Антиферромагнитный резонанс в кристалле PrFe₃(BO₃)₄

А.Н. Блудов, В.А. Пащенко, М.И. Кобец, В.А. Бедарев, Д.Н. Меренков, С.Л. Гнатченко

Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Науки, 47, г. Харьков, 61103, Украина E-mail: bludov@ilt.kharkov.ua

И.А. Гудим

Институт физики им. Л.В. Киренского СО РАН г. Красноярск, 660036, Россия

Статья поступила в редакцию 11 августа 2017 г., опубликована онлайн 26 декабря 2017 г.

Проведены экспериментальные исследования AФMP в монокристалле PrFe₃(BO₃)₄ в широком диапазоне частот 10–143 ГГц при температуре 4,2 К. Показано, что высокочастотные свойства ферробората празеодима хорошо описываются в рамках модели двухподрешеточного антиферромагнетика с анизотропией типа «легкая ось». Определена энергетическая щель ($134,3 \pm 0,5$) ГГц и сделана оценка величины эффективного поля магнитной анизотропии ($1,9 \pm 0,1$) кЭ. Результаты анализа свидетельствуют о первородности спин-ориентационного фазового перехода в исследованном соединении.

Проведено експериментальні дослідження АФМР в монокристалі $PrFe_3(BO_3)_4$ у широкому діапазоні частот 10–143 ГГц при температурі 4,2 К. Показано, що високочастотні властивості фероборату празеодиму добре описуються у рамках моделі двохпідграткового антиферомагнетика з анізотропією типу «легка вісь». Визначено енергетичну щілину (134,3 ± 0,5) ГГц та зроблено оцінку величини ефективного поля магнітної анізотропії (1,9 ± 0,1) кЕ. Результати аналізу свідчать про першорідність спін-орієнтаційного фазового перетворення в дослідженій сполуці.

РАСS: 75.50.Ее Антиферромагнетики;

76.50.+g Ферромагнитный, антиферромагнитный и ферримагнитный резонансы.

Ключевые слова: антиферромагнетик, антиферромагнитный резонанс, спин-ориентационный фазовый переход, энергетическая щель.

Введение

Соединения обширного изоструктурного семейства редкоземельных ферроборатов с общей формулой RFe₃(BO₃)₄ (R — редкоземельный ион) демонстрируют большое разнообразие магнитных и электрических свойств [1]. В этих мультиферроиках наблюдается целый ряд спонтанных и индуцированных магнитным полем фазовых переходов [1]. Магнитные моменты ионов Fe³⁺ ($^{6}S_{5/2}$) упорядочиваются антиферромагнитно при температурах порядка 30–40 К. Парамагнитные редкоземельные ионы R³⁺ эффективно подмагничиваются в результате обменного взаимодействия с подсистемой железа. Эффективная магнитная анизотропия ферроборатов с R = Nd³⁺, Y³⁺, Sm³⁺, Er³⁺ является положительной

(типа «легкая плоскость»), в то же время для кристаллов с Tb³⁺, Dy³⁺, Pr³⁺ она отрицательна (типа «легкая ось») [1]. Следует отметить, что магнитоэлекрические свойства соединений RFe₃(BO₃)₄ исследованы достаточно подробно [2], в то же время их высокочастотные свойства рассматривались в ограниченном числе работ. В частности, в кристаллах GdFe₃(BO₃)₄ [3], Nd_{0,75}Dy_{0,25}Fe₃(BO₃)₄ [4] и Nd_{0,75}Ho_{0,25}Fe₃(BO₃)₄ [5] детектировался антиферромагнитный резонанс (AΦMP) на ионах железа Fe³⁺, и полученные результаты хорошо описывались простой моделью одноосного двухподрешеточного антиферромагнетика [6].

Объектом исследования в представленной работе является монокристалл легкоосного антиферромагнетика PrFe₃(BO₃)₄ с тригональной структурой, принад-

© А.Н. Блудов, В.А. Пащенко, М.И. Кобец, В.А. Бедарев, Д.Н. Меренков, С.Л. Гнатченко, И.А. Гудим, 2018

лежащей пространственной группе R32. Температура магнитного упорядочения T_N , по данным [3], составляет 30,5 К. Магнитные моменты ионов железа Fe³⁺ в упорядоченном состоянии направлены вдоль тригональной оси (ось *c* кристалла) [7]. Установлено, что магнитное поле **H**, направленное вдоль оси *c*, индуцирует спин-ориентационный фазовый переход (поле перехода ~45 кЭ при температуре 4,2 К). Он сопровождается резким изменением намагниченности M(H), магнитострикции [7] и упругих модулей [8].

