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To interpret the anomalies in heat capacity CV (T) and temperature-dependent pressure P(T) of solid hexagonal 
close-packed (hcp) 4He we exploit the model of hcp crystalline polytype with specific lattice degrees of freedom and
describe the thermodynamics of impurity-free 4He solid as superposition of phononic and polytypic contributions.
The hcp-based polytype is a stack of 2D basal atomic monolayers on triangular lattice packed with arbitrary long (up 
to infinity) spatial period along the hexagonal c axis perpendicular to the basal planes. It is a crystal with perfect or-
dering along the layers, but without microscopic translational symmetry in perpendicular direction (which remains, 
nevertheless, the rotational crystallographic axis of third order, so that the polytype can be considered as semi-
disordered system). Each atom of the hcp polytype has twelve crystallographic neighbors in both first and second co-
ordination spheres at any arbitrary packing order. It is shown that the crystal of such structure behaves as anisotropic 
elastic medium with specific dispersion law of phonon excitations along c axis. The free energy and the heat capacity 
consist of two terms: one of them is a normal contribution (with CV (T)  T 3) from phonon excitations in an aniso-
tropic lattice of hexagonal symmetry, and another term (an “excessive” heat) is a contribution resulted by packing en-
tropy from quasi-one-dimensional system of 2D basal planes on triangular lattice stacked randomly along c axis 
without braking the closest pack between neighboring atomic layers. The excessive part of the free energy has been 
treated within 1D quasi-Ising (lattice gas) model using the transfer matrix approach. This model makes us possible to 
interpret successfully the thermodynamic anomaly (heat capacity peak in hcp 4He) observed experimentally.

PACS: 67.80.B– Solid 4He;
05.70.–a Thermodynamics; 
61.72.Nn Stacking faults and other planar or extended defects. 

Keywords: polytype, packing entropy, quantum solids. 

1. Introduction

 Thermodynamical and mechanical properties of hexago-
nal close-packed (hcp) 4He crystals are the subject matter of
lively discussions over last decade in the context of the unu-
sual peculiarities in behavior of these quantum solids at low 
temperature. There are well-known anomalies in tempera-
ture dependences of pressure ( )P T  [1,2] and heat capacity 

( )VC T  [3–6] (it is noticeable that anomalous behavior of 
hcp 4He heat capacity below 0.5 K was reported also in the
paper of Edwards and Pandorf [7]) as well as in mechanical 
(mainly acoustical [8–10]) properties investigated with dif-
ferent (especially with torsion oscillator [11,12] or internal 
friction [13,14]) technics. It is remarkable that both the 
thermodynamical [1,3] and mechanical (acoustical) anoma-
lies appear just below 0.25 K, and this fact most likely sug-
gests that they are phenomena of the common nature. For 

this moment it is agreed that all the relevant observations are 
results of some structural disorder created by crystal lattice 
defects (dislocations [6,11,15–19] or vacancies [20–24]). 

Whereas a dislocation concept seems to be quite satisfac-
tory to explain mechanical behavior (plasticity) of the heli-
um lattice in torsion oscillator, it is unsuccessful in treatment 
of thermodynamic anomalies like low-temperature heat ca-
pacity peak [3] or low-temperature non-monotonic increase 
in pressure with temperature [1] obtained in pure 4He crys-
tals, but not observable in 3He. The specific effect of 3He
impurities in 4He matrix (hysteresis in ( )VC T  during
thermocycling) becomes detectable over the heat capacity 
peak only at impurity concentration greater than several 
ppm [3]. Moreover, it remains unclear what is the reason for 
absence of essential dislocation effects in low-pressure 
body-centered cubic (bcc) 3He solid treated with torsion
oscillator [2] (according to accepted meanings, the cubic 
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lattice must have more easy glide systems as compared to 
hcp lattice [25,26]). Dislocation is one-dimensional non-
equilibrium defect with specific oscillatory degrees of free-
dom, so that to get an essential contribution from disloca-
tions to the heat capacity in three-dimensional lattice we 
have to suggest the presence of an enormous dislocation 
density (of order 1011cm–2) which is hardly to be conceived 
in the quantum helium crystal. It means that to explain the 
low-temperature anomalies in thermodynamics of the pure 
4He lattice we have to propose a model which based essen-
tially on its hcp crystallography. The contribution from dis-
locations into observable properties of solid helium is a sub-
ject of extensive studies over last years [27–30], but it is 
very difficult to obtain some direct evidence of the disloca-
tions response in such systems because of specifics of heli-
um crystals prepared in restricted volume under external 
pressure at ultralow temperature. 

Another approach to explain the anomalies in thermo-
dynamics of 4He solid is a glassy phase model [31,32]. To 
interpret the supersolidity effects, this model was intro-
duced by Andreev [33] on basis of simple two-level system 
traditionally applicable to description of disorder in various 
glassy objects. The mentioned approach makes it possible 
to involve additional (to the natural phonon ones) degrees 
of freedom and create the qualitative explanation [31,32] 
for local maximum on heat capacity curve ( )VC T  [3]. 
Nevertheless, it remains unclear the nature of the glassy 
degrees in view of their relation to the real degrees of free-
dom of 4He atoms in the helium crystal lattice. 

As alternative to ordinary dislocation concept and 
glassy approach we propose [34,35] the model of hcp 
polytype [36–38] which made us possible to explain suc-
cessfully the anomalies in temperature dependences of 
pressure reported in Refs. 1, 2. The advantage of the po-
lytypic model is the strongly determined crystallographic 
structure of hcp polytype with evident physical nature of 
the packing degrees in a stack of basal planes which are 
crystallographically perfect monoatomic layers with tri-
angular lattice. This model makes it possible to realize a 
mechanism of one-dimensional order-disorder transformation 
in a perfectly close-packed three-dimensional hcp crystal. 
Here we apply the corresponding theory to clarify the exper-
imentally observed in [3] low-temperature heat capacity peak 
that exists due to specific degrees of freedom of the hcp lat-
tice. This effect seems to be evidently independent on both 
phononic and impuritonic degrees, so that we suggest another 
mechanism for explanation of the phenomenon. 

Heat capacity anomaly in solid 4He discovered experi-
mentally by Chan's research group [3] is an excessive spe-
cific heat (in addition to standard T 3 law) at temperature 
below 0.2 K. The local heat capacity peak is observable 
clearly even in 4He of the highest purity where the possibly 
effect of 3He isotope seems to be evidently negligible. The 
magnitude of the anomalous peak is higher in the sample 
grown during 4-hrs procedure (as compered to 20-hrs one), 

or in the sample grown at lower external pressure of 33 bar 
(as compared to 38 bar one). If we believe that the appear-
ance of the peak is connected with some crystal lattice de-
fects then it is quite reasonable to suggest that the crystal-
line sample is more perfect being grown with smaller 
growth rate or at higher external pressure. However, the 
nature of these defects is up to now a matter of worldwide 
discussions [31,32]. 

