling). For u=0 the system is half-filled,
N=L.Atsmall 6 for u<p,, there are only two Fermi
seas for singlet pairs. In this case the integration limits in Eqgs.
(14) are [-m+0/2,-A(+6/2] and [A;+6/2,7+6/2],
where A plays the role of the Fermi point (¥(£A) = 0).

For small enough n for p>p,. two Fermi seas of singlet
pairs are empty, see Fig. 1. On the other hand, at large
enough 0 we have four Fermi seas. Two of them are filled
for u <y, . For u, SU <., the filling of other two seas
is non-total, see Fig. 1. We emphasize, however, that the
filling of two or four Fermi seas in those regions of | are
not independent; they are determined by the one parameter,
the chemical potential [ . Finally, for u>pu,. the band is
empty. At all critical values of the chemical potential (i.c., at
the critical fillings of the band) the charge susceptibility (the
compressibility) shows in the ground state the square-root in
W behavior. notice, on the other hand, at the critical value of
0 at which four Fermi seas appear (unfortunately, it is impos-
sible to find its value analytically), the compressibility as a
function of the chemical potential shows (u—uc)_3/4 be-
havior. Several minima in the dispersion law for “pure” (and,
hence, “dressed”) energies imply the spatial distribution of
the electron density (with possible incommensurate distribu-
tions, depending on W, © and m). Hence, for H < H, for

Fig. 1. (Color online) The dependence of the symmetrized case
A— A + 0/2 for “pure” energy of spin-singlet pairs for the
gapped phase at 1 = 0.5 for p = 0. The dashed red line: 6 small;
the dashed-dotted blue line: 6 large; the solid black line: the criti-
cal value of 0.
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some values of the chemical potential we deal with the anal-
ogy of the CDW (charge density wave) commensurate distri-
bution of electron density, but for Cooper-like singlet pairs
not for electrons as in the standard CDW, and for others val-
ues the incommensurate distributions of the density of pairs
can exist.

For H > H| there are no bound states, and

e() = f(o,n/2)+ f(v-0,n/2)—u—-(H/2). (15)

It means that in this region of parameters there is no
“dressing” of the energies of unbound electron excitations
due to the interactions.

Finally, for H, < H < H the situation is very compli-
cated, because Fermi seas exist both for unbound electron
states and for singlet pairs. Here, depending on the values
of the chemical potential and magnetic field with respect
to given O and m the system can manifest the spatial
distribution of the density of spin-singlet pairs and un-
bound electron excitations [29]. For commensurate spa-
tial distributions the latter imply the existence of SDW
(spin density wave) like and CDW-like states; for other
values of governing parameters incommensurate distribu-
tions of the spin and charge densities is expected. Again,
depending on the values of 6 and n there can exist sev-
eral critical values of the chemical potential and the mag-
netic field, at which second order quantum phase transi-
tions with the square-root singularities in @ and H ,
respectively, take place. Also, as in the gapped phase, at
the critical value of 6 those singularities manifest —3/4
features.

5. Correlation functions

According to the conformal field theory [30] in the
ground state correlation functions of states with gapless
excitations decay with distance or with time algebraically

0.
[2] as 2 exp(—ZiDjpf)(xiivjt) J with all kinds of
j:u’p

gapless states contributing, where v is the Fermi velocity

of unbound electron excitations or pairs, and j=u,p
mean unbound electron states and spin-singlet Cooper-like
pairs. The exponents 0 j are determined from the confor-

mal dimensions, see below.