Квазиоптические исследования PrFe₃(BO₃)₄, проведенные в отсутствие магнитного поля, обнаружили энергетическую щель ~4,5 см⁻¹ (при T = 5 K) антиферромагнитного резонанса подсистемы ионов Fe³⁺ [9]. Была также измерена температурная зависимость этой энергетической щели. В то же время щель, связанная с подсистемой празеодима, не наблюдалась. Из оптических исследований [10] установлено, что основным состоянием иона Pr³⁺ (мультиплет ³H₄) является синглетный уровень, а первый возбужденный уровень имеет энергию 48 см⁻¹. Этот факт свидетельствует, что подсистема празеодима принципиально не изменяет эффективную модель двухподрешеточного антиферромагнетика с анизотропией типа «легкая ось», описывающую высокочастотные свойства исследуемого кристалла. Ее влияние можно свести к дополнительному вкладу в эффективное поле анизотропии железной подсистемы со стороны празеодимовой.

Исследования кристалла PrFe₃(BO₃)₄ методом AФMP явно недостаточно представлены в литературе. Так, опубликованы лишь предварительные результаты измерений частотно-полевой зависимости (ЧПЗ) этого объекта в поле, приложенном вдоль оси *с* [11]. Между тем детальное изучение высокочастотных свойств позволяет определить величину щелей в спектре спиновых волн, оценить эффективные обменные взаимодействия, получить дополнительную информацию о магнитной структуре и природе фазовых переходов. Таким образом, цель представленной работы заключалась в выявлении особенностей АФМР, оценке эффективных магнитных взаимодействий и выяснении характера магнитного фазового перехода в монокристалле PrFe₃(BO₃)₄.

Характеристики образца и методики

Монокристалл ферробората празеодима был изготовлен методом раствор-расплавной кристаллизации [12]. Ориентация кристаллических осей $\Pr Fe_3(BO_3)_4$ определена рентгенографическим методом. После механической обработки исследуемый образец имел вид тонкой пластинки размерами $3 \times 3 \times 0,1$ мм. Тригональная ось была направлена перпендикулярно поверхности пластинки и совпадала с кристаллографической осью *с*. Поскольку в процессе обработки кристалла могут образовываться дефекты, образец был отожжен при высокой температуре для минимизации механических напряжений.

Исследования полевых зависимостей спектров АФМР в монокристалле $PrFe_3(BO_3)_4$ проводились в частотном диапазоне 10–143 ГГц на комплексе стандартных спектрометров при температуре 4,2 К. В качестве активного элемента использовались цилиндрические резонаторы с волной H_{01n} для соответствующих диапазонов частот. Использовалась только перпендикулярная поляризация СВЧ поля.

Поскольку монокристалл PrFe₃(BO₃)₄ демонстрирует ярко выраженную аксиальную симметрию магнитных свойств, то магнитный резонанс измерялся нами при двух различных ориентациях внешнего магнитного поля: вдоль кристаллографической оси c (**H** || c) и перпендикулярно ей (**H** $\perp c$). Погрешность ориентации образца составляла не более 0,1°. Дополнительно были проведены эксперименты в наклонном магнитном поле, приложенном под небольшим углом к оси c кристалла.

Экспериментальная часть

На рис. 1 показана серия спектров поглощения СВЧ мощности в монокристалле $PrFe_3(BO_3)_4$ на частотах от 12 до 143 ГГц при ориентации внешнего магнитного поля **H** || *c*. Поскольку при такой ориентации в образце наблюдается фазовый переход в магнитном поле $H_t = (45, 4 \pm 0, 2)$ кЭ, обозначенный на рисунке вертикальной пунктирной линией (в этом поле в спектрах АФМР наблюдается особенность в виде «ступеньки» почти для всех доступных в эксперименте частот), то логично будет отдельно рассматривать резонансное поведение кристалла в полях ниже и выше H_t .