To interpret this phenomenon we propose to include into 
description, beyond standard phonon oscillations, a contribu-
tion from some additional degrees of freedom (cmp with 
Ref. 31), and these degrees are undoubtedly elements of lat-
tice structural transformations at low temperatures. The poly-
typic model makes us possible to elaborate the real physical 
mechanism for clarification of the unexpected thermodynam-
ical and mechanical behavior demonstrated by the hcp solid 
4He at the low-temperature region. It is shown in [34] that 
hcp polytype can be interpreted as anisotropic elastic contin-
uum with specific dispersion law in c direction due to one-
dimensional disorder in packing of the polytype stack. After 
simple averaging procedure [34] (it corresponds to the long-
wave approximation, which is quite natural as to the solid 
helium where the Debye temperature is of order higher as the 
melting temperature of the crystal) the system is reduced to 
anisotropic elastic continuum with crystallographic sym-
metry of hexagonal subgroup 1

3C v  (it should be emphasized 
that it is transversally-isotropic elastic medium). The excita-
tion of the continuum are standard phonons, but situation 
becomes more sophisticated if the intrinsic structure of the 
multilayered polytype is taken into account. The 1D packing 
order in the polytype stack changes with temperature, so that 
the corresponding (non-phononic) degrees of freedom con-
tribute to the total free energy of the system. At low tempera-
ture both phononic ph( ( ))F T  and polytypic poly( ( ))F T  parts 
of the free energy tot ph poly( ( ) = ( ) ( ))F T F T F T+  are com-
parable small but poly ( )F T  decreases with temperature quite 
rapidly, and above approximately 0.2 K we can see the only 
ordinary phonon contribution 4

totF T  (and, correspond-
ingly, the heat capacity 3

VC T  and pressure 4( ) ).P T T  
As a result, the dependence ( )VC T  has the local maximum, 
and, respectively, ( )P T  is locally non-monotonic (inflection 
point on the curve ( )P T  [35]) in the vicinity of 0.1– 0.2 K. 

The paper is built as follows. Section 2 gives the state-
ment of the problem. In Sec. 3, the phononic (Sec. 3.1) and 
polytypic (Sec. 3.2) parts of the total heat capacity ( )VC T  
in polytypic crystal have been calculated. In Sec. 4 we 
compare and interpret the experimental data [3] in view of 
conclusions given by our theory. Section 5 contains the 
general discussion, and Section 6 is a brief conclusion. 

2. Statement of the problem 

A perfect monoatomic hcp crystal can be built as multi-
layered system [36–38] which is a stack of close-packed 
basal planes on triangular lattice (Fig. 1). According to the 
standard crystallographic procedure, we denote one of the 
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planes as A, and place a second element over the first one 
in such a way as not to destroy the closest packing of 
neighboring atoms in the whole stack. 

This can be done in one of two positions as it is illustrat-
ed by Fig. 1(a) (B position over A layer) and Fig. 1(b) (C 
position over A layer). Thus, placing N  two-dimensional 
basal elements in the mentioned manner, we can produce 2N 
different polytype modifications of monoatomic crystal lat-
tice where each atom has twelve nearest neighbors in the 
first coordination sphere and twelve next-nearest neighbors 
in the second coordination sphere, respectively, at any arbi-
trary sequence of , ,A B C  elements (and neighborhood of 
two coinciding elements is forbidden). The closest-packing 
principle is provided for any type of the polytypic structure 
[37], and the limit of entropy for the totally random packing 
of the polytype built of N 2D layers on triangular lattice is 
equal to ln 2N . The two-plane periodic structure 
... | | ...B AB A  is hexagonal close-packed (hcp or 2H) lattice, 
the three-plane period ... | | ...C ABC A  means face-centered 
cubic crystal (fcc or 3C). The next periodic polytypes are 
twinned hexagonal structures ... | | ...C ABAC A  (4H), and 
... | | ...B ABCAB A  (5H) as well as six-layered modifications 
... | | ...B ABCACB A  (6H1) and ... | | ...C ABABAC A  (6H2). 
Then are seven nine-periodic structures (9T1…6 and 9R), 
twelve-periodic (12R), etc., up to a sequence of unlike-pairs 
with period formally tending to infinity [36–38] (the so-
called random stacking faults or chaotic stacking faults 
structure). Any polytypic system can be obtained from the 

simplest 2H structure due to coherent elementary glide along 
the basal directions. In fact, it is the well-known mechanism 
of martensitic transformations in crystalline solids [37,38], 
and this fact can be illustrated by Fig. 2. 

Figure 2 shows the layer A  with “islands” of B  and 
C  types (for simplicity, we suppose the third overlayer is 
of A type similar to the first one). It can be seen that each 
island is surrounded by a channels due to incompatibility 
between B  and C  positions on the same A-substrate.  
These channels are network of Shockley's partial disloca-
tions. If one boundary atom from island B  jumps between 
two equivalent potential wells along the groove of the po-
tential relief of the substrate (layer A) onto boundary of 
layer C, it means an elementary local displacement of the 
dislocation line through the distance / 3a  (where a  is 
interatomic distance). After this act the island C  increases, 
but island B  decreases by one atom. Due to low energy of 
the barrier between neighboring B  and C  positions the 
mentioned displacement can be realized by quantum tun-
neling without thermal activation. This mechanism pro-
duces additional (as compared with phonon ones) degrees 
of freedom. The quantum tunneling along the real channel 
of the partial dislocation is possible due to Andreev–
Lifshits mechanism, so that it gives us an explanation of 
restricted one-dimensional diffusion evidently observed in 
helium crystals [39–41]. 

In this connection the polytype of arbitrary structure is 
the hcp lattice with a certain one-dimensional distribution 
of “stacking faults” along c axis of hexagonal cell (perpen-
dicular to basal planes). The faults are not, in fact, the de-
fects, but only a certain arrangement and re-arrangement in 
succession of two-type crystalline planes with triangular 
lattice packed in a stack without breaking of 3D closest 
packing as a whole. The re-arrangement of such a stacks 
needs to get a certain stacking-fault energy (SFE) [42] and 
packing entropy, so that it is thermodynamically specified 
process with an average packing period in z direction as 

Fig. 1. (Color online) Three monoatomic layers on triangular 
lattice in two different position: …ABC… stack (a) and …ACB… 
stack (b). 

Fig. 2. (Color online) Different positions of B-type and C-type 
clusters on an A-type layer (schematic). The clusters divided by 
Shockley's partial dislocations (see text). 
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the order parameter of the spatially disordered crystal. The 
SFE is typically small in atomic and molecular cryo-
crystals, especially for solid helium, so that we can expect 
that the polytype model is perfectly suitable for solid 4He. 