For the asymptotes of correlation functions we need to
find the finite size corrections to the ground state energy
and the momentum, caused by low-energy excitations. For
the simplest case of only two Fermi seas for unbound elec-
tron states and spin-singlet pairs (i.e., for the spatially ho-
mogeneous distributions of charge and spin densities in the
ground state), are given by [31]

2

A—1
PINE: g AN, | +
q=u,p

vy
E=Le_(Ay,vy)+ —
(Ag,79) 1; Y

=u,p

Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 12



Correlated electrons in a zig-zag chain with the spin-orbit interaction: Exact solution

2
27 _ 1
z Ul [ 2 quD ] +nl++n1 —E , (16)

I=u,p q=u,p

where v, are the Fermi velocities

de(0)/dv,—y, dW(A)/dA -,

= , = , (17
T o T metny) o

of the unpaired electron states and pairs, respectively, and

AN, = A(N-2M), AN, =AM,

1 1
D, :E(AN” +ANp) mod 1, Dp :EANP mod 1.
(18)

The expression for the momentum is

AP= ) (_[DIANI+”I —n; ]+2p; Dl) (19)
I=u,p

The quantum numbers AN, ,, refer to the change in the
number of states in each Fermi sea by the low-energy exci-
tation and D, , are the corresponding backscattering
quantum numbers (transfer from the left Fermi point to the
right Fermi point). The number of particle-hole excitations
about each Fermi point is denoted by n;—r p- The backscat-
tering quantum numbers for unbound electron states have
to be shifted by the SO phase D, — D, —¢ . Spin-singlet
pairs are not affected by the SO coupling, naturally. The
Fermi momenta corresponding to the Fermi seas are
pf =n(N-2M)/L and pﬁ =nM/L. The generalized
dressed charges, zj, = E_qu (Bq), where B, =7, and
B, = A, are obtained from the solution of the following

P
set of integral equations (/ =u, p)

£ (0) =8, — [ANS (0= A, V2)E), (M) ,
Ep(N) =8, - [dzf (= A, )&, (2)-

—[dvf(0-AN2)E, @), (20)

Equations for the components of the dressed charge de-
pend on O via the limits of integration.

The conformal dimensions, which define the exponents
of correlation functions, are related to the finite size cor-

rections obtained above
+ +
A, =n +[z

(D, =0)+z t

uu pu p -

+ (2,)AN, = 2,,AN )/ Qd)T,

A;—n +[zup(D q))+zpp pi

(2 AN ) =2, AN, )/ 2d)T @1

in the mixed homogeneous phase (two Fermi seas,
H,<H<H). Here we denote d=z,,z,, ~2,2,,.
The situation is similar to the Hubbard chain with attrac-
tion [32]. For the single electron (e.g., for (S=T) Green
function in the homogeneous mixed phase the set of quan-
tum numbers is the following: AN, =1, AN, =0,
=0, and D, and D, are half-integers, w1th D,
shlfted by ¢ . The two leadlng terms with the smallest ex-
ponents are for D, =-D, =%1/2 and D, =D, =%1/2,
which we denote with indexes 1 and 2, respectively.

From now on let us concentrate, for simplicity, on the
equal time correlation functions. For the single-electron
(up-spin) Green function the exponents are 6 = Z(AJr
+A, + A+ +A ) The equal-time asymptote of the single-
electron up sp1n Green function is then

[P1(=0)x
e |t

(02 (~0)x
| (22)

(Wl (x,0)y1 (0,0)) = 4 i
W‘[‘ X, )WT( > ) | xel(q))

o iP2(0)x
+4, +
xez ()

where the exponents and the wave numbers of the phases are

8,,(0) =§{[zw(1—2¢):z,,u]2 ¥

2y (1=20) £ 2, 12 + (23, + 20 )/} |

01.2(0) = pi (1-20)F ph = nl(n, ¥n,)—-20n,], (23)

where n, =N, /L=(N-2M)/L and n,=N,/L=M/L.
Here and below the correlation functions are determined in
the framework of the conformal field theory up to con-
stants A4 iz

For the Cooper-like pair-pair correlation function in the
homogeneous mixed phase the set of quantum numbers is
the followmg AN, =1, AN, =0, D,=0, D, =%1/2
and n =0. For D, =+1/2 we have

