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We consider a new kind of superconducting proximity effect created by the tunneling of “spin split” Cooper 
pairs between two conventional superconductors connected by a normal conductor containing a quantum dot. 
The difference compared to the usual superconducting proximity effect is that the spin states of the tunneling 
Cooper pairs are split into singlet and triplet components by the electron spin-orbit coupling, which is assumed 
to be active in the normal conductor only. We demonstrate that the supercurrent carried by the spin-split Cooper 
pairs can be manipulated both mechanically and electrically for strengths of the spin-orbit coupling that can real-
istically be achieved by electrostatic gates. 

PACS: 72.25.Hg Electrical injection of spin polarized carriers; 
72.25.Rb Spin relaxation and scattering. 
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1. Introduction

The prominent role that the electronic spin plays in de-
termining the properties of solid-state devices has been at 
the forefront of experimental and theoretical research during 
the last decade. The topological surface electronic states, 
that are formed due to a strong spin-orbit coupling, with 
their vast potential for quantum computations [1,2] and 
spintronic applications [3] of spin-polarized currents, are just 
a few conspicuous examples. Conducting nanostructures, 
e.g., quantum dots, nanowires and nanorings, where the 
mesoscopic behavior of the electrons is dominated by Cou-
lomb correlations and quantum-phase coherence, are by 
now the tools of choice for studying spin-related phenom-
ena, in particular effects induced by the spin-orbit cou-
pling. Composite mesoscopic structures comprising such 
nanometer-sized elements are currently of considerable 
interest due to their applicability in quantum communica-
tion systems [4–6]. The hope is to provide a coherent plat-
form for flying qubits: moving two-state spinors, which may 
represent the electronic spin [7] or any other pseudo-spin 
state, e.g., of particles moving in two coupled wires [8]. 

Clearly, spin-state decoherence is detrimental to spin-
tronics applications involving, e.g., flying qubits. Reducing 
the scattering rate of spin-polarized electrons in order to pre-

serve spin coherence is therefore essential, and is the rea-
son why using superconducting materials have been con-
sidered. However, while electron transport in a supercon-
ductor is indeed fully coherent, the supercurrent carried by 
spin-singlet Cooper pairs in a conventional superconductor 
conducts charge but not spin. If, on the other hand, the 
Cooper pairs could be spin polarized it would mean that a 
coherent, dissipationless spin current could be generated. 
Hence, it is highly desirable to find methods for generating 
spin-polarized Cooper pairs. Recently, such a method — 
involving the creation of spin-polarized Cooper pairs in 
superconducting weak links made of materials with a strong 
spin-orbit interaction (SOI) — was proposed. It was shown 
that the spin-structure of the Cooper pairs, injected into a 
non-superconducting material in which the spin-orbit inter-
action is significant, can be “predesigned” in such a way that 
a net electronic spin-polarization is carried through an SOI-
active weak link that connects the superconducting leads. 
The physics behind this phenomenon is the splitting of the 
transferred electronic states within the weak link with re-
spect to spin — the so-called “Rashba spin-splitting” [9]. As 
a consequence of this spin splitting, the electronic spin expe-
riences quantum fluctuations that lead to a “triplet-channel” 
for Cooper-pair transport through the link. 
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The ability to inject electrons paired in a spin-triplet 
state into a conventional BCS superconductor from an 
SOI-active superconducting weak link, opens a route to all 
kinds of spintronics applications that can be implemented 
by using a dissipationless spin current. However, the ap-
pearance of spin-triplet Cooper pairs in a conventional 
BCS superconductor is a so-called proximity effect, and 
spin-polarized Cooper pairs are present only in the vicinity 
of the weak link. In addition, the triplet states are vulnera-
ble to any spin-relaxation mechanism in the superconduc-
tor. A clever composite device-design is therefore required 
to allow for the accumulation of paired electrons with a 
non-zero net spin, while significantly blocking their spin 
relaxation. 

In the present paper we suggest such a design, and pro-
pose a new type of a superconducting weak link in which 
Rashba spin-split states involving pairs of time-reversed 
(“Cooper pair”) states can be established through the prox-
imity effect. The generic component of the device is a 
quantum dot coupled to two superconductors through SOI-
active weak links in the form of nanowires, as illustrated in 
Fig. 1. A significant advantage of the device is its relative-
ly low spin relaxation rate — a well-known property of 
quantum dots [10–14]. The extent to which spin is accu-
mulated on the dot can be controlled by electric fields that 
modify the SOI strength [15–18]. Another handle on the 
device is the possibility to tune mechanically the physical 
location of the dot, and thus affect the amount of tunneling 
between the two reservoirs [19,20]. 

The paper is organized as follows. Section 2 introduces 
the Hamiltonian of our model and details the calculation of 
the transmission of Cooper pairs between two supercon-
ductors connected by a weak link on which the transferred 
electrons are subjected to a spin-orbit interaction. We in-
clude in the calculation two important effects. (i) The SOI 
on the left wire can differ from the one on the right wire 
(see Fig. 1), both in strength and in the direction of the 
effective magnetic field that characterizes this interaction. 
(ii) The passage of a Cooper pair through the weak link can 
take place either by sequential tunneling, during which the 
two electrons tunnel one by one and the dot is at most sin-
gly occupied, or by events in which the two electrons hap-
pen to reside simultaneously on the dot during the tunnel-

ing. In the latter case, one has to account for the Coulomb 
interaction on the dot. Obviously these two processes con-
tribute disparately to the transport. We dwell on the two 
separate contributions and their dependence on the geome-
try of the junction in Sec. 3. Since we consider in Sec. 2 
the transfer of Cooper pairs, in which the two electrons are 
in time-reversed states, we need to construct the relation 
between the (spin-dependent) tunneling amplitudes in the-
se two states. This task is accomplished in Appendix A. 
The transmission of Cooper pairs is analyzed by studying 
the equilibrium Josephson current between the two reser-
voirs. In particular, we analyze the manner by which the 
spins of the tunneling electrons precess as they pass 
through the weak link. Technical details of this calculation 
are relegated to Appendix B. 