To classify the polytypic structure we use below the more 
compact notation system of Ewald–Belov–Jagodzinski 
[37,38] which takes into account directly the local symmetry 
of crystalline environment for each site of a chosen 2D layer. 
So, if any layer A  is surrounded by like-pair of neighbors (as 
BAB  or CAC, etc.) then it means the position with local 
hexagonal symmetry, and this position we denote as h layer. 
If the layer is surrounded by unlike-pair (as BAC  or CAB , 
etc.), we denote it as cubic or c layer. With this notation, for 
example, the 6H1 polytype should be denoted as 
... | | ...hcchcc , etc. This notation system is more suitable for 
our goals in the present paper. 

The stack of basal planes with totally aperiodic (random) 
packing without breaking the closest-packing principle is the 
system of random (or chaotic) stacking-faults (RSF) [38]. 
Evidently, this system does not possess a microscopic trans-
lation symmetry along c axis, but even in this case the direc-
tion perpendicular to basal planes remains the crystallo-
graphic axis of the third-order rotation symmetry. Thus, all 
the long-periodic polytypic structures (up to RSF) belong to 
hexagonal symmetry subgroup 3C v . As a result, in long-
wave limit (it is just the case of solid 4He) the polytype is 
crystallographycally perfect anisotropic elastic medium with 
hexagonal symmetry and specific dispersion of acoustic 
(phononic) excitation along c direction. Each variant of the 
polytypic stack has a specific intrinsic energy (due to SFE of 
individual elements in stack) and specific entropy (due to 
variety of packing configurations among N  planes). In gen-
eral, it is a complicated problem to be solved exactly, but in 
reality the anomalous heat capacity peak is comparably 
small, so that it is reasonable to suggest [31] that the total 
specific heat of the system is a result of additive contribu-
tions from phonons and some extraneous (non-phononic) 
degrees of freedom. The only question is the nature of these 
extraneous degrees which are supposed in [31] to be built of 
hypothetic two-level Andreev systems [33]. 

We will keep, in fact, the similar point of view but with 
the only difference that we propose the real physical mecha-
nism of extraneous degrees based on a structural transfor-
mation in hcp crystalline polytype [37,38]. In this connec-
tion we need also re-calculate the spectrum of phonon 
excitations in a polytypic crystal. By this means the free 
energy ( , )F T V  of the polytype consists of two parts, 

 ex ph( , ) = ( , ) ( , ),F T V F T N F T V+  (1) 

where ph ( , )F T V  is the “dynamic” part due to phonon ex-
citation in anisotropic lattice, and ex ( , )F T N  is the exces-
sive or “static” part as the free energy of a multilayered 
stack built of two-dimensional closely-packed atomic lay-
ers on triangular lattice. Successive transformation with 
temperature and pressure in solid polytype is realized as a 

continuous solid phase transition of martensitic type 
through a chain of phases with different spatial periods 
along c axis. The phases can be short-periodic, long-
periodic [43–46] and even aperiodic (RSF). It means, that 
phonon spectrum of the crystal depends on the details of its 
polytypic structure and, as a result, the free energy Eq. (3) 
could not be, in general, presented as superposition of pho-
non and polytypic part. However, taking into account that 
any polytypic transformation in the stack of the layers with 
triangular lattice do not destroy the close packing of the 
crystal which remains macroscopically perfect elastic me-
dium, and only long-wave phonons are essential for ther-
modynamics of helium solids, we conclude that the model 
of Eq. (1) is valid to describe the system under study. 

3. Heat capacity of hcp 4He polytype 

Crystallographic structure and physical properties of 
polytypes have been detailed in Refs. 37, 38. The phonon 
spectrum and thermodynamics of the 4He polytype have 
been studied in Ref. 34. The isochoric heat capacity of the 
crystal is 

 
2

2
( , )( ) = = =V

V V

S F T VC T T T
T T

 ∂ ∂  −    ∂ ∂ 
  

 ex ph= ( ) ( ),C T C T+  (2) 

where = ( ( , ) / )VS F T V T− ∂ ∂  is the entropy. Below we 
calculate phC  and exC . 

3.1. Phonon part of heat capacity 

The general expression for the function ph ( )F T  is well 
known [47–49]: 

 ( )ph
,

( )
( ) = ln 1 exp ( ) ,

2
F T Tα

α
α

ω  + − −βω   
∑
k

k
k  (3) 

where the summation is over all states in the Brillouin 
zone, and all three acoustic frequency branches ( )αω k  
( = 1, 2, 3)α ) of the spectrum in monoatomic lattice (we 
use the system of units with Planck and Boltzmann con-
stants equal to one, k is three-dimensional wave vector), 
and = 1/ .Tβ  To get the spectrum ( )αω k  we solve the 
corresponding problem of lattice dynamics [49] within 
harmonic approximation with only interaction of the near-
est neighbors. It is shown in [34] that hcp polytype can be 
interpreted as anisotropic elastic continuum with specific 
dispersion law in direction of disordered c axis. The aver-
aging procedure consists in replacement of the finite dif-
ferences describing interatomic interactions along c axis by 
spatial derivatives of corresponding order. As a result, it 
means the passage to long-wave approximation, and such a 
procedure is quite natural as to the solid helium where the 
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Debye temperature is of order higher as the melting tem-
perature of the crystal. Finally, the phononic free energy of 
the 4He polytype can be written in the form [34,35] (V is 

the volume of the system, a is the interatomic distance and 
c is the period of ideal hcp lattice, = / )c aγ  

____________________________________________________ 

 [ ]{ }
/2

3
ph 1 23

=1,2,3 0 0

2 3( ) = ln 1 exp ( , ) , = ,
4

qD

z z D D
TVF T qdq dq q q V N N a
a

π

ν
ν

− −βω γ
πγ

∑ ∫ ∫  (4) 

_______________________________________________ 

where 2DN  is the number of atoms in an individual basal 
plane on triangular lattice, 1DN  is the total number of the 
basal planes in the stack (so that 1 2D DN N  is the total 
number of atoms in the crystal), 2 2 2 2= ( )x yq a k k+  is the 
two-dimensional wave vector in a basal plane, =z zq ak , 
and 

 1 8= , = ,
3D D Dk q ak

a
π   

is the approximate Debye vector for the first Brillouin zone 
of triangular lattice [34,50] (it appears when the exact hex-
agonal zone of 2D lattice [51] is replaced by an equivalent 
circular area in k space). 