1
AE = g[zuu(l—2¢)$zup/d]z ,

A, = %[zup (1-20)%z,,/d] (24)

and the exponent and the wave number of the phase of the
correlation function are

1
Ocp(9) =~ 117 (1= 2001 +
(2 (1=20)1 + (20, + 2, >}

9Ocp(9) = pp, (1-2¢) = m[m, —20m,]. (25)
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For D, =-1/2 we have 6.p(—0¢) and —@cp(—0). The
asymptote for the equal time pair-pair correlation function
can then be written as

(W (. 0w (x, 0w (0,0)y1.(0,0)) =

e—l'(Pcp(¢)x
=~ 4 +
Pl 8cp®

ei(PCP(—‘J))X
. (26)

Locp(=9)

Consider now the long-distance asymptotic behavior of
the density wave correlation function. The (spin or charge)
density operator does not change the number of electrons, so
that AN, =AN, =0. Hence, the D, and D, quantum
numbers are integers. Several sets of backscattering quantum
numbers and particle-hole quantum numbers are possible.

First, one can have D, =D, =0.1If rz;—r = ni =0 we
obtain (N(x,0)N(0,0)) = (N)>, where N is either the
number of electrons or the magnetization. Next we consid-
er one of n* equal to one and the other three equal to zero.
For ¢ =0 the contribution to the equal time correlation
function falls off as 1/x>. For 0#0 the density-density
correlation function is proportional to

o @Dw0o(9)x

_— 2
Apwoo oo ® 27

with the exponent and the wave number of the phase
given by

0 00(0) = 2+ 20° [z, + Ziy 1. Ppiyr0(9) = —270m,.
(28)

Then one can have D, =D, =%l and n;_r = ni =0,
which case corresponds to the momentum transfer of
2ppp if 0=0. For ¢#0 the asymptote of the density-
density correlation function is proportional to

e @pw11®x  J9pp11(=0)x
Apwi1 + , (29)

Woow11@®  Opp11(=0)
with the exponent and the wave number of the phase
given by
Opmw11(9) = 24[2,, (1= 0)+ 2, 7> +[2,, (1= 0) +2,,, 1},
Opw11(0) = 21n, (1-0) +21n, . (30)

Finally, one can have D, =0 and D,=*1 and
nt= ni =0. This corresponds a momentum transfer of
2 pf if =0.For ¢ #0 the correlation functions are pro-

u
portional to
o @pwo1(®x  i9ppo1(-0)x
+ (31

+ODwo1(®)

ADWO][ xGDWOI(_¢)
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with the exponent and the wave number of the phase
given by

0w 01(0) = 2{[~2, 0+ 2, I +[~2,,0+ 2, '},

Ppwo1(9) = —2mnm,o+2mn,, . (32)

In the gapped homogeneous phase one has only Fermi
sea for pairs, which do not carry spin, and, hence, they
are not affected by the SO coupling. For H <H_ the
Green function decays exponentially. For the gapped
case we have z,, = & op (o) and D, is an integer. The
former is determined from the solution of the equation

& p(A)=1= [dzf (= A, (2) (33)
and the conformal dimensions are given by
+ _ _+ 2
A, =ny+[z,,D, £AN /(22 ), )] (34)

For the single-electron Green function we have to break
up a Cooper pair. Since the spectrum of unpaired particles
is gapped, Green's functions decay exponentially with the
distance.

For the Cooper-like pairs we consider AN p= 1, D,= 0
and 7> =0. The conformal dimensions are then
Afj = (822 )_1 , and the asymptote for the pair-pair corre-

)74
lation function can be written as

1

- 9
yocp

Wk 0w ] (. 00w (0,0)w1(0,0)) = Acp

where the exponent is 6cp(9) =1/(2z,, )2 .
Finally, for the density wave correlation function two
contributions are possible. For the first one (D, =0) the

correlation function is proportional to x7? , and the se-

cond one with momentum transfer of 2pg, Dp =41,

n;f =0 is proportional to X ODWOL The exponent of the

. . . A2 . .
phase in this case is Opyq; =2z,,. Notice that in the

gapped phase, which has no spin-imbalance, oscillations
in the Cooper-pair correlation function arise for ¢ #0 .