Section 3 presents the results. We derive there explicit 
expressions for the spin-precession factor of each of the 
two processes alluded to above, and explain the way the 
disparity between the two reflects the coherence of the 
sequential single-electron tunneling process, and the inco-
herence of the double-electron one, during which the dot is 
doubly occupied. We also analyze there the dependence of 
the Cooper pairs’ transmission on the relative angle be-
tween the two directions of the SOI’s on the two wires. 
Our conclusions are discussed in Sec. 4. 

2. Tunneling of Cooper pairs 

2.1. Description of the model 

The spin splitting of electrons that flow through a weak 
link in which the Rashba [21,22] spin-orbit interaction is 
active, can be understood within a semiclassical picture. 
As the electrons pass through the weak link, their spins 
precess around an effective magnetic field associated with 
the SOI. This spin dynamics splits the electron wave func-
tion into different spin states and yields a certain probabil-
ity, which can be controlled externally, for the spins to be 
flipped as they emerge from the weak link [23]. The spin-
splitting phenomenon becomes more complicated when the 
transmission of a pair of electrons in two time-reversed 
states through an SOI-active weak link is considered. In 
that case there are two types of tunneling events, those 
where the electrons are transferred one by one sequentially, 
and those in which the dot is doubly occupied during the 
tunneling. This is taken into account in our model by rep-
resenting the quantum dot as a single localized level of 
energy ε which can accommodate two electrons in two 
spin states (“up” and “down”). In our simple model the 
reservoirs that supply the electrons are two bulk BCS su-
perconductors; these are coupled together by a nanowire 
on which the quantum dot is located. When on the dot, the 
spin state of one electron of the Cooper pair is projected on 
the spin-up state of the dot, and that of the other on the 
spin-down state [24]. We find that the projection breaks 
the coherent evolution of the spin states. The Pauli princi-

Fig. 1. (Color online) Spin-orbit active superconducting weak-
link. The quantum dot is represented by a single localized level of 
energy ε , and the superconducting reservoirs are denoted LS  and 

RS . The tunneling amplitude (a matrix in spin space) between the 
dot and the left (right) lead is denoted kt  ( pt ).  
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ple is assumed to be effective only on the quantum dot; 
elsewhere the passage of the electrons in and out of the dot 
is viewed as a single-electron tunneling event, whose am-
plitude includes the electronic spin precession [25]. 

The Hamiltonian of the junction illustrated in Fig. 1 
reads  

 0 tun= .+    (1) 

The Hamiltonian 0  pertains to the decoupled system, and 
includes the Hamiltonian of the quantum dot and that of 
the superconducting leads,  

 † ††
0 lead

= ,
= .

L R
d d Ud d d d α
σ σ ↑ ↓↑ ↓

σ α
ε + +∑ ∑   (2) 

The operator dσ ( †dσ) annihilates (creates) an electron in 
the spin state | σ〉  on the dot, and U  denotes the Coulomb 
repulsion. The BCS leads are described by the annihilation 
(creation) operators of the electrons there, ( )c σk p  ( †

( )c σk p ). 
[k (p) enumerates the single-particle orbital states on the 
left (right) lead.] Denoting by ( )k pε  the single-electron 
energy measured relative to the common chemical poten-
tial of the device, the Hamiltonian of the leads is  

 = ( ) †
( ) ( )lead ( )

( ),
=L R

k p c cα
σσ

σ
ε −∑ k pk p

k p
   

 † †( )
( ) ( ) ( )

( )
(e H.c.),

i L R
L R c c

ϕ

↑ − − ↓
−∆ +∑ k p k p

k p
 (3) 

where ( )L R∆  and ( )L Rϕ  are the amplitude and the phase of 
the superconducting order parameters. 

The tunneling Hamiltonian is the key component of our 
model,  

 tun = H.c. ,LD RD+ +    (4) 

where  

 ( )†
( ) ( ) ( )

( ), ,
= [t ] .L R D

L R D c d′ ′σσ σσ
′σ σ

∑ k p k p
k p

  (5) 

The probability amplitude for the transfer of an electron 
from the spin state | ′σ 〉  on the dot to the state | ( ),σ〉k p  in 
the left (right) reservoir is ( )

( )[t ]L R D
′σσk p , which allows for 

spin flips during the tunneling. This amplitude is conven-
iently separated into a (scalar) orbital amplitude, and a 
unitary matrix (in spin space), denoted W, that contains the 
effects of the SOI (whether of the Rashba [21,22] or the 
Dresselhaus [26] type), and also the dependence on the 
spatial direction of the SOI-active wire. The spin-orbit in-
teraction associated with strains is briefly mentioned in 
Sec. 3. For the linear SOI [9], the tunneling amplitude can 
be presented in the form  

 ( ) ( )( )
( )t = e ,

ikL R D L R DF L R
L R

d
it

−
k W  (6) 

where Fk  is the Fermi wave vector in the leads, and 
( )L Rd  is the length of the bond between the left (right) 

lead and the dot. The generic form of W is [27,28]  

 ( )
( ) ( )= ,L R D

L R L Ra i+ ⋅W bσ  (7) 

where ( )L Ra  is a real scalar and ( )L Rb  is a real vector (de-
termined by the symmetry axis of the SOI and the spatial 
direction of the weak link), with 2

( ) ( ) ( ) = 1L R L R L Ra + ⋅b b  
(σ  is the vector of the Pauli matrices). In the absence of the 
spin-orbit interaction ( )L RW  is just the unit matrix, name-
ly, ( ) = 1L Ra  and ( ) = 0L Rb  . Explicit expressions for the 
spin-orbit coupling are discussed in Sec. 3. 

