Пленочный сверхпроводящий квантовый интерферометр со сверхмалой индуктивностью

С.И. Бондаренко¹, А.В. Кревсун¹, Е.В. Ильичев², У. Хюбнер², В.П. Коверя¹, С.И. Линк¹

¹ Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Науки, 47, г. Харьков, 61103, Украина E-mail: bondarenko@ilt.kharkov.ua

> ²Leibniz Institute of Photonic Technology Albert-Einstein-Straße 9 (Beutenberg Campus), 07745 Jena, Germany

Статья поступила в редакцию 27 октября 2017 г., опубликована онлайн 25 января 2018 г.

Разработан простой в изготовлении пленочный сверхпроводящий квантовый интерферометр (СКИ) со сверхмалой индуктивностью (~10⁻¹³ Гн). Приведены вольт-амперные и вольт-полевые характеристики СКИ. Получены основные расчетные соотношения, подтвержденные экспериментом. С помощью СКИ впервые определена глубина проникновения магнитного поля в пленку сплава 50% In–50% Sn.

Розроблено простий у виготовленні плівковий надпровідний квантовий інтерферометр (НКІ) з надмалою індуктивністю (~10⁻¹³ Гн). Приведено вольт-амперні та вольт-польові характеристики НКІ. Одержано основні розрахункові співвідношення, які підтверджені експериментом. За допомогою НКІ вперше визначено глибину проникнення магнітного поля у плівку сплаву 50% In–50% Sn.

РАСS: 74.50.+г Эффекты близости, слабые связи, туннелирование, эффект Джозефсона;

- 74.25.F- Транспортные свойства;
- 74.25 На Магнитные свойства, включая вихревые структуры и подобные явления;
- 74.78.-w Сверхпроводящие пленки и низкоразмерные структуры.

Ключевые слова: сверхпроводящий квантовый интерферометр, контакт Джозефсона, двухсвязный сверхпроводник, площадь квантования, циркулирующий ток.

1. Введение

Экспериментальное открытие квантовой интерференции в двухсвязном сверхпроводнике с двумя контактами Джозефсона в 1964 г. [1] привело к разработке различных типов СКВИДов (Superconducting Quantum Interference Device) [2]. В настоящее время сверхпроводящие магниты и СКВИДы находят наибольшее применение в науке и технике по сравнению с другими сверхпроводящими устройствами. Основной привлекательной стороной СКВИДов является экстремально высокая их чувствительность к приращениям внешнего магнитного поля в области низких и инфранизких частот при малых размерах чувствительного элемента. Чувствительным элементом СКВИДа является сверхпроводящий квантовый интерферометр (СКИ). Чаще всего конструкция СКИ представляет собой миниатюрный двухсвязный сверхпроводящий контур с одним или двумя контактами Джозефсона [2]. Несмотря на многолетнюю историю создания СКИ, их конструкция продолжает совершенствоваться, а область применения расширяться. В настоящее время предпочтение отдается пленочным СКИ с двумя контактами джозефсоновского типа. Пленочная конструкция позволяет использовать достижения современной нанотехнологии структурирования элементов СКИ с целью дальнейшей их миниатюризации. Микро- и нано-СКВИДы необходимы для изучения магнитных свойств органических и неорганических молекул, а также для создания современных СКВИД микроскопов с высоким пространственным разрешением [3]. В частности, индуктивность L0 таких нано-СКВИДов в настоящее время достигает единиц пикогенри ($L_0 \approx 10^{-12}$ Гн). Уменьшение L0 позволяет применять джозефсоновские контакты с существенно большими размерами и критическими токами, так как увеличивается глубина модуляции δі квантованных значений циркулирующего в СКИ тока i в соответствии с соотношением [2]

$$\delta i = \Phi_0 / \left(2L_0 \right), \tag{1}$$

где Φ_0 — квант магнитного потока ($\Phi_0 = 2 \cdot 10^{-15}$ Вб). Увеличение размеров контактов уменьшает влияние флуктуаций критического тока СКИ на его характеристики, увеличивает помехозащищенность СКИ и удешевляет технологию изготовления контактов.