For the values of 1 in the gapped phase (for H < H,)
and in the mixed phase H_ < H < H_ for the values of [
and H , at which spatially inhomogeneous distributions of
unbound electron excitations and spin-singlet pairs take
place, the behavior of algebraically decaying correlations
functions is more complicated.

For H > H, the band of Cooper-like pairs is empty
and all the unpaired electrons are spin-polarized. The
unbound electrons are now non-interacting and all corre-
lation functions are those of free particles modified by the
SO interaction phase.

Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 12



Correlated electrons in a zig-zag chain with the spin-orbit interaction: Exact solution

6. Finite temperatures

At finite but low temperatures the main contribution to
thermodynamics of the system comes from low-energy
(gapless) excitations. Namely those excitations contribute
mostly to the low-temperature dependence of the charge
susceptibility (compressibility), magnetic susceptibility,
and the specific heat. Contributions from other (gapped)
eigenstates is exponentially small. At low temperatures the
second order phase transitions, mentioned above, manifest
themselves as 1/-/T features corresponding to the van
Hove singularities of the edges of the bands. At the critical
values of 0 the behavior shows 77>'% features. At nonzero
temperatures in the thermodynamic limit the same expo-
nents determine the temperature behavior of correlation
functions with the obvious replacement, (xtiv jt) -
-0 sinh(n7[x £ ivjt)/vj )nT.

7. Summary

The novel Bethe-ansatz integrable model of correlated
electrons on the one-dimensional lattice with nearest- and
next-nearest neighbor hoppings and interactions, equivalent
to the zig-zag lattice with the spin-orbit coupling is intro-
duced. The model describes the supersymmetric #—J-model
with the “easy-axis” (Ising-like) type of the anisotropy on the
geometrically frustrated lattice. As other one-dimensional
quantum models, it manifests the most interesting behavior in
the ground state, where the number of quantum phase transi-
tions, governed by the band filling and the external magnetic
field, take place. The Ising type of the anisotropy gives rise to
a gap for low-energy unbound electron states at small values
of the magnetic field, therefore the model is reminiscent of
the type-II superconductor. Namely, for small fields only
spin-singlet Cooper-like pairs are gapless. For larger values
of the field both pairs and unbound electron states are gap-
less. Finally for larger field the system is in the spin-
polarized phase. For the large value of the parameter, which
describes the inter-chain (NNN) coupling and hopping, the
model manifests additional quantum phase transitions to
phases with inhomogeneously distributed charge and/or spin
densities, in the simplest case of the commensurate struc-
tures, analogous to the CDW or SDW states, or FFLO orde-
ring [33]. At low temperatures, as usually, quantum phase
transitions reveal themselves in square root in temperature
features in the behavior of the magnetic and charge suscepti-
bility and the specific heat. The spin-orbit coupling manifests
itself in the finite size corrections, i.e., in the behavior of ex-
ponents and phases of correlation functions for some gapless
states. The features of the model can be used in the descrip-
tion of real quasi-one-dimensional correlated electron sys-
tems, in particular, zig-zag chains of magnetic ions on a sur-
face of a superconductor, important for the search for
Majorana zero modes. We admit that some features of exact-
ly solvable one-dimensional models are far from being ob-

Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 12

served experimentally. However those non-realistic features
are known and simple to recognize.

Acknowledgements

The support from the DFG via SFB 1143 is acknow-
ledged.

1. N.D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133
(1966).

2. A.A. Zvyagin, Finite Size Effects in Correlated Electron
Models: Exact Results, Imperial College Press, London
(2005).