After all these simplifications the spectrum of the prob-
lem [34,35] at the ideal ratio = = 1.638/3γ  can be writ-
ten as 

 2 2
1,2,3 0

1,2,3
( , ) = ( , )

4
a

z z
Dq q Z q q qω

 ω Ω ε +  Ω
. (5) 

Here 0 = 6Z  is coordination number in a basal plane, 

 2 ( ) ( )= , = ,
2 2a

U a U aD
m ma

′′ ′Ω  (6) 

where ( )U r  is the energy of interatomic interaction on 
interatomic distance r, and m  is the atomic mass. In fact, 
for high-symmetric close-packed helium lattice with 
twelve neighbors in the first and second coordination 
spheres the non-central part of interatomic interaction is 
small, and / 1aD Ω . In addition, in the long-wave limit 
(typical for solid helium) the most essential part of the 
phonon spectrum corresponds to the condition , 1q qz  . 
As a result, with quite enough accuracy we can neglect 
the second term under the square root sign in Eq. (5), so 
that 

 1,2,3 0 1,2,3
( , ) = ( , ).z zq q q qZ ωω Ωε  (7) 

Furthermore, 

 2
1

( , )
( , ) = ( , ) cos ;

3
z

z z
q q

q q q qω
τ

ε ρ   

 2
2,3

( , ) ( , )
( , ) = ( , ) cos 3 sin ,

3 3
z z

z z
q q q q

q q q qω
τ τ ε ρ − ±  

 

where 

 6 2 2 3( , ) = |,|zq q Q Q Pρ + +   

 
2 3| |

( , ) = arctan ,z
Q P

q q
Q
+

τ   

with 

   
3 2

02 2 1 1 23
( , ) = , ( , ) = .

27 6 2 9z z
cc c c c c

Q q q P q q
+

− − − −  (8) 

The coefficients ( , )i zc q q  can be obtained from the corre-
sponding relations of Refs. 34, 35 at = 8/3γ , and they 
have the form 

 2 2
2

1( , ) = (5 );
12z zc q q q q+   

 4 2 2 4
1

1 211( , ) = 134 81 ;
1296 4z z zc q q q q q q − + +  

  

   6 4 2 2 4 2
0

1 281 94( , ) = 17 6 .
2592 54 3z z z zc q q q q q q q q + + +  

  

It can be seen that in the case of = 8/3γ  the parameter 
Ω  is the only “elastic constant” of the problem, and all 
three eigenfrequencies ( , )zq qαω  (Eq. (7)) are proportion-
al to its value. Below, the frequency Ω  will be the only 
real fitting parameter to describe the bulk heat capacity of 
the system under study. 

Finally, the phonon heat capacity can be written in the 
form [47–49] 

____________________________________________________ 

 
2

ph 2
1 22

=1,2,3 0 0

( ) ( , ) ( , )3= .sinh
2 24

akD
z z

D D z
B

C T q q q q
N N qdq dq

k

π
α α−

α

βω βω   
      π

∑ ∫ ∫  (9) 
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Figure 3 shows the temperature behavior of the heat ca-
pacity Eq. (9) at different values Ω. The slope angle of the 
curve ph ( )C T  at low temperature decreases with increase 
in Ω. It can be seen from Fig. 3(a) that the heat capacity 
Eq. (9) tends to equipartition law at T → ∞  with accuracy 
of about 2% ph 1 2( ( ) = 3.058 )D D BC N N k∞  which seems to 
be quite acceptable, taken into account the made above 
approximations and the fact that we need to describe only 
the low-temperature dependence of the solid 4He heat ca-
pacity. The low-temperature heat capacity (Figs. 3(b), (c)) 
demonstrate the perfect T 3-dependence which is character-
istic to an ideal Debye lattice. 

3.2. Excessive heat capacity of the polytype 

Here we consider a quasi-one-dimensional stack of 
1DN  two-dimensional crystalline layers packed in arbit-

rary order, for example, ... ...hchhhcchcchh , etc. It is rea-
sonable to suggest that interaction in like-pairs ... ...hh  and 
... ...cc  should be different from one another, and the both 
are different from interaction in unlike-pair ... ...hc . The 

Hamiltonian of such system can be written as one-
dimensional lattice gas model in the nearest neighbors ap-
proximation, 

 poly 0 1ˆ ˆ ˆ= ,i i i
i i

H V +−ε σ − σ σ∑ ∑  (10) 

where ˆ iσ  are “non-integer occupation numbers”, 

 ˆ = c
i

h

σ 
σ  σ 

 (11) 

which can take one of two values, = 1c cσ − ξ  or 
= 1h hσ + ξ  ( , 1),c hξ ξ   where 0ε  is the average energy 

per site, and > 0V  is an interaction energy between 
neighboring sites. This approach is a direct analog of ex-
actly solving Ising model [52] as a chain of mutually cou-
pled two-state systems. The difference between the pro-
posed polytype model and an array of simple independent 
two-level systems (see Refs. 31, 33) is an account of inter-
action between neighboring basal planes. 

The solution of the problem Eq. (10) can be obtained 
easily within transfer matrix approach [52,53]. The canoni-
cal partition function of the 1D problem is 

 11 1211
21 22

ˆ ˆ= Sp , = ,N DDZ
τ τ 

 τ τ 
T T  (12) 

where 

 ( ) ( )2 2
11 0 22 0= exp , = exph h c ca K a Kτ σ + σ τ σ + σ ,  

 0
12 21= = exp ( ) ,

2 h c h c
a

K τ τ σ + σ + σ σ  
 (13) 

and 0 0=a βε , = .K Vβ  If 1 1DN   then the excessive 
part of the free energy in Eq. (1) is equal to 

 ex 1 1 1( , ) = ln = ln ( ),D D DF T N T Z N T T− − Λ  (14) 

where 1 2= max{ , }Λ λ λ  is the greatest eigenvalue of the 
transfer matrix ˆ .T  In the case of 2 2×  matrix (Eq. (14)) 
we have [54] 

 1 11 12 2 22 12= , = ,λ τ − τ λ τ + τv v  (15) 

where  

 2 22 11

12
= sign 1 , = .

2
p p p p

τ − τ
+ +

τ
v  (16) 

As a result, the static part of the heat capacity (per one ba-
sal plane) can be written in the form 

 { }
2

ex
2

1

( )
= ln ( ) =

B D

C T
T T T

k N T
∂

Λ
∂

  

     
2

2
( ) ( ) ( )= 2 .

( ) ( )
T T T T TT
T T T T T

  ∂Λ ∂Λ ∂ Λ − +  Λ ∂ Λ ∂ ∂   
 (17) 

Fig. 3. The phonon part of the heat capacity of the polytype stack 
(per atom) for three values of Ω: 5 K (curve 1), 7.5 K (curve 2), 
10 K (curve 3). The inset on Fig. 3(a) presents the initial part of 
the corresponding dependences. Fig. 3(b) shows this part of the 
graph versus T 3-abscissa. 
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Figure 4 shows the dependences ex 1( )/ B DC T k N  at dif-
ferent values of the parameters (all the values are clarified 
in the figure caption). The calculated excessive heat capac-
ity ex ( )C T  tends to zero at 0T →  and T → ∞ , so that it 
undoubtedly has a maximum at intermediate temperatures. 
As a result, the total heat capacity Eq. (2) demonstrates the 
local maximum at low temperatures. With more detailes 
this fact is discussed in the next section. 

