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We study theoretically the propagation of Josephson plasma waves (JPWs) localized on a slab of layered su-
perconductor in the presence of an external dc magnetic field. The slab is sandwiched between two dielectric 
half-spaces and the wave modes propagate across the layers. We derive analytic expressions for the dispersion 
relations of the localized JPWs and present the numerical simulation for the effect of the external dc magnetic 
field on the dispersion. The anomalous dispersion of localized JPWs is predicted for a wide range of frequencies, 
wave vectors, and dc fields. Also, we discuss the possibility of the internal reflection of the localized modes in 
the inhomogeneous dc magnetic field. This phenomenon can find application in the terahertz electronics for the 
control of the localized mode propagation. 

PACS: 74.72.–h Cuprate superconductors; 
73.20.Mf Collective excitations (including excitons, polarons, plasmons and other charge-density 
excitations); 
52.35.Mw Nonlinear phenomena: waves, wave propagation, and other interactions. 

Keywords: layered superconductors, localized Josephson plasma waves, dc magnetic field, anomalous dispersion. 

1. Introduction

Layered superconductors are periodic materials, where 
thin superconducting layers are separated by thicker insulat-
ing ones and are electrodynamically related to each other by 
means of the intrinsic Josephson effect (see Fig. 1). The ex-
perimental confirmation of such an electrodynamic model 
for layered superconductors can be found in Refs. 1, 2. 
High-temperature superconductors based on Bi, La, or Y 
with CuO2 superconducting layers belong to this family of 
materials. The essential property of layered superconductors 
is the considerable anisotropy of their current-carrying capa-
bility. The current along the layers is of the same nature as 
in the bulk superconductors and is much stronger than the 
current across the layers caused by the Josephson effect. 
Thus, the so-called Josephson plasma is formed in layered 
superconductors. This strongly anisotropic Josephson solid-
state plasma supports the propagation of the specific excita-
tions in layered superconductors, the Josephson plasma 
waves (JPWs). These waves belong to the terahertz frequen-

cy range, which makes layered superconductors interesting 
for terahertz electronics (see, e.g., Ref. 3). In turn, the te-
rahertz technologies are promising for various applications, 
including medical diagnostics and security control (see, e.g., 
Ref. 4). Furthermore, the study of the interaction of strong 
terahertz pulses with layered superconductors (see experi-

Fig. 1. Sketch of the setup. Here D is the thickness of the sample, 
H0 is the external dc magnetic field, k is the wave vector. 
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mental works Refs. 5,6,7) may reveal new possibilities for 
high-temperature superconductive state control. 

In the Josephson plasma, various interesting electro-
dynamic phenomena can be observed, both common and 
uncommon to the other types of plasmas. As was theoreti-
cally demonstrated in Refs. 8, 9, the surface JPWs can pro-
pagate along the interface between the layered superconduc-
tor and external dielectric, similarly to surface plasmon–
polaritons in usual plasmas. The excitation of these waves 
leads to various resonant phenomena [9,11,12] similar to the 
Wood anomalies well known in optics (see Refs. 13–15). 
However, contrary to usual plasmas, the surface JPWs can 
propagate with frequencies not only below the plasma fre-
quency but also above it [9]. As was shown in Ref. 16, the 
phenomena similar to the Anderson localization and the 
formation of a transparency window for THz waves can be 
observed in layered superconductors with randomly–
fluctuating value of the maximum Josephson current. 

As was described in Ref. 17, when the layers are perpen-
dicular to the slab boundaries and to the direction of JPWs 
propagation, the anomalous dispersion of the localized waves 
can be observed in layered superconductors in a certain range 
of frequencies and wave numbers. It is caused, in particular, 
by the different signs of the longitudinal and transversal 
components of the effective permittivity tensor in layered 
superconductors. A system containing material with anoma-
lous dispersion can have negative refractive index. 
Refs. 9, 10 present evidence of the negative refractive index 
for the surface JPWs in layered superconductors above the 
plasma frequency. Although the negative index materials 
were mentioned earlier in the literature (see Ref. 18), they 
started to attract great attention after 2000, when a theoreti-
cal prediction of a perfect lens creation using such materials 
was presented in Ref. 19. Since then a great amount of 
works have been carried out resulting rapid development of 
this field. Some reviews of the recent advances can be found 
in Refs. 20, 21. 