3. See, e.g., Frustrated Spin Systems, H.T. Diep (ed.), World
Scientific, Singapore (2004); Highly Frustrated Magnetism,
C. Lacroix, P. Mendels, and F. Mila (eds.), Springer, Berlin
(2010); A.P. Ramirez, Annu. Rev. Mater. Sci. 24, 453
(1994); R. Moessner, J. Phys.: Conf. Ser. 145, 012001
(2009); R. Moessner and A.R. Ramirez, Physics Today 59,
24 (2006); C. Castelnovo, R. Moessner, and S.L. Sondhi,
Ann. Rev. Condens. Mater. Phys. 3, 35 (2012); A.A.
Zvyagin, Fiz. Nizk. Temp. 39, 1159 (2013) [Low Temp. Phys.
39,901 (2013)].

4. See, e.g., P.A. Lee, Science 321, 1306 (2008); L. Balents,
Nature 464, 199 (2010); Y. Zhou and P.A. Lee, Phys. Rev.
Lett. 106, 056402 (2011); L. Savary and L. Balents, Rep.
Progr. Phys. 80, 016502 (2017).

5. See, e.g., C.K. Majumdar and D.K. Ghosh, J. Math. Phys. 10,
1388 (1969); K. Okamoto and K. Nomura, Phys. Lett. A 169,
433 (1992); V.Y. Popkov and A.A. Zvyagin, Phys. Lett. A
175, 295 (1993); M. Matsuda and K. Katsumata, J. Magn.
Magn. Mater. 140-145, 1671 (1995); S.R. White and
L. Affleck, Phys. Rev. B 54, 9862 (1996); H. Kikuchi,
H. Hagasawa, Y. Ajiro, T Asano, and T. Goto, Physica B
284-288, 1631 (2000); A.A. Zvyagin, J. Phys. A 34, R21
(2001); K. Okunishi, Progr. Theor. Phys. Suppl. 145, 119
(2002); N. Maeshima, M. Hagiwara, Y. Narumi, K. Kindo,
T.C. Kobayasi, and K. Okunishi, J. Phys.. Condens. Matter
15, 3607 (2003); M. Hase, K. Ozawa, and N. Shinya, Phys.
Rev. B 68, 214421 (2003); T. Masuda, A. Zheludev, A. Bush,
M. Markina, and A. Vasiliev, Phys. Rev. Lett. 92, 177201
(2004); T. Masuda, A. Zheludev, A. Bush, M. Markina, and A.
Vasiliev, Phys. Rev. Lett. 94, 039706 (2005); S.-L. Drechsler,
J. Malek, J. Richter, A.S. Moskvin, A.A. Gippius, and H.
Rosner, Phys. Rev. Lett. 94, 039705 (2005); A.A. Gippius,
E.N. Morozova, A.S. Moskvin, A.V. Zalessky, A.A. Bush, M.
Baenitz, H. Rosner, and S.-L. Drechsler, Phys. Rev. B 70,
020406(R) (2004); L. Capogna, M. Mayr, P. Horsch, M.
Raichle, R.K. Kremer, M. Sofin, A. Maljuk, M. Jansen, and B.
Keimer, Phys. Rev. B 71, 140402(R) (2005); S.-L. Drechsler,
0. Volkova, AN. Vasiliev, N. Tristan, J. Richter, M. Schmitt,
H. Rosner, J. Malek, R. Klingeler, A.A. Zvyagin, and
B. Biichner, Phys. Rev. Lett. 98, 077202 (2007), A.A. Zvyagin
and S.-L. Drechsler, Phys. Rev. B 78, 014429 (2008);
A. Vasiliev, O. Volkova, E. Zvereva, and M. Markina, NPJ
Quantum Materials 3, 18 (2018); N. Blanc, J. Trinh, L. Dong,