4. Comparison with experiment 

In this section we compare our theoretical results with 
well-known experimental measurements [3]. Our goal is to 
treat the specific heat of the purest 4He crystal, so that we 
consider only two dependences corresponding to the low-
est amount (1 ppb and 0.3 ppm) of 3He impurities meas-
ured in Ref. 3. It can be seen from Fig. 1 of the mentioned 
paper that the both experimental dependences practically 
coincide each other (at least, visually). 

First of all, we have to divide properly an anomalous 
contribution from the phonon part of heat capacity. This 
can be made through fitting the phonon heat Eq. (9) to the 
experimental curves of the paper [3]. We have made a 
copy of the discrete experimental points (exp) ( )VC T  just 
from the journal pictures of Ref. 3 using standard screen 
digitizer. It is possible to find exactly the pre-integral con-
stant in Eq. (9). The volume of the experimental cell re-
ported in [3] is 0.93 cm3 at molar density of the sample 
equal to 20.46 cm3/mol, so that the molar amount of 4He in 
the cell is = 0.04545ν  mol. As a result, 

 2 1 =D D BN N k Rν ,  

where ( )= 8.31434 J/ K·molR  is the universal gas con-
stant. In this connection the only fitting parameters in the 
phonon part of the heat capacity is the frequency Ω  in 
Eq. (9) (see also Eqs. (5)–(7)). The physical meaning of Ω  
is the effective elastic modulus of the polytypic medium. It 
should be noted that our model of Sec. 3.1 for phonon heat 
capacity is, in fact, an exact approach based on rigorous 
lattice dynamics [49]. The most advantage of this approach 
is that it does not include any uncertain parameters like 
Debye temperature Dθ . It is very important for crystalline 
helium where the estimated Dθ  is much greater than the 
melting temperature of the solid. 

The fitting of the phonon part has some specific peculiar-
ities. As apply the formula Eq. (9) to the experiment, we 
have to take into account that the pure phononic behavior of 
the total heat capacity is expected above the local anomalous 
peak, i.e., the temperature 0 0.17T ≈  K where the contribu-
tion of excessive heat becomes negligible small as compared 
to phC  (the similar approach was used in [3]). Certainly, the 
value of 0T  can be a result of in some sense voluntary 
choice, and this temperature can be considered as an addi-
tional fitting parameter. We have made the fit between phC  
and experimentally determined heat capacity (exp) ( )VC T  
within the temperature interval 0 max = 0.35T T T≤ ≤  K 
(where maxT  is the upper temperature limit for the meas-
urements reported in Ref. 3) through minimizing the average 
relative discrepancy 

 
(exp)max ph

max 0 ph
0

( ) ( )1=
( )

T
V

C
T

C T C T
dT

T T C T
−

δ
− ∫   

Fig. 4. Excessive heat capacity (per one basal plane): (a) ξh = 0.05, 
ξc = 0.01, ε0 = 4.01 K, and V = 2.51 K (1), 3.01 K (2), 3.35 K (3), 
3.75 K (4), 4.75 K (5); (b) ξh = 0.05, ε0 = 4.01 K, V = 3.35 K and  
ξc = 0.01 (1), 0.025 (2), 0.05 (3), 0.075 (4), 0.1 (5); (c) ξh = 0.05,  
ξc = 0.01, V = 3.35 K and ε0 = 4.01 K (1), 3.25 K (2), 1.45 K (3). 
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in the chosen interval. It can be found that = 9.66058Ω  K 
for the specimen with 1 ppb of 3He impurity, and 

= 9.72230Ω  K for 0.3 ppm of 3He (in the both cases 
9< 10 ).C

−δ  It is noticeable that the elastic modulus Ω  is 
greater for crystal with greater amount of impurities (even 
for dilute 3He–4He solid solutions). It means that the dop-
ing of 3He atoms leads to hardening in 4He lattice. Howev-
er, taken into account all the above-mentioned approxima-
tions and small difference between phC  for the samples 
with 1 ppb and 0.3 ppm of 3He, during the further consid-
erations we put =Ω  9.7 K for both 3He concentrations. 
The found Ω  is in a good agreement with corresponding 
value for the temperature dependence of phonon pressure 

ph ( )P T  derived in the papers Refs. 34, 35. Fig. 5 shows 
our phonon theory (solid line) fitted to the mentioned ex-
perimental data from Ref. 3 (blue pentagons for 0.3 ppm 

and red circles for 1 ppb, just as in the original paper [3]). 
In Fig. 6 all the data of Fig. 5 are re-plotted as a function of 
T3-abscissa. 

The anomalous excessive heat ex ( )C T  as the difference 
between total heat capacity (exp) ( )VC T  (measured experi-
mentally [3]) and pure phonon contribution ph ( )C T  (cal-
culated theoretically with Eq. (9)) is plotted on Figs. 5, 6 as 
the scattered sets of dark grey squares and grey hexagons, 

Fig. 5. (Color online) The phonon heat capacity Cph(T) at Ω = 9.7 K 
(solid line, theory) in comparison with total specific heat CV(T) = 
= Cexp(T) measured experimentally (scattered points: red circles 
belongs to 1 ppb sample and blue pentagons to 0.3 ppm one, corre-
spondingly, just as it is in the paper [3]). Scattered boxes and trian-
gles are excessive heat calculated theoretically as Cex = Cexp – Cph 
for 1 ppb sample (dark gray boxes) and 0.3 ppm (gray triangles). 
The dependences are plotted in linear (a) and double logarithmic (b) 
coordinates. Density fluctuations in impurity subsystem increase 
with temperature and 3He concentration. 

Fig. 6. (Color online) The re-plot of Fig. 5 versus T3-abscissa: (a) 
reproduction of Fig. 5(a), (b) an initial part of the graph Fig. 6(a), 
(c) double logarithmic re-plot of Fig. 6(a). Solid line is Cph(T) at 
Ω = 9.7 K. 
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belonging to the samples with 0.3 ppm and 1 ppb of 4He, 
correspondingly. Figure 7 presents the obtained depend-
ences ex ( )C T  in comparison with corresponding results of 
Ref. 3. When comparing the excessive heat from Fig. 2 of 
the paper Ref. 3 with the theory of Eq. (17) we have to take 
into account that these data [3] are specific heat normalized 
to one mole of helium, so that for our goals the given num-
bers should be re-calculated to the molar amount 

= 0.04545ν  mol. Very important feature of experimental-
ly measured ex ( )C T  is the exact coincidence between two 
dependences for 1 ppb and 0.3 ppm in the range of anoma-
lous maximum (0.02–0.2 K) where the experimental curve 
is perfectly determined, whereas above 0.2 K the disper-
sion of the experimental points crucially increases, proba-
bly due to increase in fluctuations within impurity subsys-
tem of the dilute solid solution (above 0.2 K the impurity 
subsystem of 1 ppb and 0.3 ppm solutions behaves like a 
homogeneous perfect gas). 