При $H < H_t$ обнаружены две линейные моды АФМР v₁ и v₂, выходящие из одной щели Δ величиной (134,3 ± 0,5) ГГц. Резонансное поле моды v₁ возрастает с увеличением частоты наблюдений, тогда как резонансное поле моды v₂ монотонно убывает. Из-за экспериментальных ограничений частоты регистрации восходящая ветвь v₁ наблюдалась только в небольшом частотном интервале 134,3–143 ГГц. С другой стороны, смягчение линейной моды АФМР v₂ можно регистрировать в широком интервале полей вплоть до H_t . В полях выше H_t эта мода не детектируется. Следует подчеркнуть, что частота резонанса v₂ в поле H_t еще не равна нулю и составляет около 12 ГГц.

В магнитных полях $H > H_t$ детектируется новая мода v_{hf} , резонансная частота которой нелинейно возрастает с увеличением поля. Эта ветвь колебаний может быть связана со спин-флоп модой опрокинутого состояния двухподрешеточного антиферромагнетика с анизотропией типа «легкая ось». В рамках модели [6] частота спин-флоп моды должна быть равна нулю при фазовом переходе и в дальнейшем будет возрастать по закону $H^{1/2}$ при увеличении внешнего поля. Однако в эксперименте

Рис. 1. Спектры поглощения АФМР в монокристалле $PrFe_3(BO_3)_4$ в диапазоне частот 12–143 ГГц при **H** || *с*. Штриховые линии схематически показывают изменение резонансного поля мод АФМР v_1 , v_2 и v_{hf} от частоты наблюдения. Вертикальной пунктирной линией отмечено поле фазового перехода $H_t = 45,4$ кЭ. Узкая линия соответствует сигналу от эталонного образца — дифенилпикрилгидразила (ДФПГ).

резонансная мода v_{hf} наблюдается только на частотах выше 65 ГГц и регистрируется вплоть до 143 ГГц включительно. В окрестности H_t в частотных интервалах от 10 до 65 ГГц и от 65 до 143 ГГц никаких дополнительных резонансных линий поглощения не обнаружено. Таким образом, данные эксперимента демонстрируют энергетический разрыв между модами v_1-v_2 и v_{hf} .

На рис. 2 представлены спектры поглощения СВЧ мощности в монокристалле $\Pr Fe_3(BO_3)_4$ при ориентации $\mathbf{H} \perp c$. В этом случае наблюдается только одна мода v_{\perp} , изменение резонансного поля которой показано на рисунке пунктирной линией. Эта ветвь колебаний может быть связана с так называемой «квадратичной модой» АФМР двухподрешеточного антиферромагнетика с анизотропией типа «легкая ось» при ориентации внешнего магнитного поля перпендикулярно легкой оси. Резонансное поле наблюдаемой моды v_{\perp} возрастает при повышении частоты СВЧ излучения. Ветвь v_{\perp} имеет такую же величину антиферромагнитной щели $\Delta = 134,3$ ГГц, как и колебания v_1 и v_2 при $\mathbf{H} \parallel c$. Ниже

Рис. 2. Спектры поглощения АФМР в монокристалле $PrFe_3(BO_3)_4$ при **H** \perp *с*. Штриховой линией обозначено поведение квадратичной моды v_{\perp} магнитного резонанса.

щели никаких резонансных линий при $\mathbf{H} \perp c$ не обнаружено.

Дополнительно к основным экспериментам был исследован АФМР в магнитном поле, отклоненном от оси *с* кристалла на небольшой угол. Для сравнения на рис. 3 представлены два спектра поглощения АФМР кристалла $PrFe_3(BO_3)_4$ на частоте 104,8 ГГц в полях 30–65 кЭ для двух ориентаций: 1) поле **H** строго сов-

Рис. 3. Спектры поглощения АФМР в монокристалле PrFe₃(BO₃)₄ на частоте 104,8 ГГц во внешнем магнитном поле, направленном строго параллельно оси c (0°) и под небольшим углом к ней (~3°). На вставке показан фрагмент частотно-полевой зависимости АФМР в магнитных полях, ориентированных под углом ~3° к оси c. Погрешность определения резонансного поля линии поглощения АФМР показана горизонтальными отрезками. Поле фазового перехода H_t отмечено пунктирной линией.