При этом интерференционный период изменения циркулирующего тока под влиянием внешнего магнитного поля через интерферометр равен:

$$\Delta i = \Phi_0 / L_0 \,. \tag{2}$$

Следует также отметить, что традиционно под L_0 подразумевается так называемая магнитная индуктивность СКИ.

2. Цель работы

Основной целью настоящей работы явилось создание низкоиндуктивного СКИ для разработанной нами

Рис. 1. Принципиальная схема ДСП с ПТК в точке пересечения проводников A; $\Phi 3$ — датчик феррозондового магнитометра, измеряющего магнитное поле тока I_1 ; L — индуктивность контура ДСП, I — постоянный транспортный ток (а). Электрическая схема замещения ДСП с СКИ, содержащим два контакта Джозефсона (I) и (2), имеющим площадь квантования S_0 и индуктивность L_0 (б).

новой сверхпроводящей интерференционной структуры в виде двухсвязного сверхпроводника (ДСП) с СКИ. Структура представляет собой высокоиндуктивный (индуктивность контура более 10^{-9} Гн) сверхпроводящий контур, в разрыв которого включается несимметричный СКИ с двумя контактами джозефсоновского типа [4–6]. До настоящего времени в качестве такого СКИ нами использовался прижимной точечный контакт (ПТК) ниобий–ниобий. На рис. 1 показаны принципиальная схема двухсвязной структуры с ПТК и ее электрическая схема замещения.

Оценочные значения индуктивности СКИ такой конструкции составляют около 10^{-13} Гн (0,1 пГн). Определить с необходимой точностью размеры и критические токи индивидуальных микроконтактов такого СКИ затруднительно. Для построения завершенной теории процессов в новой структуре необходим был пленочный низкоиндуктивный двухконтактный СКИ с достаточно точно определяемыми размерами его элементов и стабильными критическими токами контактов. Другой целью работы явилась разработка такой технологии изготовления малоиндуктивного СКИ, которая бы соответствовала современному состоянию нашей экспериментальной базы и была существенно проще, чем используемая сейчас в других лабораториях.

3. Конструкция и метод изготовления пленочного СКИ

На рис. 2(а), (б) показан схематический чертеж разработанного несимметричного СКИ в двух проекциях, а на рис. 2(в) — его электрическая схема с токовыми и потенциальными выводами.

Сверхпроводящий контур СКИ образован двумя тонкими пленками 2 и 5 разной ширины и двумя контактами между ними. Прямоугольная нижняя ниобиевая пленка (5) с размерами 1,5×7 мм и толщиной $t_5 = 100$ нм напылена на подложку монокристаллического кремния (1) и электролитически окислена на толщину $t_4 =$ = 30 нм. Верхняя узкая прямоугольная пленка сплава 50% Sn–50% In с размерами 1,5×7 мм и толщиной $t_2 \approx$ ≈ 200 нм напылена на окисел ниобия (4) нижней пленки. Верхняя и нижняя пленки соединены двумя пленочными квазиточечными контактами джозефсоновского типа (3). Расстояние между контактами (l) составляет 200 мкм. Площадь S_0 квантования СКИ равна:

$$S_0 = l(t_4 + \lambda_2 + \lambda_5), \qquad (3)$$

где λ_2 , λ_5 — глубины проникновения магнитного поля в верхнюю и нижнюю пленки. Контакты образованы с помощью механического прокола пленок и слоя окисла стандартной алмазной пирамидой прибора ПМТ-3 для определения микротвердости материалов. Размер отпечатка пирамиды на верхней пленке около 10 мкм.

Рис. 2. Поперечный разрез СКИ с двумя пленочными джозефсоновскими контактами (3) между пленкой ниобия (5) и пленкой сплава InSn (2); 1 — подложка из кремния, 4 — изолирующий окисел ниобия с толщиной t, l — расстояние между контактами, I—I и V—V — токовые и потенциальные выводы, H — измеряемое магнитное поле (а). Вид на поверхность СКИ, w — ширина пленки InSn, 3 — изображение отпечатков алмазной пирамиды в местах проколов пленки InSn для создания контактов (б). Электрическая схема замещения СКИ с двумя контактами Джозефсона (×) и с площадью квантования S_0 (в).