Since the two electrons of a Cooper pair are in two 
states connected by the time-reversal transformation, one 
has to consider also the tunneling amplitude between the 
time-reversed states of | ′σ 〉  and | ( ),σ〉k p , which we denote 
by an overline, i.e., | ( ) |yi′ ′σ 〉 ≡ σ σ 〉  and | ( ), .− − σ〉k p  The 

corresponding amplitude, ( )
( )[ ]L R D

′σσk pt , describes the trans-

fer of an electron from the spin state | ′σ 〉  on the dot to the 
state | ( ),− − σ〉k p  in the left (right) lead. It is given by  

 ( ) ( ) 1
( ) ( )

ˆ ˆ; = ( ) ,L R D L R D
yK i−≡ σk p k pt Tt T T  (8) 

( yσ  is a Pauli matrix, and K  is the complex conjugation 
operator). We derive in Appendix A the relation  

 ( ) ( )
( ) ( )[ ] = [( ) ] ,L R D L R D ∗

′ ′σσ σσk p k pt t  (9) 

which is of paramount importance in our considerations. 

2.2. The particle current 

The flow of electrons between the two superconductors 
is analyzed by studying the equilibrium Josephson current, 
i.e., the rate by which electrons leave the left (or the right) 
superconductor, when the chemical potentials of the two 
reservoirs are identical (and therefore a flow of quasi-
particles is prohibited by the gap in the quasiparticle densi-
ty of states in the superconducting leads). 

Using units in which = 1 , this rate is  

 †

,
= ( / ) = 2Im ( ) ,LDJ d dt c c tσσ

σ
− 〈 〉 − 〈 〉∑ kk

k
  (10) 

where the angular brackets denote quantum averaging. It is 
evaluated using the S-matrix,  

 1( ) = ( , ) ( ) ( , ) ,LD LDt S t t S t−〈 〉 〈 −∞ −∞ 〉   (11) 

with 0 0( ) = exp[ ] exp[ ]LD LDt i t i t−    , and the quan-
tum average is with respect to 0 . As the leading-order 
contribution to J  is fourth-order in the tunneling Hamilto-
nian, it is found from the expansion up to third order of the 
S-matrix [29],  
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1

1 2

1 tun 1 1 2 tun 1 tun 2

1 2 3 tun 1 tun 2 tun 3

( , ) =1 ( ) ( ) ( )

( ) ( ) ( ) .

tt t

t tt

S t i dt t dt dt t t

i dt dt dt t t t

−∞ −∞ −∞

−∞ −∞ −∞

−∞ − − +

+

∫ ∫ ∫

∫ ∫ ∫

  

  

  (12) 
The energy level on the dot is assumed to lie well above 
the chemical potential of the leads, and thus the small pa-
rameter of the expansion is /Γ ε , where = L RΓ Γ +Γ  is the 
total width of the resonance level created on the dot due to 
the coupling with the bulk reservoirs (each coupling induc-
es a partial width ( )L RΓ , see Appendix B). This implies 
that the perturbation expansion is carried out on a dot 
which is empty when decoupled [30]. We list and discuss 
the relevant terms in the expansion of J  in Appendix B. 

As mentioned, the total Josephson current in our junc-
tion is due to the two processes available for the tunneling 
pairs. In the first, whose contribution is denoted sJ , double 
occupancy on the dot does not occur, and the transfer of 
the electron pair is accomplished by a sequential tunneling 
of the paired electrons one by one. In the second process 
that contributes dJ , the dot is doubly occupied during the 
tunneling. The (lengthy but straightforward) calculation 
presented in Appendix B yields  

 ,s dJ J J= +  (13) 

where  

 0

0

( / ) ,

2 ( / , / ) .

s s s

d d d

J I F

J I F U

= ε ∆

= ε ∆ ∆




 (14) 

These results are obtained, for simplicity, in the zero-
temperature limit, and for =L R∆ ∆ ≡ ∆. The common fac-
tor 0I  in the expressions for sJ  and dJ  is the Josephson 
amplitude of the interface between the two superconduc-
tors (i.e., when the localized level on the dot as well as the 
SOI are ignored), 0 = 2sin( )[ / ]R L L RI ϕ −ϕ Γ Γ ∆ . The dis-
parity of the two tunneling processes comes into play in 
the other two factors in Eqs. (14). The functions sF  and 

dF  [31], given in Eqs. (B5) and (B9) and reproduced here 
for convenience,  

 

1( )
cosh

1 1 , ,
cosh cosh cosh

ps k

k

k p p

dd
F

∞ ∞

−∞ −∞

ζζ
ε = ×

π π ζ + ε

ε
× ε =

ζ + ζ ζ + ε ∆

∫ ∫







 (15) 

and  

 

1( , )
cosh

1 1 , , ,
cosh2

pd k

k

p

dd
F U

UU
U

∞ ∞

−∞ −∞

ζζ
ε = ×

π π ζ + ε

ε
× ε = =

ζ + ε ∆ ∆ε +

∫ ∫













 (16) 

convey the effect of the resonance on the dot, and the Cou-
lomb repulsion there. As seen, the Pauli principle tends to 
reduce the contribution of the second tunneling process. 
The last factors, s  and d , describe the amount of spin 
precession. Their detailed analysis is the topic of the next 
subsection. These two factors become 1 in the absence of 
the SOI. It follows that in the absence of the SOI, the Jo-
sephson current of our junction, 0J , is  