падает с направлением оси *с* кристалла $(0^{\circ}; \mathbf{H} \parallel c);$ 2) отклонено от оси c на угол ~3°. Видно, что при строгой ориентации **H** $\parallel c$ при $H > H_t$ наблюдается только одна линия поглощения v_{hf}, которая детектируется в резонансном поле около 56 кЭ. Кроме этой линии в спектре АФМР хорошо проявляется аномалия в виде «ступеньки» в поле H_t (отмечено стрелкой на рис. 3). В наклонном поле при $H > H_t$ кроме линии v_{hf} обнаружена дополнительная линия поглощения, обозначенная на рис. 3 как v_{so}. Отметим, что при понижении частоты наблюдения линии поглощения vso и vhf сдвигаются навстречу друг другу, пока не произойдет их слияние в один резонансный пик, при этом ЧПЗ кристалла PrFe₃(BO₃)₄ в наклонном поле (~3°) демонстрирует минимум с координатами порядка 51 кЭ и 89 ГГц (см. вставку на рис. 3).

Обсуждение

На основании экспериментальных результатов, полученных нами в широком диапазоне частот и магнитных полей при двух различных ориентациях магнитного поля **H** (вдоль оси *c* и перпендикулярно ей), была восстановлена частотно-полевая зависимость AФMP монокристалла PrFe₃(BO₃)₄, представленная на рис. 4. Следует отметить, что результаты наших измерений при **H** || *c* согласуются с опубликованными ранее данными [11], при этом ЧПЗ исследована нами гораздо более подробно, особенно в области полей фазового перехода и выше.

Для описания высокочастотных свойств PrFe₃(BO₃)₄ воспользуемся простой моделью коллинеарного двухподрешеточного антиферромагнетика с анизотропией

Рис. 4. Частотно-полевая зависимость спектра АФМР в монокристалле $\Pr Fe_3(BO_3)_4$ для $\mathbf{H} \parallel c (\bullet)$ и $\mathbf{H} \perp c (\circ)$. Сплошные ($\mathbf{H} \parallel c$) и прерывистая ($\mathbf{H} \perp c$) линии — расчетные кривые, полученные в рамках модели для одноосного двухподрешеточного антиферромагнетика. Вертикальной пунктирной линией отмечено поле фазового перехода $H_t = 45,4$ кЭ. Стрелками обозначены поля лабильности H_1 и H_2 .

типа «легкая ось», совпадающей с направлением оси *с* кристалла [6]. При **H** $\parallel c$ и $H < H_t$ две линейные моды АФМР v_1 и v_2 будут описываться следующим выражением:

$$\left(\frac{\mathbf{v}_{1,2}}{\gamma}\right)^2 = \left(\frac{\Delta}{\gamma} \pm H\right)^2,\tag{1}$$

где $\gamma = g\mu_B/h$ — гиромагнитное отношение (g — эффективный *g*-фактор иона Fe^{3+} , μ_B — магнетон Бора, *h* постоянная Планка). Знак «+» соответствует восходящей моде v1, знак «-» — спадающей моде v2. Наилучшее совпадение с экспериментальными данными достигается при следующих значениях двух независимых параметров: $\Delta = (134, 3 \pm 0, 5)$ ГГц и $\gamma = (2,799 \pm 0,025)$ ГГц/кЭ. Расчетные кривые для этих параметров показаны сплошными прямыми линиями на рис. 4. Полученная в результате этого анализа оценка параметра Δ полностью совпадает с экспериментально определенной величиной щели АМФР в нулевом магнитном поле. Кроме того, это значение при пересчете в единицы обратных сантиметров (4,48 см⁻¹) почти точно совпадает с энергетической щелью антиферромагнитного резонанса 4,5 см⁻¹, обнаруженной в квазиоптических исследованиях при T = 5 K [8]. Используя величину параметра γ , можно получить оценку эффективного g-фактора, равную $g = 2,00 \pm 0,01$, что полностью подтверждает ожидаемое чисто спиновое состояние ионов $Fe^{3+}(^{\circ}S_{5/2})$. Величину щели АМФР можно выразить через эффективные поля обмена H_e и магнитной анизотропии H_a антиферромагнетика как $\Delta/\gamma = (2H_eH_a)^{1/2} = 48,0$ кЭ. Используя величину обменного поля $H_e \approx 600$ кЭ для ферробората празеодима [10], можно оценить эффективное поле магнитной анизотропии как $H_a = (1,9 \pm 0,1)$ кЭ. Наконец следует отметить, что при указанных значениях параметров Δ и γ частота моды AФMP ν_2 обращается в нуль в магнитном поле $H_1 = \Delta / \gamma = 48,0$ кЭ (см. рис. 4), величина которого заметно превосходит экспериментально определенное значение поля фазового перехода $H_t = 45,4$ кЭ.