Мы предполагаем, что микроструктура каждого из контактов имеет вид, показанный на рис. 3.

Благодаря высокой пластичности пленки InSn при проколе и внедрению пирамиды в подложку по периметру пирамиды образуется металлический контакт между пленками InSn и Nb. Ширина контакта равна произведению периметра на толщину пленки Nb, а длина равна толщине окисла (типичному для прижимных контактов значению, т.е. близка к атомным размерам). Таким образом, удовлетворяется главное требование к металлическим контактам джозефсоновского типа, а именно, что его протяженность вдоль протекания тока должна быть порядка или меньше длины когерентности ξ контактирующих металлов (при температуре 4,2 К $\xi_{\rm Nb} \approx 10$ нм, $\xi_{\rm InSn} \approx 80$ нм).

Рис. 3. Схема сечения одного из сверхпроводящих контактов СКИ, образованного между пленкой ниобия и пленкой InSn в конической области со средним диаметром d_c и шириной около 70 нм.

4. Расчетные соотношения

Наблюдаемым в экспериментах параметром двухконтактного СКИ является период ΔH напряжения VСКИ в зависимости от внешнего магнитного поля H. Для этого необходимо, чтобы контакты СКИ находились в резистивном состоянии, задаваемом определенным по величине постоянным током I через СКИ. В соответствии с теорией СКИ [3] с учетом соотношения (3) значение ΔH должно составлять

$$\Delta H = \frac{\Phi_0}{\mu_0 S_0} = \frac{\Phi_0}{\mu_0 l \left(t_4 + \lambda_2 + \lambda_5 \right)},$$
 (4)

где $\mu_0 = 4\pi \cdot 10^{-7}$ Гн/м.

Теперь определим индуктивность интерферометра. Измерение малых индуктивностей L0 СКИ в области значений, равных нескольким пГн и менее, является достаточно сложной задачей. Поэтому в настоящей работе мы ограничиваемся расчетом магнитной индуктивности СКИ предлагаемого типа. В основу расчета можно положить следующие представления. Как известно [2], магнитный поток Ф внешнего магнитного поля Н через контур СКИ по мере его увеличения вначале $(\Phi < \Phi_0/2)$ полностью компенсируется магнитным потоком возникающего циркулирующего тока i, а затем $(\Phi > \Phi_0/2)$ проникает в контур в виде кванта потока Φ_0 . Ограничимся рассмотрением области $\Phi < \Phi_0/2$, где реализуется равенство Ф и потока поля, созданного током *i*. Следовательно, равны и значения поля Н и поля тока і $(H = H_i)$. Поле H_i формируется током по четырем участкам контура: участку верхней узкой пленки, создающему поле H_{it} , участку широкой нижней пленки, создающему поле H_{ib} , и двум участкам со слабыми контактами джозефсоновского типа, каждый из которых создает поле H_{il} . Поэтому поле H_i можно представить в виде суммы полей H_{it} , H_{ib} , $2H_{il}$:

$$H_i = H_{it} + H_{ib} + 2H_{il} . (5)$$

Поле H_{it} определяется по формуле [7] с учетом ее выражения в системе единиц СИ:

$$H_{it} = \frac{i}{10w},\tag{6}$$

где *w* — ширина пленки. Поле *H_{il}* можно оценить по формуле

$$H_{il} \approx \frac{i}{\pi l}$$
 (7)

Сверхпроводящий ток i по нижней широкой пленке ниобия имеет тенденцию к растеканию на края. Из-за значительного (на 7,5 мм) удаления краев ниобиевой пленки от квантующего контура СКИ и растекания тока по ее поверхности можно пренебречь его вкладом в магнитное поле H_i по сравнению с другими составляющими. В результате получаем:

$$H_i = H \approx \left(\frac{1}{10w} + \frac{2}{\pi l}\right)i.$$
(8)