 0 0= [ ( / ) 2 ( / , / )] .s dJ I F F Uε ∆ + ε ∆ ∆  (17) 

The normalized Josephson current, i.e., J  of Eq. (13) di-
vided by 0J , is  

 
0

( / ) 2 ( / , / ) .
( / ) 2 ( / , / )

s s d d

s d
J F F U
J F F U

ε ∆ + ε ∆ ∆
=

ε ∆ + ε ∆ ∆

   (18) 

2.3. Spin precession 

In the sequential tunneling process, where the pair of 
electrons tunnel one by one, their spin-precession factor is  

, ,

1= sgn ( )sgn ( )
2

[( ) ] [ ] [( ) ] [ ] ,

s
L R

L R
LD LD DR DR

L L R R

′σ σ σ σ

∗ ∗
′ ′σ σ σ σ σ σ σσ

σ σ ×

×

∑ ∑

W W W W


 (19) 

while the spin-precession factor of the tunneling process 
during which the dot is doubly occupied is  

,

1= sgn( )sgn ( )
2

[( ) ] [ ] [( ) ] [ ] .

d
L R

L R
LD LD DR DR

L L R R

σ σ σ

∗ ∗
σ σ σ σ σσ σσ

σ σ ×

×

∑ ∑

W W W W


 (20) 

[See the derivation in Appendix B that leads to Eqs. (B4) 
and (B8), reproduced in Eqs. (19) and (20) for convenience.] 

It is illuminating to scrutinize the summations over the 
spin indices. The factor s  can be written as  

,

2 2

1= sgn( )sgn( )[( ) ] [ ]
2

= |[ ] | |[ ] | ,

s LR LR
L R L R L R

L R
LR LR

∗
σ σ σ σ

σ σ

↑↑ ↑↓

σ σ =

−

∑ W W

W W



  (21) 

where the direct spin part of the tunneling amplitude from 
the right lead to left one is  

 [ ] = [ ] [ ] .LR LD DR
L R L Rσ σ σ σ σσ

σ
∑W W W  (22) 

In contrast, the spin-precession factor of the double-
occupancy channel cannot be expressed in terms of the 
direct amplitudes; we find  

 
2 2

2 2

= (| [ ] | | [ ] | )

(| [ ] | | [ ] | ) .

d LD LD

DR DR
↑↑ ↑↓

↑↑ ↑↓

− ×

× −

W W

W W


 (23) 
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One notes that d , Eq. (23), is a product of two factors of 
the same structure as the single factor in s , Eq. (21). Our 
interpretation is that s  describes the coherent transfer of 
a Cooper pair from the right to the left lead, while d  de-
scribes first a coherent Cooper pair transfer from the right 
lead to the dot, where coherence is lost, then a second co-
herent transfer from the dot to the left lead. Both contribu-
tions to the Josephson current, sJ  and dJ  [see Eqs. (13) 
and (14)], are suppressed to a certain extent by the spin-
precession (as compared with their respective values in the 
absence of the SOI). Which of them is more severely af-
fected is determined by the geometry of the junction and 
the symmetry direction of the SOI. This feature is dis-
cussed in Sec. 3. 

The effect of the spin-orbit coupling on the super-
current is embedded in the precession of the spins it in-
duces. It is therefore natural to express the current, in 
particular the precession factors, in terms of orientations 
of the effective magnetic fields responsible for the pre-
cession in the left and right SOI-active nanowires. In-
deed, upon carrying out the spin summations in Eqs. (18) 
and (20) within each reservoir [i.e., on Lσ  and Rσ  using 
Eq. (7) for W], one finds that these factors can be ex-
pressed in terms of the vectors LV  and RV , that represent 
the effective magnetic fields,  

sgn ( )[( ) ] [ ] [ ] ,

sgn ( )[ ] [( ) ] [ ] .

LD LD
L LL L

L
DR DR

R RR R
R

∗
′ ′σ σ σ σ σ σ

σ

∗
′ ′σσ σ σ σσ

σ

σ ≡ ⋅

σ ≡ ⋅

∑

∑

W W V

W W V

σ

σ
 (24) 

The vectors ( )L RV  are determined by the detailed form of 
the SOI, Eq. (7),  

 
( ) ( ) ( )

2
( ) ( ) ( )

= 2

ˆ ˆ2 (1 2 ).

L R L R z L R

L R L R L R

b

a b

+

+ × + −

V b

b z z
 (25) 

Inserting Eqs. (24) into the spin-precession factors 
Eqs. (19) and (20), one finds  

 
= ,

= .

s
L R

d
Lz RzV V

⋅V V


 (26) 

It is thus seen that due to the Pauli exclusion principle, 
only the components of the vectors LV  and RV  that are 
parallel to the quantization axis on the dot contribute to 
the spin-precession factor arising from the tunneling pro-
cess in which the dot is doubly occupied, whereas all 
components of these vectors participate in the spin-
precession factor of the sequential transmission. We also 
note that the difference between the two spin-precession 
factors disappears when either of the vectors ( )L RV  or 

both are directed along z-axis (which is the situation in 
the absence of the SOI coupling). 