При $H > H_t$ полевая зависимость резонансной линии поглощения v_{hf} (так называемой спин-флоп моды [6]) будет описываться следующим выражением:

$$\left(\frac{\mathbf{v}_{hf}}{\gamma}\right)^2 = H^2 - H_2^2, \qquad (2)$$

где H_2 — поле лабильности моды, при котором ее резонансная частота обращается в нуль. Наилучшее совпадение с экспериментальными данными достигается при следующих значениях двух независимых параметров: $H_2 = (42,5 \pm 0,5) \ \kappa \Im$ и $\gamma = (2,80 \pm 0,05) \ \Gamma \Gamma \eta/\kappa \Im$. Расчетная кривая показана сплошной линией на рис. 4. Полученная из этого анализа оценка величины параметра γ совпадает с определенной ранее при $H < H_t$, а

эффективное поле Н2 заметно ниже экспериментально измеренного поля перехода H_t. С другой стороны, как было показано выше, частота АФМР $v_2(H)$ обращается в нуль в поле H₁, явно превышающем H_t. Таким образом, значение поля перехода H_t находится внутри достаточно широкого интервала между двумя полями лабильности *H*₁ и *H*₂. Следует заметить, что фиксированные величины эффективных параметров He и Ha, оценки которых получены выше из значения щели АМФР, должны предопределять величины полей лабильности Н1 и Н2 соответственно как 47,98 и 47,83 кЭ в рамках модели для двухподрешеточного антиферромагнетика с анизотропией типа «легкая ось» [6] и интервал между полями лабильности H₁ и H₂ порядка 150 Э, что не согласуется с экспериментально наблюдаемым фактом. Такое значительное различие полей лабильности H₁ и H₂ (в кристалле $PrFe_3(BO_3)_4 H_2 - H_1 \approx 5,5 \ \kappa \Im$) мы связываем с эффектом подмагничивающего воздействия со стороны празеодимовой подсистемы на подсистему Fe³⁺, что проявляется в различных величинах эффективного поля анизотропии в различных магнитных состояниях.

При перпендикулярной ориентации внешнего магнитного поля модель для двухподрешеточного антиферромагнетика с анизотропией типа «легкая ось» предсказывает наблюдение квадратичной по полю моды АФМР, полевая зависимость которой будет описываться следующим выражением:

$$\left(\frac{\mathbf{v}_{\perp}}{\gamma}\right)^2 = \left(\frac{\Delta}{\gamma}\right)^2 + H^2.$$
 (3)

Расчет показывает, что и в этом случае параметры Δ и γ идентичны результатам предыдущего анализа. Соответствующая кривая показана прерывистой линией на рис. 4. Наблюдается удовлетворительное согласие расчета с экспериментальными данными.

Таким образом, восстановленную полную частотнополевую диаграмму АФМР монокристалла $\Pr Fe_3(BO_3)_4$ ($\mathbf{H} \parallel c$; $\mathbf{H} \perp c$) можно удовлетворительно описать в рамках простой модели двухподрешеточного антиферромагнетика типа «легкая ось». Отметим, что в такой модели фазовое превращение коллинеарного магнитного состояния в опрокинутое (спин-флоп переход) обычно происходит как фазовый переход первого рода [6].