Соответственно, для одного периода ΔH интерференционной зависимости СКИ V(H) из (8) следует:

$$\Delta H \approx \left(\frac{1}{10w} + \frac{2}{\pi l}\right) \Delta i . \tag{9}$$

Из (2) и (9) получаем:

$$L_0 \approx \Phi_0 \left(\frac{1}{10w} + \frac{2}{\pi l} \right) / \Delta H . \tag{10}$$

Исходя из экспериментальных значений ΔH , l и w формулу (10) удобно использовать при расчете индуктивности. При проектировании СКИ данного типа следует пользоваться другой формулой для индуктивности L_0 , связывающей ее значение только с геометриическими размерами требуемого СКИ. Эта формула получается подстановкой в (10) значения ΔH из (4):

$$L_0 \approx \mu_0 \left(\frac{l}{10w} + 1 \right) \left(t_4 + \lambda_2 + \lambda_5 \right). \tag{11}$$

Таким образом, видно (11), что уменьшать L_0 можно, уменьшая расстояние между контактами и толщину изолятора между пленками, а также увеличивая ширину верхней пленки. Уменьшение геометрической индуктивности ограничено снизу джозефсоновской ин-

дуктивностью контактов (L_J) СКИ, подобной кинетической индуктивности обычных сверхпроводников [8]. Если использовать для оценки величины L_J формулу из [8]:

$$L_J = \frac{\Phi_0}{2\pi I_c},\tag{12}$$

где I_c — критический ток контакта Джозефсона, то для $I_c = 10$ мА получаем $L_J \approx 3 \cdot 10^{-13}$ Гн. Для более точного расчета L_J необходимо знать точную геометрию обоих контактов СКИ и иметь доказательство применимости формулы (12) для контактов, находящихся в резистивном состоянии. В настоящее время эти вопросы остаются открытыми.

5. Постановка эксперимента

Для получения наибольшей информации о свойствах СКИ в течение криогенного эксперимента на одной кремниевой подложке с ниобиевой пленкой изготавливали одновременно четыре интерферометра. Пленки ниобия были получены в Институте фотонных технологий (г. Йена, ФРГ). После формирования электрохимическим способом слоя окисла на ниобиевой пленке толщиной 30 нм в вакуумной установке проводили напыление четырех полосок пленки сплава индий-олово толщиной около 100 нм через маску. Затем при комнатной температуре вне вакуумной камеры выполняли проколы изолирующего окисла на ниобии и проводили повторное (второе) напыление полосок пленки сплава индий-олово толщиной около 100 нм. После формирования контактов к пленкам и припайки выводов образец устанавливали на криогенной вставке в криостат с жидким гелием. Фотография одного из образцов с СКИ показана на рис. 4.

Измерения вольт-амперных (ВАХ) и вольт-полевых (ВПХ) характеристик интерферометров проводили в жидком гелии (T = 4,2 К). Внешнее магнитное поле H создавалось калиброванным медным соленоидом, кото-

Рис. 4. Фотография одного из образцов с четырьмя СКИ на фоне монеты в 20 евроцентов.

Low Temperature Physics/Физика низких температур, 2018, т. 44, № 3

рый охватывал подложку с интерферометрами. Измерительная установка состояла из регулируемых источников постоянного (I^{-}) и переменного (I^{-}) токов, высокочувствительного микровольтметра постоянного напряжения, аналогово-цифрового преобразователя и компьютера для отображения на его экране ВАХ и ВПХ. Для ослабления влияния паразитных внешних электромагнитных полей в лаборатории криостат с образцом экранировался ферромагнитным экраном.

6. Экспериментальные результаты и их обсуждение

Вольт-амперные характеристики исследованных при постоянном транспортном токе СКИ имели одну общую особенность. При достижении критического тока на СКИ возникает скачок напряжения величиной в сто и более мкВ. Установившееся после этого напряжение не чувствительно к полю H. Одна из типичных ВАХ такого типа показана на рис. 5. Значения критического тока большинства СКИ находились в пределах от 5 до 10 мА при значениях нормального сопротивления R_N в интервале 0,1–0,2 Ом. Таким образом, переходная резистивная область ВАХ между чисто сверхпроводящим и нормальным состояниями контактов СКИ отсутствовала. Это делало невозможным получение информации о ВПХ в резистивном состоянии СКИ.