Another uncertain factor is the number 1DN  of 2D 
crystalline layers in the one-dimensional stack. As it fol-
lows from Fig. 4 the maximum height of the normalized 
excessive heat capacity does not depend practically on the 
values of all energetic parameters in Hamiltonian Eq. (10). 
So, the hight of this maximum can be fitted only by choos-
ing the parameter 1DN . It has been found that the best 
fitting to the experiment is achieved at kBN1D = 4.51 µJ/K 
(see Fig. 7). 

The dependence ex ( )C T  demonstrates a properly deter-
mined local maximum at low temperature, but at higher 
temperatures (above approximately 0.17 K) the scatter of 
experimental points becomes much higher and increases 
with temperature. This fact testifies that the density fluctua-

tions in subsystem of 3He impurities within even dilute  
3He –4He solid solution rapidly increase with temperature, 
and the scattering is more essential in the mixed crystal with 
greater concentration of 3He. It is a consequence of the great 
mobility of 3He impuritons in 4He matrix controlled by 
quantum diffusion, but in this connection we have to explain 
the properly systematic (in fact, fluctuationless) behavior of 

ex ( )C T  below 0.17 K (see Fig. 7). 
Figure 8 demonstrates the total heat capacity 

ph ex( ) = ( ) ( )VC T C T C T+  with theoretical fitting, and 
Fig. 9 gives the same pictures versus T3-abscissa. The 
characteristic behavior of the excessive heat capacity will 
be discussed in the next section. 

5. Discussion 

The present work demonstrates that the apparent anoma-
lies in thermodynamical and mechanical properties (which 
means a deviation from the normal phonon-caused behavior 
of a structurally perfect, defect-free crystal lattice) of solid 
hcp 4He can be interpreted successfully within the well-

Fig. 7. (Color online) The peak of excessive heat capacity: theo-
retically calculated differences (exp)

ex ph= VC C C−  for 1 ppb 
sample (gray boxes) and 0.3 ppm (dark hexagon) in combination 
with experimentally determined functions from the paper [3] (red 
circles for 1 ppb and blue pentagons for 0.3 ppm of 3He, corre-
spondingly). The solid line is theoretical fitting according to 
Eq. (17) at ξh = 0.05, ξc = 0.01, ε0 = 4.01 K, V = 3.33 K, and 
kBN1D = 4.51 µJ/K. 

Fig. 8. (Color online) Theoretical fitting of the total heat capacity 
CV = Cph + Cex (solid line) within linear coordinates. The phonon 
part Cph is represented by dashed line (parameters of this curve 
are similar to Figs. 5, 6). Fig. 8(b) shows the low-temperature 
part of the dependences. 
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known physical model of crystalline polytype built as a ran-
dom stack of close-packed 2D layers on triangular lattice 
without breaking the principle of the closest packing in 3D 
geometry [37]. It is shown in [34] that hcp polytype can be 
treated as anisotropic elastic continuum with specific disper-
sion law in direction of disordered c axis. Previously, this 
model was applied [35] to interpret the discovered experi-
mentally in Ref. 1 anomalous temperature dependences of 
pressure ( )P T  in hcp 4He crystal. In the present paper we 
explain the observed experimentally in Ref. 3 anomalies of 
heat capacity ( )VC T  of 4He solid. It is noticeable that the 
anomalies of both solid 4He thermodynamic functions, 

( )P T  and ( )VC T , were found in independent experiments 
[1,3], but at approximately similar temperatures (of order 
 0.1 K). It is noticeable that the various anomalies in me-
chanical (and acoustical) properties [27] of solid 3He can be 
found just within the similar temperature interval 0.1–0.2 K. 
It means evidently that the all these phenomena have the 
common physical nature. 

Thermodynamics and mechanics of crystalline solids 
are primarily structurally dependent properties, so that the 
reason of ultralow-temperature anomalies can be only 
some specific peculiarities of the hcp 4He lattice (bcc 3He 
crystals does not demonstrate the corresponding behavior). 

Crystallographic symmetry of the ideal lattice specifies the 
phonon spectrum based on the oscillatory degrees of free-
dom. Crystal lattice defects (vacancies, impurities, disloca-
tions, stacking faults, etc.) produce their own degrees 
which replace or transform a part of phonon degrees from 
an initially perfect solid. All these phenomena are mostly 
pronounced in solid helium due to the isotopic purity and 
quantum nature of the 3He–4He compositions. The sugges-
tion of additivity between phononic and excessive polytyp-
ic contributions to the total heat capacity of hcp 4He should 
be considered as a variant of self-consistency for lattice 
dynamics which takes into account an effect of structural 
transformation in the multilayered polytype on the phonon 
spectrum of the system. As it is seen from Figs. 7–9, our 
model gives satisfactory semi-quantitative description for 
the temperature dependence of the excessive heat capacity 

ex ( )C T  with correct limits ex (0) = 0C  and ex ( ) 0C ∞ → . 
However, it is evident that the behavior of ex ( )C T  at 

0T →  is rather exponential like 

 ex ( ) exp( / ), | | 1, > 0C T T Tα −τ α τ  , (18) 

whereas the run of experimentally obtained curve is, prob-
able, power-like (see Figs. 7, 9). It should be stressed that 
the power-like behavior is rather typical for the ultralow-
temperature anomalies in thermodynamic functions of pure 
4He (but not for impurity subsystem), and this conclusion 
is supported by the results of corresponding fitting for the 
anomalous run of pressure at 0T →  [1,35]. Nevertheless, 
the used here 1D quasi-Ising (lattice gas) model for multi-
layered polytype with interlayer interactions presents the 
reasonable physical interpretation for the excessive heat 
capacity caused by specific degrees of freedom due to 
packing transformation in hcp crystalline stack [34,35]. 
This model seems to be more pronounced as compared to 
predictions given by the set of the simple independent two-
level systems [31,33]. More adequate alternative to the 
quasi-Ising approach for the polytype thermodynamics 
could be the model of self-consistent phonons (SCP) 
[55,56] which directly exploits the temperature evolution 
of lattice elastic constants during continuous structural 
transformation in the crystal which leads to a temperature-
dependent phonon spectra and, hence, to the complicated 
thermodynamics of the helium solid. 