Известно, что при отклонении магнитного поля от легкой оси на угол Ψ , превышающий некоторое критическое значение Ψ_{cr} , фазовый переход в одноосном антиферромагнетике происходит уже не скачком (что типично для первородного превращения), а в результате плавной переориентации магнитных моментов. Критический угол Ψ_{cr} определяется отношением H_a/H_e [13]. Используя значения H_a и H_e для кристалла PrFe₃(BO₃)₄, можно оценить величину $\Psi_{cr} = H_a/H_e \approx 0,2^\circ$.

При небольшом $\Psi > \Psi_{cr}$ в спектре АФМР вблизи поля фазового перехода появляется дополнительная линия

поглощения v_{so} , отсутствующая в случае строгой ориентации магнитного поля вдоль «легкой оси» кристалла. Мы полагаем, что наблюдаемая нами мода v_{so} соединяет непрерывным образом ветви АФМР до и после фазового перехода (см. рис. 3). Подобная ветвь, связывающая восходящую линейную моду v_1 ($H < H_t$) со спин-флоп модой опрокинутого состояния ($H > H_t$) и создающая непрерывность частотно-полевой зависимости, обычно появляется при «ориентационном» резонансе [6].

Как видно, восстановленная частотно-полевая зависимость АФМР для $\Psi \approx 3^{\circ}$ (см. вставку на рис. 3) является типичной для легкоосного антиферромагнетика в наклонном поле [6].

Проведенные нами исследования АФМР дают основания полагать, что при $\mathbf{H} \parallel c$ в монокристалле PrFe₃(BO₃)₄ наблюдается спин-ориентационный фазовый переход первого рода — спин-флоп переход. Весомыми аргументами в пользу магнитного фазового превращения первого рода являются: 1) значительный частотный разрыв между ветвями v_1 и v_{hf} в окрестности фазового перехода при строгой ориентации поля вдоль «легкой оси»; 2) наблюдение «ориентационной» моды (резонанса) при отклонении внешнего поля от «легкой оси» на угол, превышающий некоторое критическое значение Ψ_{cr} . Кроме того, наблюдаемый нами энергетический разрыв возбуждения высокополевой моды v_{hf}, которая детектируется только на частотах выше 65 ГГц ($H > H_t$), а также то обстоятельство, что частота колебания v2 не достигает нуля при H_t и в более высоких полях соответствующая мода исчезает, может указывать на то, что фазовое превращение происходит скачком.

С другой стороны, в работе [14] в результате теоретических исследований сделан вывод о том, что спинориентационный фазовый переход в PrFe₃(BO₃)₄ из антиферромагнитной фазы в опрокинутую является переходом второго рода, и только внешне напоминает спинфлоп. Такой результат основан на предположении о присутствии в кристалле наряду с доминирующей легкоосной анизотропией слабой дополнительной компоненты магнитной анизотропии более высокого порядка. Хотя константа этой анизотропии на три порядка меньше по сравнению с легкоосной, ее существование должно приводить к тому, что указанный переход будет происходить вторым родом. Вопрос окончательного выяснения рода этого магнитного фазового превращения в кристалле PrFe₃(BO₃)₄ все же требует дальнейших дополнительных исследований.

Таким образом, проведены детальные экспериментальные исследования АФМР монокристалла PrFe₃(BO₃)₄ в широком диапазоне частот 10–143 ГГц при ориентациях внешнего магнитного поля **H** $\parallel c$ и **H** $\perp c$ и температуре 4,2 К. Показано, что высокочастотные свойства ферробората празеодима качественно описываются в рамках простой модели двухподрешеточного антиферромагнетика с легкой осью анизотропии, параллельной кристаллографической оси *с*. Восстановлена частотно-полевая диаграмма АФМР монокристалла PrFe₃(BO₃)₄ при температуре 4,2 К. Определена энергетическая щель в спектре спиновых волн антиферромагнетика $\Delta = (134, 3 \pm 0,5)$ ГГц, величина эффективного *g*-фактора иона Fe³⁺ *g* = 2,00 ± 0,01 и сделана оценка величины эффективного поля анизотропии $H_a = (1,9 \pm 0,1)$ кЭ. Резонансные свойства кристалла в исследованном частотном диапазоне определяются исключительно железной подсистемой. Результаты проведенных высокочастотных исследований PrFe₃(BO₃)₄ дают основания считать, что индуцируемый спин-ориентационный переход при ориентации магнитного поля **H** вдоль оси *с* является фазовым переходом *первого рода*.