Одним из решений возникшей проблемы может быть усовершенствование технологии изготовления контактов для снижения критического тока при температуре 4,2 К до уровня около одного мА. Другим решением для уже изготовленных СКИ является применение предложенного нами ранее метода одновременного пропускания через контакты постоянного и переменного транспортных токов и регистрации возникающего при этом постоянного напряжения [10]. В результате на регистрируемой ВАХ исчезает скачок и появляется резистивный участок, чувствительный к внешнему магнитному полю. На рис. 6 показана полу-

Рис. 5. Вольт-амперная характеристика СКИ при T = 4,2 К. Виден скачок напряжения до 1,2 мВ при достижении критического тока около $I_c^{=} = 6,5$ мА.

Рис. 6. Вольт-амперная характеристика СКИ при T = 4,2 К при пропускании постоянного транспортного тока и фиксированного значения переменного тока в виде однополярных треугольных импульсов с амплитудой тока 2 мА на частоте 10^5 Гц.

ченная указанным методом ВАХ того же СКИ, а на рис. 7 — соответствующая ВПХ.

Видна четкая периодическая интерференционная зависимость $V(I_H)$, типичная для СКИ постоянного тока с двумя контактами Джозефсона. I_H — ток соленоида, создающий поле H. Период $\Delta I_H \approx 9$ мА с точностью до 10% соответствует рассчитанному периоду по магнитному полю $\Delta H = 0,67$ Э, используя соотношение (4). Для λ_2 взято значение толщины пленки ниобия 70 нм, так как она была меньше глубины проникновения в нее магнитного поля [11]. В результате с помощью разработанного СКИ и указанного соотношения удалось впервые измерить глубину проникновения поля λ_5 в пленку сплава InSn при T = 4,2 К, $\lambda_5 = (60 \pm 10\%)$ нм.

Рис. 7. Вольт-полевая зависимость СКИ с ВАХ, изображенной на рис. 5. Амплитуда квантовых модуляций напряжения на СКИ составляет 20 мкВ при периоде по току соленоида I_H , создающего магнитное поле H, около 9 мА, что соответствует $\Delta H \approx 0,67$ Э.

Рассчитанные по формулам (10), (11) значения индуктивности СКИ близки друг к другу и составляют около 10^{-13} Гн (т.е. 0,1 пГн). Достигнутое значение геометрической индуктивности близко к оценке ее минимально возможной величины при критическом токе ~ 10 мА, т.е. к джозефсоновской индуктивности L_J контактов данного СКИ.

Описанная технология достижения малой геометрической индуктивности L_0 СКИ позволяет в принципе произвести ее уменьшение еще в 20 раз за счет уменьшения расстояния l между контактами. Кратность уменьшения индуктивности ограничивается в основном оптическим разрешением объектива прибора ПМТ-3 и величиной L_J .

Вопрос о сопоставлении индуктивности СКИ с глубиной модуляции напряжения не может быть в настоящее время решен, так как резистивность контактов СКИ данного типа достигается суммарным воздействием на них постоянного и переменного транспортных токов, в то время как известные теоретические положения применимы к случаю использования в качестве транспортного только постоянного тока. При этом из экспериментальных исследований ВАХ контактов СКИ известно, что добавление переменного тока не только уменьшает критический постоянный ток СКИ, но и сильно снижает величину модуляции напряжения на СКИ магнитным полем. Такое сопоставление станет возможным после завершения следующего этапа наших разработок малоиндуктивных СКИ, направленного на существенное уменьшение их критического тока при T = 4,2 К и получения в наших условиях ВАХ необходимого вида с использованием только постоянного транспортного тока.

7. Заключение

В результате проведенных экспериментальных исследований изготовлены первые образцы пленочных сверхпроводящих квантовых интерферометров относительно простой (в технологическом отношении) конструкции со сверхмалой геометрической (магнитной) индуктивностью (~10⁻¹³ Гн).