1595


https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1142/p364
https://doi.org/10.1142/p364
https://doi.org/10.1146/annurev.ms.24.080194.002321
https://doi.org/10.1088/1742-6596/145/1/012001
https://doi.org/10.1063/1.2186278
https://doi.org/10.1146/annurev-conmatphys-020911-125058
https://doi.org/10.1126/science.1163196
https://doi.org/10.1038/nature08917
https://doi.org/10.1103/PhysRevLett.106.056402
https://doi.org/10.1103/PhysRevLett.106.056402
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1063/1.1664978
https://doi.org/10.1016/0375-9601(92)90823-5
https://doi.org/10.1016/0375-9601(93)90624-9
https://doi.org/10.1016/0375-9601(93)90624-9
https://doi.org/10.1016/0304-8853(94)00688-1
https://doi.org/10.1016/0304-8853(94)00688-1
https://doi.org/10.1103/PhysRevB.54.9862
https://doi.org/10.1016/S0921-4526(99)02750-7
https://doi.org/10.1088/0305-4470/34/41/201
https://doi.org/10.1143/PTPS.145.119
https://doi.org/10.1088/0953-8984/15/21/309
https://doi.org/10.1103/PhysRevB.68.214421
https://doi.org/10.1103/PhysRevB.68.214421
https://doi.org/10.1103/PhysRevLett.92.177201
https://doi.org/10.1103/PhysRevLett.94.039706
https://doi.org/10.1103/PhysRevLett.94.039705
https://doi.org/10.1038/s41535-018-0090-7

A.A. Zvyagin

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

1596

X. Bai, A.A. Aczel, M. Mourigal, L. Balents, T. Siegrist, and
A.P. Ramirez, Nature Phys. 14,273 (2018).

Y.-W. Son, M.L. Cohen, and S.G. Louie, Nature 444, 347
(2006).

E. Berg, T.H. Geballe, and S.A. Kivelson, Phys. Rev. B 76,
214505 (2007).

A. Poddubny, A. Miroshnichenko, A. Slobozhayuk, and
Y. Kivshar, Act Photonics 1, 1001 (2014); L. Lu, J.D.
Joannopoulos, and M. Soljacic, Nat. Photon. 8, 821 (2014).

. G.E. Astrakharchik, G. Morigi, G. De Chiara, and J. Boronat,

Phys. Rev. A 78, 063622 (2008); E. Shimshoni, G. Morigi, and
S. Fishman, Phys. Rev. Lett. 106, 010401 (2011); D. Rossini,
V. Lante, A. Parola, and F. Becca, Phys. Rev. B 83, 155106
(2011); G. Sun, G. Jackeli, L.Santos, and T. Vekua, Phys. Rev.
B 86, 155159 (2012); F. Cartarius, A. Minguzzi, and G.
Morigi, Phys. Rev. A4 95, 063603 (2017).

S. Nadj-Perge, Y.K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo,
A.H. Macdonald, B.A. Bernevig, and A. Yazdani, Science
346, 602 (2014).

LK. Drozdov, A. Alexandradinata, S. Jeon, S. Nadj-Perge,
H. Ji, R.J. Cava, B.A. Bernevig, and A. Yazdani, Nature
Phys. 10, 664 (2014).

X. Xi, Z. Wang, W. Zhao, J.-H. Park, K.T. Law, H. Berger,
L. Forr6, J. Shan, and K.F. Mak, Nature Phys. 12 139
(2016).

G. Dresselhaus, Phys. Rev. B 100, 580 (1955); Y.A.
Bychkov and E.I. Rashba, J. Phys. C 17, 6039 (1984).

A.A. Zvyagin, Phys. Rev. B 95, 165141 (2017).

M.Z. Hasan and C.L. Kane, Rev. Mod. Phys. 82, 3045
(2010); X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057
(2011).

R.M. Lutchyn, J.D. Sau, and S. Das Sarma, Phys. Rev. Lett.
105, 077001 (2010); Y. Oreg, G. Refael, and F. von Oppen,
Phys. Rev. Lett. 105, 177002 (2010).