- А.Н. Васильев, Е.А. Попова, ФНТ 32, 968 (2006) [Low Temp. Phys. 32, 735 (2006)].
- А.М. Кадомцева, Ю.Ф. Попов, Г.П. Воробьев, А.П. Пятаков, С.С. Кротов, К.И. Камилов, В.Ю. Иванов, А.А. Мухин, А.К. Звездин, А.М. Кузьменко, Л.Н. Безматерных, И.А. Гудим, В.Л. Темеров, *ФНТ* 36, 640 (2010) [Low Temp. Phys. 36, 511 (2010)].
- А.И. Панкрац, Г.А. Петраковский, Л.Н. Безматерных, О.А. Баюков, ЖЭТФ 126, 887 (2004) [JETP 99, 766 (2004)].
- М.И. Кобец, К.Г. Дергачев, Е.Н. Хацько, С.Л. Гнатченко, *ФНТ* 40, 810 (2014) [*Low Temp. Phys.* 40, 629 (2014)].
- М.И. Кобец, К.Г. Дергачев, С.Л. Гнатченко, Е.Н. Хацько, Л.Н. Безматерных, И.А. Гудим, ФНТ 41, 96 (2015) [Low Temp. Phys. 41, 75 (2015)].
- 6. А.Г. Гуревич, *Магнитный резонанс в ферритах и антиферромагнетиках*, Наука, Москва (1973).
- А.М. Кадомцева, Ю.Ф. Попов, Г.П. Воробьев, А.А. Мухин, В.Ю. Иванов, А.М. Кузьменко, Л.Н. Безматерных, *Письма в ЖЭТФ* 87, 45 (2008) [*JETP Lett.* 87, 35 (2008)].
- Г.А. Звягина, К.Р. Жеков, Л.Н. Безматерных, И.А. Гудим, И.В. Билыч, А.А. Звягин, *ФНТ* 36, 376 (2010) [*Low Temp. Phys.* 36, 296 (2010)].

- А.М. Кузьменко, А.А. Мухин, В.Ю. Иванов, А.М. Кадомцева, С.П. Лебедев, Л.Н. Безматерных, ЖЭТФ 140, 131 (2011) [*JETP* 113, 113 (2011)].
- M.N. Popova, T.N. Stanislavchuk, B.Z. Malkin, and L.N. Bezmaternykh, *Phys. Rev. B* 80, 195101 (2009).
- A.I. Pankrats, A.A. Demidov, C. Ritter, D.A. Velikanov, S.V. Semenov, V.I. Tugarinov, V.L. Temerov, and I.A. Gudim, *J. Phys. Condens. Matter* 28, 396001 (2016).
- L.N. Bezmaternykh, V.L. Temerov, I.A. Gudim, and N.A. Stolbovaya, *Crystallogr. Rep.* 50 (Suppl. 1), S97 (2005).
- 13. М.И. Каганов, Г.К. Чепурных, ФТТ 11, 911 (1969).
- Н.В. Костюченко, А.И. Попов, А.К. Звездин, *ФТТ* 54, 1493 (2012) [*Phys. Solid State* 54, 1591 (2012)].

Antiferromagnetic resonance in a crystal PrFe₃(BO₃)₄

A.N. Bludov, V.A. Pashchenko, M.I. Kobets, V.A. Bedarev, D.N. Merenkov, S.L. Gnatchenko and I.A. Gudim

Experimental AFMR studies of $PrFe_3(BO_3)_4$ single crystal in a wide frequency range (10–143) GHz at the temperature of 4.2 K have been carried out. It is shown that the high-frequency properties of praseodymium ferroborate are well described in the framework of the model for a two-sublattice antiferromagnet with an easy-axis anisotropy. An energy gap of (134.3±0.5) GHz has been determined, and an effective field of magnetic anisotropy of 1.9±0.1 kOe has been estimated. The results of analysis indicate the spin-orientational phase transition has a first-order character in the studied compound.

PACS: 75.50.Ee Antiferromagnetics; 76.50.+g Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances, spin-wave resonance.

Keywords: antiferromagnet, antiferromagnetic resonance, spin-orientation phase transition, energy gap.