Another question is the role of impurities in thermody-
namics of the helium crystals. Due to the nature of the sys-
tems under study, the helium crystal mixture consists of only 
two isotopes, 3He and 4He (others molecular impurities 
would be inevitable either separated or frozen during prepa-
ration of the solid helium samples). The thermodynamics of 
the helium mixed crystals with an arbitrary isotopic compo-
sition was studied experimentally [57–59] and interpreted 
theoretically [60–62] as the density-fluctuations phenomena 
over a self-consistent regular solid solution [63–65] under 
isotopic phase separation. In this connection the most pro-

Fig. 9. (Color online) The re-plot of Fig. 8 (low-temperature part) 
versus T3-abscissa. 
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nounced achievement of the last decade is experimental 
studies [3,27] of the purest hcp 4He crystals with low-
temperature anomalous behavior which can not be associat-
ed directly with phase separation in dilute 3He–4He solid 
solution. Thus, to interpret the ultralow-temperature thermo-
dynamic anomalies in the solid 4He we have to point the 
physical degrees of freedom which are responsible for the 
corresponding phenomena. 

It should be noted that the closed system built of N  at-
oms possesses exactly 3N  translational degrees of free-
dom, and in a real crystal all the degrees are re-distributed 
among all excitations (phonons, impuritons, dislocations, 
etc.) which can exist in the crystal. For example, to pro-
duce a Shottky's vacancy we have to “evaporate” one atom 
from the lattice, but in solid helium it is impossible be-
cause the helium specimen within the closed cell has fixed 
number of atoms (N = const). To produce a Frenkel's va-
cancy we have to translate an atom to an interstitial posi-
tion, but the number of translational degrees in the whole 
system remains unchanged. Kinks and jogs on the edge of 
dislocation extra-plain are specific configurations built of 
atoms of the whole lattice with N = const. In this connec-
tion we can not interpret the excessive heat capacity as an 
“additional” effect from some “external” contribution. The 
thermodynamics of the excessive heat (“excessive” means 
the deviation from standard T3-law) should be realized 
through re-distribution of existing degrees within a lattice 
with fixed number of atoms. 

As it can be seen from Fig. 7, the lattice gas model 
(Eqs. (10), (17)) predicts an exponential run of ex ( )C T  at 

0T →  [53,66,67], whereas the experimentally obtained 
dependence is rather power-like, so that the nature of ex-
cessive heat could be caused by some peculiarities of the 
helium phonon spectrum. According to a commonly used 
scheme of phonon thermodynamics the anomalous low-
temperature contribution to the heat capacity can be ob-
tained from increase in low-frequency density of states due 
to quasi-local excitations within the continuous phonon 
spectrum produced by a heavy impurity atoms [68–70]. 
The only question is of what the real object plays the role 
of the “heavy impurity” in our case of dilute 3He–4He 
mixed crystal. The square of specific frequency of a lattice 
atom (in Einstein approximation) is / ,Mκ  so that the 
quasi-local states are possible not only with increase in 
impurity mass M, but also with decrease of interatomic 
bonding κ [68]. In other words, we have to find certain 
low-energetic degrees of freedom to support the increase in 
phonon density of states within the low-frequency region 
and, as a result, a certain “softening” of the hcp 4He lattice 
in the vicinity of 0.1–0.2 K. 

The natural suggestion within the above-mentioned 
sense is to consider the impuriton contribution to the heat 
capacity of the system under study. As it is seen from es-
timations made in the Sec. 4, even small amount of 3He 
impurity leads to observable stretching of the 4He matrix. 

If 3He concentration 0n  increases from 1 ppb to 0.3 ppm 
then the effective elastic constant Ω  of the solid solution 
increases on 0.64% and changes slowly the smooth run of 
the total heat capacity, but this fact has not any visible in-
fluence on the anomalous low-temperature peak of ( ).VC T
It seems that the position of the anomalous maximum 

( )VC T  does not depend on the impurity concentration 0n , 
and this fact makes it possible to suggest that the 
additivity, ph ex=VC C C+  (see Eq. (1)) is valid, at least, 
at 0 1.n   

The non-monotonic behavior of ( )VC T  in the 3He–4He 
solid solutions is typical due to phase separation, and this 
phenomenon is studied in both experimental [57,59] and 
theoretical [61,62] aspects. The thermodynamic functions 
of the 3He–4He mixed crystals demonstrate an anomalous 
behavior due to increasing in fluctuations near the equilib-
rium phase separation temperature, and this effect of densi-
ty fluctuations in the impurity subsystem can be detected 
not only in the heat capacity [57,61,62] but also in the 
temperature-dependent phonon pressure within the pre-
separation region [71,72]. Moreover, as it follows from our 
previous results [53,61,62,71,72], the impurity contribution 
to the thermodynamic functions ( )VC T  and ( )P T  of a 
3He–4He mixed crystal can be considered as additive part 
(along with phonon contribution) to the corresponding 
functions within a whole temperature interval where the 
helium solid state exists. The phase separation temperature 

sT  of the solid solution can be estimated within self-
consistent field (regular solution) approximation as [73] 

 1 0 0

0

1 2 1
= ln ,

2s
c

n n
T

T n
− − −

 (19) 

where 0n  is the 3He concentration in the homogeneous 
(non-separated) solid solution, and cT  is critical temperature 
of the mixture (for 3He–4He solid solution the critical tem-
perature measured experimentally [74,75] and estimated 
theoretically [60] is = 0.38cT  K). At 9

0 = 10n −  (1 ppb) we 
have = 0.0367sT  K, and at 6

0 = 0.3 10n −⋅  (0.3 ppm), re-
spectively, = 0.0506sT  K. Table 1 gives the values of sT  
calculated according to Eq. (19) for all 3He concentrations 
studied in Ref. 3. It can be seen that all values of the Table 1 
are in good agreement with experimental data of Fig. 3 from 
Ref. 3, but increase in ( )C TV  due to phase separation at the 
lowest concentrations of 3He appears over the low-
temperature anomalous peak which does not change neither 
its position nor magnitude with variation of 0n  in wide 
range of concentrations. Nevertheless, this fact does not 
provide a way to conclude that the anomalous peak is abso-
lutely independent on the presence of 3He atoms in the 4He 
matrix, because the impurities have a principal effect on the 
structural peculiarities and, hence, phonon spectrum of the 
hcp matrix, and give an effect to the phonon heat capacity 
within the whole temperature range (see Sec. 3.1). The hys-
teresis of the heat capacity found in Ref. 3 at 0n ≥  10 ppm 
is evidently the consequence of a certain substructural trans-
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formations, just similar to the corresponding phenomena on 
( )P T  dependences of 3He–4He solid solutions with various 