The possibility of the anomalous dispersion manipula-
tion is promising for various applications. dc magnetic 
field is one of the tools that can flexibly change the elec-
tromagnetic properties of layered superconductors. In 
Refs. 22, 23, the effect of the weak external dc magnetic 
field on the Terahertz waves transmission, reflection, and 
polarization transformation in layered superconductors was 
studied theoretically. It turned out that even relatively 
weak magnetic field can significantly change the condi-
tions for the waves propagation. Therefore, the external dc 
magnetic field turns up to be an interesting tool to control 
the localized JPWs in layered superconductors. 

In the present work, we study theoretically how the 
relatively weak external dc magnetic field affects the dis-
persion properties of the localized JPWs. The paper is 
organized as follows. In the second section of the paper, 
the studied model is presented. There are presented the 
geometry of the problem and the main equations for 

romagnetic fields. The third section is devoted to the der-
ivation of the dispersion relations for the localized modes 
in the WKB approximation and in the exact form in terms 
of the special Legendre functions. The fourth section con-
tains analysis of the obtained relations, where we consid-
er the effect of the external dc magnetic field on the dis-
persion curves. In the fifth section, we discuss the 
possibility of the internal reflection of the localized 
modes in the inhomogeneous dc magnetic field. This 
phenomenon can find application in the terahertz elec-
tronics for the control of the localized mode propagation. 
The obtained results are summarized in the conclusions. 

2. Model 

We study the linear localized JPWs propagating in a slab 
of layered superconductor sandwiched between two dielec-
tric half-spaces (see Fig. 1). The layers are perpendicular to 
the boundaries of the slab. The coordinate system is chosen 
in such a way that the z-axis is directed across the supercon-
ducting layers, i.e., along the crystallographic c-axis, and 
parallel to the boundaries of the slab. The x- and y-axes are 
directed along the superconducting layers, i.e., along the ab-
plane. The x-axis is perpendicular to the slab boundaries, 
while the y-axis is parallel to them. The slab of the thickness 
D  is located at | |< /2x D , where the upper and lower die-
lectric half-spaces with the permittivity dε  occupy the re-
gions > /2x D  and < /2x D− , respectively. Thus, the plane 

= 0x  is in the middle of the slab and divides the system into 
two symmetrical parts. The external dc magnetic field H0 is 
directed along the y-axis and is uniformly distributed outside 
the slab of layered superconductor. 

We consider the localized JPWs of the following po-
larization: 

 { }( , , , ) = 0, ( ),0 exp( ),y zx y z t H x ik z i t− ωH   

 { }( , , , ) = ( ),0, ( ) exp( ),x z zx y z t E x E x ik z i t− ωE  (1) 

where ω  is the frequency of the localized mode that prop-
agates along the z-axis, i.e., = 0yk . 

2.1. Electromagnetic field in the dielectric 

The JPWs are localized near the slab and evanesce far 
from the slab in the dielectric half-spaces. Thus, from 
Maxwell equation, we can obtain expressions for the com-
ponents yH  and zE  of the electromagnetic wave, 

 ( ) = exp[ ( /2)],y dH x H k x D± ±
    

 ( ) = exp[ ( /2)],d
z d

d

ick
E x H k x D± ±

ε ω
    (2) 

where superscripts “ + ” and “ − ” mean the upper ( > /2)x D  
and lower ( < /2)x D−  half-spaces, respectively, H ±  is the 
amplitude of the magnetic field. The decrement kd, 
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 2 2 2 2= / > 0,d z dk k c− ε ω  (3) 

determines how quickly the localized mode evanesces 
from the slab. 

2.2. Main equations for the layered superconductor 

We assume that the period d  of the layered structure of 
the superconductor is much smaller than the wavelength 
across the layers, 1.zk d   Therefore, we can present the 
electrodynamic equations for layered superconductors in 
the continual limit. We use wave equation for the vector 
potential A, which is common for macroscopic electrody-
namics (some more explanations one can find in Ref. 24), 

 
2

2 2
4graddiv = ,s
cc t

ε ∂ π
− ∆ − +

∂
AA A J  (4) 

where sε  is dielectric constant of the insulating layers in 
the superconductor. The components xJ  and yJ  of the 
current density J along the layers are described within the 
London model, 

 
2 2= , = ,

4 4
x x y y

ab ab

c cJ A J A− −
πλ πλ

 (5) 

where abλ  is the London penetration depth in the c-axis 
direction, while the current density zJ  across the layers is 
described by the Josephson relation, 

 = sin .z cJ J ϕ  (6) 

Here cJ  is the maximum Josephson current density and ϕ 
is the gauge invariant interlayer phase difference [25] be-
tween neighboring layers. 