3. Results 

Although it is possible in principle to calculate an effec-
tive SOI ab initio, it is rather ubiquitous to adopt the phe-
nomenological Hamiltonian proposed in Ref. 22. This 
Hamiltonian (named after Rashba) is valid for systems 
with a single high-symmetry axis that lack spatial inver-
sion symmetry. For an electron of an effective mass m∗ 
and momentum p propagating along a wire where the SOI 
is active, it reads  

 
Rashba

ˆ= ( ).so
so

k
m∗

σ ⋅ ×p n  (27) 

Here n̂ is a unit vector along the symmetry axis (the c-axis 
in hexagonal wurtzite crystals, the growth direction in a 
semiconductor heterostructure, the direction of an external 
electric field), and Rashba

sok  is the strength of the SOI in 
units of inverse length, which is usually taken from exper-
iments [16,18]. By exploiting the Hamiltonian (27) to find 
the propagator along a one-dimensional wire, one obtains 
that the tunneling amplitude is [19,27]  

 Rashba ˆ= e exp[ ],ikF LL so L
rit ik × ⋅kt r n σ  (28) 

with an analogous form for pt . Here ( )L Rr  is the radius 
vector pointing from the dot to the left (right) reservoir 
along the wire, and Fk  is the Fermi wave vector of an elec-
tron traversing this nanowire. The linear Dresselhaus SOI 
[26] gives rise to a comparable form for so  [28]. Another 
source for SOI’s are strains, created for instance when a 
single flat graphene ribbon is rolled up to form a tube. This 
type of SOI was modeled by the Hamiltonian  

 
strain

strain ˆ= ,F so
so

k k
m∗

⋅n σ  (29) 

where strain
sok  is a phenomenological parameter that gives 

the strength of the SOI in units of inverse length and the 
unit vector n̂ points along the nanotube [14,17]. 

In the case of the Rashba SOI, the spin-dependent fac-
tor in the tunneling amplitude Eq. (28) can be written in 
the form  

 ˆ ˆ= exp[ ] = cos ( ) sin ( ) ,i iα ⋅ α + α ⋅W v v  σ σ  (30) 

where α  is proportional to the strength of the spin-orbit 
coupling and both α  and the unit vector v̂ are determined 
by the symmetry direction of the SOI and the geometrical 
configuration of the junction: Rashba= sinsok dα ϕ , where d  
is the length of the SOI-active bridge, and ϕ  is the angle 
between the wire direction and n̂, the symmetry axis of the 
interaction. 
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The parameters that characterize the spin-orbit coupling 
can be controlled experimentally. The capability to 
tune the strength of the spin-orbit interaction electrostati-
cally was first demonstrated in Ref. 15 on inverted 
In0.53Ga0.47As/In0.52Al0.48As heterostructures. A more 
recent experimental evidence is found in Ref. 16, that 
describes measurements on the inversion layer of a 
In0.75Ga0.25As/In0.75Al0.25As semiconductor heterostruc-
ture, and in Ref. 18, which reports on a dual-gated 
InAs/GaSb quantum well. The electrodes in these experi-
ments are two-dimensional electron (or hole) gas bulk 
conductors; two gate electrodes are used to tune both the 
carriers’ concentration and the strength of the SOI. The 
spin-orbit coupling is characterized by the “Rashba param-
eter” Rα , whose relation to Rashba

sok  is  

 Rashba 2= / ,so Rk m∗α   (31) 

where Rα  is measured in [meV⋅Å] (we keep  in the ex-
perimental estimations). In Ref. 16, the spin-orbit coupling 
constant α varied with the gate voltage between roughly 
150 and 300 meV⋅Å. Attributing α mainly to the Rashba 
SOI parameter Rα , and using = 0.04m m∗  (m is the free-
electron mass), one concludes that if a weak link were to 
be electrostatically defined in such a system, then 

Rashba
sok d  could be varied from ~ 8 to ~ 16 for d = 1 µm. 

The ratio of the effective mass to the free-electron mass 
quoted in Ref. 18 is comparable; in this quantum well the 
Dresselhous SOI was kept constant while Rα  could be 

varied between 53 and 75 meV Å, leading to Rashba
sok d  that 

varies from ~ 8 to ~ 16 for d = 1 µm. 
As an explicit example, we consider a weak link of the 

form of two straight segments, whose SOI’s parameters are 
( )L Rα  and ( )ˆ L Rv . One then finds that the two spin-

precession factors, Eqs. (26), are [see Eqs. (25) and (30)]  

 2 2= [cos (2 ) 2 ][cos(2 ) 2 ],d
L Lz R Rz′ ′α + α +  v v  (32) 

and  

 
= 4sin( )sin( )

ˆ ˆ{[ ] [cos( ) cos( ) ]
[cos( ) cos( ) ]} ,

s d
L R

L R z R Lz L Rz

L R L R Lz Rz⊥ ⊥

+ α α ×
′ ′× × α − α +

′ ′+ ⋅ α α +
v v

v v

 

 

 

 
v v

v v
 (33) 

where  

 ( ) ( ) ( )= sin( ).L R z L R z L R′ αv v  (34) 

(The notation ⊥  indicates the part of the vector normal to
ˆ.)z  For instance, when both ˆ Lv  and ˆ Rv  are along ẑ , then 

1s d= =  , and the effect of the SOI disappears. On the 
other hand, when the spin-orbit coupling is due to the 
Rashba interaction with an electric field directed along ẑ  
and the junction is lying in the XY plane (see Fig. 1), then 
ˆ Lv  and ˆ Rv  are in the XY plane. In that case the spin-
precession factors are  

 
cos (2 )cos (2 ) ,

sin (2 )sin (2 )cos ( ) ,

d
L R

s d
L R

= α α

= + α α θ

 

 



 
 (35) 

where θ is the angle between ˆ Lv  and ˆ Rv . We plot in Fig. 2 
the normalized Josephson current, Eq. (18), for = =R Lα α α    
and the spin-precession factors as given in Eqs. (35), as a 
function of the angle θ, for various values of the spin-
orbit strength α . One notes the change of sign of the 
normalized Josephson current, as a function of the angle 
θ between ˆ Lv  and ˆ Rv . 