concentrations [76,77]. 
The most pronounced evidence for the structurally de-

pendent nature of the low-temperature thermodynamic 
anomalies in 4He crystals is found in Ref. 3 (see Fig. 3 in 
this paper) hysteresis on ( )VC T  dependence during 
thermocycling of the samples with higher amounts of the 
3He impurities (10 ppm and 500 ppm). The 500 ppm hys-
teresis is wider than 10 ppm one, and this fact illustrate the 
concentration dependence of the phenomenon. It is clear 
that all hysteretic events are consequences of some tem-
perature-dependent structural reconstructions of the lattice 
which contain the point dilatation centers [76,77]. Due to 
long-range elastic fields produced by dilatation center, the 
lattice dislocation stopped by the point impurity will be 
splitted in the matrix with small enough stacking-fault en-
ergy (SFE). The splitting means local transformation of the 
lattice with formation of Shockley's partial dislocations 
which restrict the stacking fault area the wider the lower is 
SFE. The stacking fault can be a center of condensation for 
vacancies or impurities in the crystal [26,78] (so-called 
Suzuki atmosphere), so that it can be a way to realize the 
mechanism of stress-induced phase separation in dilute 
3He–4He solid solutions at very low temperature and very 
low concentrations of impurities. Heat capacity of these 
systems was interpreted theoretically in Ref. 53 using the 
model of impurity deposition on the dislocation lines. The 
stacking faults with partial dislocations accommodate the 
misfit on the boundary between secondary phase cluster 
and the host matrix, as a result the nucleus of the second-
ary phase is surrounded by a wide pile-up built of partial 
dislocations. In other words, we obtain a “heavy” lattice 
defect of mesoscopic dimensions whose configuration is 
temperature-dependent and whose evolution with tempera-
ture is a lattice transformation of martensitic type. Certain-
ly, the corresponding structural transformations have a 
principal effect on the density of phonon states in the ma-
trix and, finally, on the heat capacity of the crystal lattice 
even at very small amounts of the impurity component. 
Impurities, as the dilatation centers and clusters of the sec-
ondary phase behave like nuclei of structurally transformed 
lattice, and these lattice aggregations contribute into ther-
modynamics of the helium crystal. In this connection, it is 
interesting to note that the role of heavy impurity can be 
played by inclusions of an “intermediate phase” discovered 
experimentally in Ref. 79. 

The similar situation takes place with vacancies which 
can be considered as impurities of zero mass in the host 

lattice. Coalescence of vacancies into vacancy discs which 
are so-called Frank loops [26] (Frank's partial dislocations 
[80]) is another channel to relax the internal stresses and 
external pressure in the crystal. The role of the vacancies in 
thermodynamics of helium crystals is a matter of discus-
sions for a long time [20–24], but at present the problem 
remains still unsolved. 

To interpret all above-mentioned processes we based on 
the hcp structure with easy glide along basal planes and 
high probability of structural transformation due to mutual 
shifts of the neighboring crystalline elements. This mecha-
nism is closely related to deformation properties of 4He 
known as “supersolid”. The deformation of multilayered 
polytype is, in fact, similar to the flow mechanism of a 
simple liquid. Moreover, to make an elementary transfor-
mation act (for example, ... ... ... ...),ABCABC ABCBCA→  
there is no need to translate one half of a crystal (denoted 
by overdot) relative to another half of the whole solid, but 
it is enough to rotate an upper part of the crystal around 
c axis on /6.π  Such a twist deformation is an analog of 
spiral dislocation source [26,37] which makes a structural 
transformation in the polytype due to mutual rotation be-
tween the neighboring 2D layers. It is a proper way for 
deformation of the crystal in restricted geometry, especial-
ly in a torsion oscillator. So, the easy glide of hcp 4He is, 
in fact, superplasticity of the corresponding crystal caused 
by specifics of its crystalline structure. The pyramidal and 
prismatic dislocation glide (typical for perfect hcp lattice) 
is blocked due to disorder in packing of the 2D crystalline 
planes, and only splitting and broadening of stacking faults 
in basal planes is easily executed. 

Ising model makes us possible to describe evolution of 
the heterophase structure of the polytype with temperature 
and gives correct limits as ex (0) = 0C  and ex ( )  0.C T → ∞ →  
However, as it is seen from Fig. 7, the calculated depend-
ence ex ( )C T  at 0T →  is rather exponential (see Eq. (18)) 
whereas experimental curve demonstrates rather power-
like behavior. It is a consequence of the fact that the heat 
capacity of the crystal is resulted from existence of the 
propagating bulk lattice excitations (elastic waves, pho-
nons). One-dimensional packing transformations in a stack 
of the close-packed planes form only structural “back-
ground” for three-dimensional lattice dynamics which has 
to be built with rigorous account of the oscillatory degrees 
of freedom in the planes of the stack. It is evidently com-
plicated problem, and to the present time it remains, in 
fact, unsolved. Applications of the Ising model to the poly-
typic crystals [43,44] were mainly connected with structur-
al transformations due to formation of 1D long-periodic 

Table 1. Separation temperatures Ts calculated with Eq. (19) for mixtures with concentrations n0 studied in Ref. 3 

n0 1 ppb 0.3 ppm 10 ppm 30 ppm 100 ppm 500 ppm 
Ts, K 0.0367 0.0506 0.066 0.073 0.0825  0.1 
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structures, but no description for thermodynamics of the 
system was proposed. In Ref. 31 the closely-related idea 
[33] of glassy-like phase (perfect gas of independent two-
level systems) was applied to the heat capacity peak in 
4He. To describe the thermodynamics of solid helium, we 
present here the real physical model of multilayered crys-
talline hcp polytype which can be considered as a stack of 
bistable (or multistable) planes on triangular lattice and 
treated with exactly solved Ising model [52]. At the ideal 
ratio / = = 1.638/3c a  the difference in energy of h- and 
c-configurations exist only due to neighbors in third coor-
dination sphere, so that principally in our description we 
probably have to use the Ising model with next nearest 
neighbors [43–46]. However, even in our simplest ap-
proach the lattice gas with interaction between nearest 
neighbors has an essential advantage as compared to the 
model of independent two-level systems with speculative 
density of states [31]. This advantage, evidently, is due to 
correct account of the packing entropy in the stack of the 
close-packed atomic layers with triangular lattice. 

Anomalous behavior of phononic pressure ph ( )P T  in 
solid 4He experimentally obtained in Ref. 1 was interpreted 
within the model of hcp crystalline polytype in our paper 
Ref. 35. 

6. Conclusions 

Stacking faults and polytypic structures exist also in bcc 
lattice, but their structure is different as compared to hcp. 
bcc structures have their own peculiarities for relaxation of 
internal stresses, but sometimes solid 3He demonstrates 
some special features in its thermodynamic and acoustic 
properties very similar to discussed above for 4He. In addi-
tion, there are known a lot of phenomena which can be 
treated within polytypic approach for 3He–4He solid mix-
tures (both separated and homogeneous) of different con-
centrations. All this problems should be a matter of further 
research. 
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