For a review see, e.g., I. Bloch, Nature Phys. 1, 23 (2005)
and references therein.

Y.A. Liao, A.S.C. Rittner, T. Paprotta, W.H. Li, G.B.
Partridge, R.G. Hulet, S.K. Baur, and E.J. Mueller, Nature
(London) 467, 567 (2010).

G. Orso, Phys. Rev. Lett. 98, 070402 (2007); H. Hu, X.-J.
Liu, and P.D. Drummond, Phys. Rev. Lett. 98, 070403
(2007); P. Schlottmann and A.A. Zvyagin, Phys. Rev. B 85,
205129 (2012); A.A. Zvyagin and P. Schlottmann, Phys.
Rev. B 88, 205127 (2013); P. Schlottmann and A.A.
Zvyagin, Nucl. Phys. B 892,269 (2015).

M. Olshanii, Phys. Rev. Lett. 81, 938 (1998); T. Bergeman,
M.G. Moore, and M. Olshanii, Phys. Rev. Lett. 91, 163201
(2003).

For a recent review see, e.g., P. Schlottmann and A.A.
Zvyagin, Mod. Phys. Lett. B 26, 1230009 (2012) and
references therein.

X.-J. Liu, M.F. Borunda, X. Liu, and J. Sinova, Phys. Rev.
Lett. 102, 046402 (2009); Y.-J. Lin, R.L. Compton,
K. Jiménez-Garcia, J.V. Porto, and I.B. Spielman, Nature 426,
628 (2009); Y.-J. Lin, K. Jiménez-Garcia, and 1.B. Spielman,
Nature 471, 83 (2011); Y.-J. Lin, R.L. Compton, K. Jiménez-

Garcia, W.D. Phillips, J.V. Porto, and 1.B. Spielman, Nature
Phys. 7, 531 (2011); M. Chapman and C. Sa de Melo, Nature
471, 41 (2011); M. Aidelsburger, M. Atala, S. Nascimbéne,
S. Trotzky, Y.-A. Chen, and 1. Bloch, Phys. Rev. Lett. 107,
255301 (2011); R.A. Williams, L.J. LeBlanc, K. Jiménez-
Garcia, M.C. Beeler, A.R. Perry, W.D. Phillips, and L.B.
Spielman, Science 335, 314 (2012); J.-Y. Zhang, S.-C. Ji,
Z.Chen, L. Zhang, Z.-D. Du, B. Yan, G.-S. Pan, B. Zhao,
Y.-J. Deng, H. Zhai, S. Chen, and J.-W. Pan, Phys. Rev. Lett.
109, 115301 (2012).

23. P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai,
and J. Zhang, Phys. Rev. Lett. 109, 095301 (2012); L.W.
Cheuk, A.T. Sommer, Z. Hadzibabic, T. Yefsah, W.S. Bakr,
and M.W. Zwierlein, Phys. Rev. Lett. 109, 095302 (2012).

24. Y. Meir, Y. Gefen, and O. Entin-Wohlman, Phys. Rev. Lett.
63, 798 (1989).

25. A. Foerster and M. Karowski, Nucl. Phys. B 396, 611
(1993); A. Foerster and M. Karowski, Nucl. Phys. B 408,
512 (1994); R.Z. Bariev, Phys. Rev. B 49, 1474 (1994).

26. CK. Lai, J. Math. Phys. 15, 167 (1974); B. Sutherland,
Phys. Rev. B 12, 3795 (1975); P. Schlottmann, Phys. Rev. B
36,5177 (1987).