Figure 3 displays the normalized Josephson current as a 
function of both θ and the spin-orbit coupling constant α . 

Fig. 2. (Color online) The normalized Josephson current, Eq. (18), as 
a function of the angle θ  between ˆ Lv  and ˆ Rv  [see Eqs. (35)] for 
various values of = =R Lα α α   . Straight (black) line — = 0α  (1), 
tiny-dashed (blue) curve — = 0.2α  (2), medium-dashed (magenta) 
curve — = 0.4α  (3), large-dashed (red) curve — = 0.6α  (4), dot-
ted (brown) curve — = 0.8α  (5), dot-dashed (black) curve — 

= 1α  (6), dot-dashed (orange) curve — = 1.2α  (7). The parame-
ters that determine Eqs. (15) and (16) are / = 0ε ∆  and / = 5U ∆ . 

Fig. 3. (Color online) A density plot of the normalized Josephson 
current, Eq. (18), as a function of the angle θ  between ˆ Lv  and ˆ Rv  
and the spin-orbit coupling constant, α  [see Eqs. (35)]. The parame-
ters that determine Eqs. (15) and (16) are / = 0ε ∆  and / = 5U ∆ .  
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Here one notes the conspicuous oscillations as a func-
tion of ,α  which arise from the trigonometric functions 
in Eqs. (35). Figures 2 and 3 exemplify the possibility to 
vary the supercurrent in our device mechanically, by 
bending the bridge (and thus changing θ) connecting the 
superconductors. 

As mentioned, the coupling constant of the SOI can 
be manipulated experimentally by varying gate voltages. 
Additional functionality is obtained when the orienta-
tions of these electric fields (induced by the gates) in the 
two arms of the bridge are made to be different. The 
simplest example is when the two arms of the bridge lie 
along the x-axis, with the electric field on the left nan-
owire directed along z, while that on the right one is in 
the YZ-plane, making an angle γ  with the electric field 
on the left wire. In this configuration, ˆ ˆ=L −v y  and 
ˆ ˆ ˆ= cos ( ) sin ( ).R − γ + γv y z  Using these expressions in 
Eqs. (32), (33), and (34) gives  

 
2 2

2

cos(2 )[cos (2 ) 2sin ( )sin ( )] ,

sin (2 )cos ( ) ,

d

s

= α α + α γ

= + α γ

  





 
 (36) 

where for simplicity we have assumed that Rashba=L so Lk dα  

and Rashba=R so Rk dα  coincide, i.e., =L Rα α ≡ α   . The nor-
malized Josephson current pertaining to this configuration, 
as a function of the angle γ  between the electric fields, is 
shown in Fig. 4 for various values of α . Its oscillation with 
respect to both γ  and α  is displayed in Fig. 5. Importantly, 
all our illustrations are based on gate-controlled SOI 
strengths that are amenable in experiment. 

4. Discussion 

We have considered the spin splitting of Cooper pairs 
that carry a supercurrent through a weak-link Josephson 
junction. Our main result, illustrated in Figs. 2–5, is the 
rich oscillatory dependence of the normalized Josephson 
current, 0/J J  [see Eq. (18)], on both the spin-orbit cou-
pling constant α  and the geometrical properties of the 
junction. In the example illustrated in Fig. 1, the latter var-
iation is manifested in the dependence of 0/J J  on the 
bending angle θ  between ˆ Lv  and ˆ Rv , which are normal 
to the wires connecting the dot with the left and right res-
ervoirs, respectively, and are lying in the the plane of the 
junction. As seen in Fig. 2, for certain specific values of θ  
and the spin-orbit coupling strength α  the current vanish-
es. Another possibility to manipulate the geometry is to 
‘mis-orient’ the electric fields that give rise to the spin-
orbit interactions on the weak link. Figures 4 and 5 display 
the dependence of the supercurrent on the angle in-
between these two fields. 

The oscillatory dependence of the supercurrent on the 
SOI strength (i.e., the dependence on α  in Figs. 2–5) re-
sults from a rather complex interference between different 
transmission events: the single-electron transmission one, 
that yields sJ , and the double-electron transmission that 
gives dJ , Eqs. (14). In the single-electron transmission 
channel the two electrons are transferred sequentially one 
by one, so that at any time during the tunneling there is 
only one electron on the bridge. By contrast, in the other 
transmission channel both electrons appear in the link for 
some period of time, which means that in the Coulomb-
blockade limit the transfer of Cooper pairs in this channel 

Fig. 4. (Color online) The normalized Josephson current, Eq. (18), 
as a function of the angle γ , the ‘mis-orientation’ of the electric fields 
on the left and right nanowires [see Fig. 1 and Eqs. (36)] for various 
values of = =R Lα α α   . Straight (black) line — = 0α  (1), tiny-
dashed (blue) curve — = 0.2α  (2), medium-dashed (magenta) 
curve — = 0.4α  (3), large-dashed (red) curve — = 0.6α  (4), dotted 
(brown) curve — = 0.8α  (5), dot-dashed (black) curve — = 1α  (6), 
dot-dashed (orange) curve — = 1.2α  (7). The parameters that deter-
mine Eqs. (15) and (16) are / = 0ε ∆  and / = 5U ∆ .  