Получены расчетные соотношения, позволяющие определять индуктивность как уже изготовленного, так и проектируемого интерферометра. В первом случае это делается на основе измерения периода ΔH интерференционной зависимости напряжения V на интерферометре от внешнего магнитного поля H. Во втором случае формула для индуктивности содержит только геометрические размеры элементов интерферометра.

Как показали эксперименты, полученная расчетная формула для значения ΔH позволяет определять эту величину с высокой точностью (±10%). В частности, это может позволить использовать измерение ΔH в качестве метода наиболее простого измерения глубины проник-

новения магнитного поля в сверхпроводящие пленки, входящие в контур подобного СКИ. В настоящей работе этим методом впервые измерена глубина проникновения магнитного поля в пленку сплава 50% In–50% Sn при температуре 4,2 K, $\lambda_{InSn} = (60 \pm 10\%)$ нм.

Одной из приоритетных задач дальнейших работ с СКИ данного типа является изучение влияния на его характеристики большой шунтирующей сверхпроводящей индуктивности (10^{-6} Гн). Для ее решения требуется обеспечить достаточно большой (больше, чем критический ток контактов Джозефсона в СКИ) критический ток переходных соединений между СКИ и шунтирующей индуктивностью.

Авторы выражают благодарность А.С. Заике и сотрудникам его группы за разработку аналоговоцифрового устройства, позволившего вести регистрацию экспериментальных данных с помощью компьютера.

- 1. R.C. Jaklevic, J. Lambe, A.H. Silver, and J.E. Mercereau, *Phys. Rev. Lett.* **12**, 345 (1964).
- Слабая сверхпроводимость. Квантовые интерферометры и их применения, Б.Б. Шварц, С. Фонер (ред.), Мир, Москва (1980).
- M.J. Martinez-Perez and D. Koelle, ArXiv:1609.06182v2[condmat. supr-con] 28 0ct 2016.
- В.П. Коверя, С.И. Бондаренко, А.В. Кревсун, Н.М. Левченко, И.С. Бондаренко, ФНТ 36, 759 (2010) [Low Temp. Phys. 36, 605 (2010)].
- С.И. Бондаренко, В.П. Коверя, А.В. Кревсун, Л.В. Гнездилова, *ФНТ* 41, 235 (2015) [*Low Temp. Phys.* 41, 179 (2015)].
- S. Bondarenko and V. Koverya, *Int. J. Mod. Phys. B* 29, 1542013 (2015).
- 7. Дж. Бремер, *Сверхпроводящие устройства*, Мир, Москва (1964).
- 8. R. Meservey and P.M. Fedorow, J. Appl. Phys. 4, 543 (1969).
- К.К. Лихарев, Б.Т. Ульрих, Системы с джозефсоновскими контактами, изд.-во Московского университета, Москва (1978).
- С.И. Бондаренко, А.И. Вердян, Л.Д. Демьянов, ЖТФ 42, 1039 (1972).
- 11. S. Michotte, D. Lucot, and D. Mailly, *Phys. Rev. B* 81, 100503-1 (2010).

Thin film superconducting quantum interferometer with ultra-low inductance

S.I. Bondarenko, A.V. Krevsun, E.V. Ilichev, U. Hubner, V.P. Koverya, and S.I. Link

Simple manufacturing thin film superconducting quantum interferometer (SQI) with an ultra-low inductance (~ 10^{-13} H) has been developed. Current-

voltage and voltage-field characteristics of SQI are presented. The main calculated ratios, confirmed by experiment, are obtained. The penetration depth of a magnetic field in an alloy film 50% In–50% Sn for the first time is defined by means of the SQI.

PACS: 74.50.+r Proximity effects, weak links, tunneling phenomena, Josephson effects;
74.25.F- Transport properties;
74.25.Ha Magnetic properties including vortex structures and related phenomena;
74.78.-w Superconducting films and low-dimensional structures.

Keywords: superconducting quantum interferometer, Josephson contact, double-connected superconductor, quantization area, circulating current.