27. A.A. Zvyagin, Fiz. Nizk. Temp. 40, 83 (2014) [Low Temp.
Phys. 40, 65 (2014)].

28. A.A. Zvyagin, Phys. Rev. B 52, 15050 (1995).

29. A.A. Zvyagin, Phys. Rev. B 57,1035 (1998).

30. P. di Francesco, P. Mathieu, and D. Sénéchal, Conformal
Field Theory, Springer-Verlag, New York (1997).

31. V.E. Korepin, N.M. Bogoliubov, and A.G. Izergin, Quantum
Inverse Scattering Method and Correlation Functions,
Cambridge University Press, Cambridge (1993).

32. A.A. Zvyagin, Phys. Rev. B 86, 085126 (2012); A.A. Zvyagin
and P. Schlottmann, Phys. Rev. B 88, 205127 (2013).

33. P. Fulde and A. Ferrell, Phys. Rev. A 135, 550 (1964),
A. Larkin and Y.N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47,
1136 (1964) [Sov. Phys. JETP 20, 762 (1965)].

KopenboBaHi eneKkTpoHu Ha rpaTui Tuny auraar
3i cniH-opBiTanbHOK B3aEMOAIEID: TOUHE PilleHHS

A.A. 3B4riH

BuBuaeTcs MozeINb KOPENbOBaHUX EJIEKTPOHIB HA TEOMETPHYHO
(dpycTpoBaHiii OMHOBUMIpHIHN TPaTIi 31 CHiH-OPOITATEHOIO B3aEMO-
niero. OnepxaHo TOYHE BHpilIeHHS MeTonoM an3aua bere. Baae-
MOZisl Ha TPaTIi TUITY 3UT3ar MOXKE IIPU3BECTH JIO MOSIBU HECOPO3-
MIpPHHX CTPYKTYP JUISl BEJIMKHX 3HaueHb (PYCTPYIOUHX B3a€MOIH.
CniH-op0iTaigbHa B3a€MOJIS NPHU3BOAUTH IO IIOBENIHKU KOpPEIs-
LHHUX QYHKLIH, sKi HaraxyoTs ocobnusocti Tuy Dynpae—Dep-
pensi—Jlapkina—OBYHHHUKOBA B PEaNbHHUX HAIIPOBIIHUKAX PYro-
O pozy.

KutrouoBi ciioBa: iHTErpoBaHa MOJIENb KOPEIbOBAHUX EICKTPOHIB,
reoMeTpu4Ha ppycrparis, CriH-opOiTaTbHa B3a€MOJIs.
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KoppenvpoBaHHble 31eKTPOHbI Ha peLleTke Tuna
3Uraar co CrnvH-opbuTanbHbIM B3aMMOAENCTBMEM:
TOYHOE peLueHne

A.A. 3BAMVH

N3yuaeTcst MOJENb KOPPENUPOBAHHBIX JEKTPOHOB HAa FEOMET-
pudecku (QpYCTPHUPOBAaHHON OJHOMEPHOW peELIeTKe CO CIIHH-
opOHTaNBHEIM B3anMojelicTBHeM. IloiydeHO TOYHOE pelIeHUe
MeTO/I0M aH3aua bere. BzaumoneiicTBue Ha peleTke TUNa 3ur3ar
MOXKET IPUBECTH K IOSABJICHUI0 HECOM3MEPHMBIX CTPYKTYp UL

OoNpIIMX 3HAYEHWH (pycTpupyromux B3ammonelcrsuil. CruH-
opOHTaNBHOE B3aMMOJCHCTBHE NPUBOIHUT K ITOBEICHHIO KOPPEIs-
LIMOHHBIX (YHKUMH, HATOMHHAIOWIMX 0coOeHHOCTH Tuna Dyibae—
Oeppens—/lapkuna—OBYMHHUKOBA B PEANIbHBIX CBEPXIIPOBOIHU-
Kax BTOPOTo poja.

KiroueBble cioBa: uHTErpupyemMas MoOJENIb KOPPEIHPOBAaHHBIX
JJIEKTPOHOB, TeoMeTpuueckas (pycTpauus, CIHH-OPOHTAIBEHOES
B3aHMOJICHCTBHE.
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