Fig. 5. (Color online) A density plot of the normalized Joseph-
son current, Eq. (18), as a function of the angle γ  between in-
dicating the ‘mis-orientation’ of the electric fields on the two 
nanowires, and the spin-orbit coupling constant, α  [see Eqs. (36)]. 
The parameters that determine Eqs. (15) and (16) are / = 0ε ∆  
and / = 5U ∆ .  
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is completely suppressed. As the Coulomb blockade is 
lifted, the probability of pairs to be transferred in the dou-
ble-electron tunneling increases. As seen from Eqs. (21), 
(22), and (23), the Pauli principle operating on the dot 
breaks the coherence of the pair transfer in the double-
electron tunneling process, but does not ruin completely 
the contribution to the Josephson current. 

The pronounced oscillations of the supercurrent and the 
sign reversal can be observed for plausible lengths of the 
weak link, of the order of a micron, supposedly achievable 
by suitably-designed geometries of the gates. The magni-
tude of the Josephson current through a quantum dot is set 
by the functions sF  and dF , Eqs. (15) and (16), that are 
derived for short weak links [31]. However, whereas the 
restriction on the length d  of the bridge might be strict, 
d << ξ for the orbital part (ξ  is the superconducting coher-
ence length), it is far weaker for the spin-dependent part: 

Rashba
so Fk d k<< ξ, since the spin-precession factors s  and 
d  are not sensitive to the energy dependence of the 

transmission amplitude [9]. Our results indicate interesting 
phenomena caused by SOI-induced spin polarization of 
Cooper pairs. 

An intriguing feature of our result concerns the spin-
polarization created on the dot due to the superconducting 
proximity effect in conjunction with the spin-orbit cou-
pling. Calculating this polarization may require higher-
orders in the tunneling, which are beyond the scope of the 
present analysis. 
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Appendix A: Time-reversal symmetry and the 
tunneling amplitudes 

Here we discuss the effect of the time-reversal trans-
formation on the tunneling amplitudes of Eq. (5) as given 
in Eqs. (6) and (7), and prove Eq. (9). Consider for in-
stance [ ]LD

′σσkt , the probability amplitude for an electron 
to go from the the state | ′σ 〉  on the dot to the state | ,σ〉k  on 
the left lead. We denote by an overline the quantities relat-
ed to the time-reversed process. Thus, [ ]LD

′σσkt  is the 
probability amplitude for the time-reversed process which 
takes an electron from the time-reversed state of | ′σ 〉  on the 
dot, — i.e., from | ′σ 〉  — to the time-reversed state of | ,σ〉k  
in the left lead, that is, to | ,− σ〉k . The time-reversal trans-
formation is given in Eq. (8), and is reproduced here for 
clarity, 

 1ˆ ˆ= ,LD LD −
k kt Tt T  (A1) 

where ˆ = ( )yK iσT  is the time-reversal operator; K  is the 
complex conjugation operator, and yσ  is the Pauli matrix. 
Hence,  

 
| ( ) | = | ,

| ( ) | =| .

y

y

i

i

↑〉 ≡ σ ↑〉 − ↓〉

↓〉 ≡ σ ↓〉 ↑〉
 (A2) 

The spin-orbit interaction by itself is time-reversal sym-
metric, i.e., its matrix part W [see Eqs. (6) and (7)] is in-
variant under the time-reversal transformation, =W W, 
while the scalar factor (i.e., ( ) ( )exp[ ]L R F L Rit ik d−  is com-
plex-conjugated. It remains to find the tunneling amplitude 
in the basis of the time-reversed states. To this end we use 
the generic form of the linear SOI, W  [see Eq. (7)]. Using 
Eqs. (A2), one finds  

 
( ) ( )[ ] = [( ) ] ,

L R D L R D ∗
′ ′σσ σσW W  (A3) 

which leads to the relation Eq. (9). 

Appendix B: Expansion of the particle current 

Upon using the expansion Eq. (12) in the expression 
(10) for the particle current, one finds quite a number of 
terms. However, only four of them describe the transfer of 
Cooper pairs at thermal equilibrium, 

____________________________________________________ 

1 2

2 1

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 2 3

[ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ]

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .

t tt

LD DR LD DR LD LD DR DR

t tt t t t

LD LD DR DR LD DR LD DR

i dt dt dt t t t t t t t t

i dt dt dt t t t t i dt dt dt t t t t

−∞ −∞ −∞

−∞ −∞ −∞ −∞ −∞ −∞

〈 〉 + 〈 〉 −

− 〈 〉 + 〈 〉

∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

       

       

 (B1) 

_______________________________________________

Recall that the dot is empty in the decoupled state of 
the junction [30]. Examining the expressions in Eq. (B1) 
in conjunction with Eq. (5) shows the following fea-

tures. (i) Each of the terms corresponds to the annihila-
tion of a pair of electrons in the right reservoir and the 
creation of a pair in the left reservoir. [Note that the 
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particle current, Eq. (10), requires the imaginary part of 
(B1), which means that it includes also analogous terms 
corresponding to a pair creation in the right reservoir, 
and a pair annihilation in the left one.] As the electrons 

in each pair are in two time-reversed states, the two tun-
neling amplitudes are related according to Eq. (9). For in-
stance, the first term in Eq. (B1) is  

____________________________________________________ 

 
1 2

, , , ,

† †
1 2 3 1 1 2 2 3 3

[ ] [ ] [ ] [ ]

† †( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .

L R L R

RL

LD DR LD DR

L R
t tt

L

i

dt dt dt c t d t d t c t c t d t d t c t

′ ′ ′σ σ σ σ σ σ σ σ
′σ σ σ σ

′ ′σ − σ σ σ′ ′σ σ− σ σ
−∞ −∞ −∞

×

× 〈 〉

∑ ∑

∫ ∫ ∫

k p k p
k p

p pk k

t t t t

 (B2) 

_______________________________________________

(ii) Two of the terms in Eq. (B1), the first and the fourth, 
correspond to sequential tunneling, in which the dot is only 
singly occupied in the intermediate state. In the other two 
terms, the dot is doubly occupied in the intermediate state, 
and therefore the evolution of the spin states of the tunneling 
pair is disrupted. (iii) The quantum averages of the operators 
of the reservoirs are nonzero only in the superconducting 
state, i.e., when both leads are superconducting. 

The remaining part of the calculation is routine: using the 
Bogoliubov transformation, one derives the time-dependent 
quantum average of the operators of the reservoirs. Those on 
the dot are calculated using the Hamiltonian of the decoupled 
dot [the first two terms on the right hand-side of Eq. (2)]. 
In this way, the expression in Eq. (B2) becomes 

 

( 2 2

,

)2e | | | |

1 1 1 .
2 2

i R L

sL R

k p k k p p

t t

E E E E E E

ϕ −ϕ− ×

∆ ∆
×

+ ε + + ε

∑ k p
k p


 (B3) 

where 2 2 2
( ) ( ) ( )=k p k p L RE ε + ∆ . For simplicity, the tempera-

ture is set to zero. In deriving this expression, we have 
made use of Eq. (9), that relates the tunneling amplitudes 
of two time-reversed events. The factor s  describes the 
spin precession in the sequential tunneling processes [i.e., 
the first and the fourth terms in Eq. (B2)]. Explicitly,  

,
, ,

1= sgn ( )sgn ( )[( ) ]
2

[ ] [( ) ] [ ] .

L
L R

L

s LD
L R

LD DR DR
R R

∗
′σ σ

′σ σ σ σ

∗
′σ σ σ σ σσ

σ σ ×

×

∑ ∑ W

W W W


 (B4) 

As in the absence of the SOI the matrices W are all just the 
unit matrix, the spin-precession factor s  becomes then 1. 
The sums over k and p are carried out assuming that 

2
( )| |tk p  and the single-particle density of states of the 

leads can be approximated by their respective values at the 
Fermi energy, 2

( )| |L Rt  and ( )L RN . For a short weak link 

with =L R∆ ∆ ≡ ∆  [31], these sums then give 
s( / ) ( / )L R FΓ Γ ∆ ε ∆ , where 2

( ) ( ) ( )= | |L R L R L RN tΓ π , and 

the function sF  is  

1

( ) =

[(cosh )(cosh cosh )(cosh )] ,

= / .

s k

p
k k p p

d
F

d

∞

−∞
∞

−

−∞

ζ
ε ×

π

ζ
× ζ + ε ζ + ζ ζ + ε

π

ε ε ∆

∫

∫

  (B5) 

An identical result is obtained for the fourth term in the 
expansion (B1). The imaginary part of the expression in 
Eq. (B3) consists of three factors, the Josephson amplitude 
of the interface between the two superconductors (i,e., in 
the absence of the resonant level on the dot and the SOI), 

0 = 2sin( )[ / ]R L L RI ϕ −ϕ Γ Γ ∆ , the function sF  that con-
veys the effect of the localized level on the dot, and the 
spin-precession factor, s . The two latter factors are dis-
cussed in Sec. 3. 

The second term in Eq. (B1), which pertains to the situ-
ation where during the tunneling process the dot is doubly 
occupied, reads  

 
1 2

, , ,

†
1 2 3 1 1 2

†
2 3 3

[ ] [ ] [ ] [ ]

† †( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ,

L R L R
R

L L

R R

LD DR LD DR

L
t tt

i

dt dt dt c t d t c t d t d t

c t d t c t

σ σ σσ σ σ σσ
σ σ σ

σ σ σ− σ σ
−∞ −∞ −∞

− σ σ σ

×

× 〈 ×

× 〉

∑ ∑
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k p k p
k p

k k

p p

t t t t

  

  (B6) 

where we have taken into account the Pauli principle, and 
therefore there are only three summations over the spin 
indices [c.f. Eq. (B2)]. In this case we obtain  

 
( 2 2

,

1 1 1)4e | | | | ,
2 2 2

i dL RR L
k p k p

t t
E E E U E

ϕ ∆ ∆−ϕ−
+ε ε+ +ε∑ k p

k p


  (B7) 

where d  describes the spin precession in the tunneling 
processes in which the two electrons reside simultaneously 
on the dot in the intermediate sate [i.e., the second and the 
third terms in Eq. (B2)]. Its explicit form is  
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,

1= sgn ( )sgn ( )[( ) ]
2

[ ] [( ) ] [ ] .

L
L R

L R R

d LD
L R

LD DR DR

∗
σ σ

σ σ σ

∗
σ σ σσ σσ

σ σ ×

×

∑ ∑ W

W W W


 (B8) 

Similar to s , this factor also becomes 1 in the absence of 
the SOI. The sums over k and p are carried out as ex-
plained above. Because of the double occupancy of the dot, 
the energy denominators in Eq. (B7) differ from those in 
Eq. (B3). These summations give rise to another function, 

( / , / )dF Uε ∆ ∆ , of the energies on the dot [31]  

 1

( , ) =

[(cosh )(2 )(cosh )] ,

= / , = / .

d

pk
k p

F U

dd
U

U U

∞ ∞
−

−∞ −∞

ε

ζζ
= ζ + ε ε + ζ + ε

π π

ε ε ∆ ∆

∫ ∫







  





  

  (B9) 

Since the third term in the expansion (B1) turns out to be 
identical to Eq. (B7), it follows that the contribution from 
these tunneling processes to the Josephson current is again 
a product of three factors, 0I , dF , and d . 
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