The vector potential A is related to the electric E and 
magnetic H fields by the standard equations, 

 
1= rot , = ,
c t

∂
−

∂
AH A E  (7) 

and the scalar potential is supposed to be equal to zero. 
The z-component of the electric field produces the break-

down of electro-neutrality of superconducting layers, which 
causes additional, so-called capacitive, interlayer coupling. 
According to Ref. 26, the capacitive coupling is substantial 
only for longitudinal JPWs with frequencies close to the Jo-
sephson plasma frequency Jω . In this paper, we can neglect 
the capacitive coupling due to the smallness of the capacitive 
coupling parameter, 2= / 1,D sR sdα ε   where DR  is Debye 
length for a charge in the superconductor, s  is the thickness 
of the superconducting layers ( 1 nm).s   Then the following 
relation between the gauge invariant interlayer phase differ-
ence ϕ and the z-component of vector potential is valid: 

 0=
2zA

d
Φ

− ϕ
π

, (8) 

where 0 = /c eΦ π   is the magnetic flux quantum, e is the 
elementary charge, and c is the speed of light. 

It should be noted that from the wave Eq. (4), using 
Eqs. (5) and (6), one can obtain well-known coupled sine-
Gordon equation which is widely used in electrodynamic 
description of layered superconductors (see, e.g. Ref. 25). 
For sufficiently small frequencies, ,Jω γω  this equation 
takes the following form, 

 
2 2 2

2 2
2 2 2 2

11 sin = 0,ab c
Jz t x

  ∂ ∂ ϕ ∂ ϕ
− λ + ϕ − λ  

∂ ω ∂ ∂    
 (9) 

where = /( )c J scλ ω ε  is the London penetration depth 

along the layers, = 8 /J c sedJω π ε  is the Josephson 
plasma frequency, = /c abγ λ λ  is the anisotropy parameter. 

2.3. dc magnetic field in the layered superconductor 

Here we describe how the external dc magnetic field pen-
etrates inside the slab of the layered superconductor. In this 
paper, we study the case of relatively small magnetic fields, 

0 0 0< = / ,cH dΦ π λ  when the Josephson vortices do not 
penetrate into the superconductor. For estimations, the value 
of 0  for Bi2Sr2CaCu2O8+δ (with 7= 1.5 10 cmd −⋅  and 

3= 4 10 cm)c
−λ ⋅  is about 100 Oe. In addition, we suppose 

that the superconducting slab is sufficiently thick, 

 exp( / ) 1.cD λ   (10) 

In this case, the dc magnetic field penetrates into the lay-
ered superconductor over small distances in the form of the 
tails of two fictitious vortices, each near the corresponding 
interfaces. 

Each vortex tail can be described by the well-known so-
lution [27] of the sine-Gordon equation (9), 

 0( ) = 4arctan[exp( )],±ϕ ξ ξ ± ξ  (11) 

where subscripts “ + ” and “ − ” mean the upper ( = /2)x D  
and lower ( = /2)x D−  interfaces, respectively, near which 
the vortex tails exist, and = / cxξ λ  is normalized coordi-
nate. The constant 0ξ  corresponds to the center of the fic-
titious vortex and is defined by the normalized magnitude 

0h  of the external dc magnetic field and the normalized 
half-thickness δ  of the slab, 

   1
0 0 0 0 0= arccosh( ), = /2 , = / .ch D h H−ξ δ + δ λ   (12) 

2.4. Electromagnetic field in the layered superconductor 

In order to describe the wave propagation in the slab of 
layered superconductor, we present ϕ as a sum of static 
solutions ( )±ϕ ξ , caused by the dc magnetic field, 
Eq. (11), and a small additive ( , , )lm z tϕ ξ  induced by the 
localized mode,  

 ( , , ) = ( , , ) ( ) ( ).lmz t z t + −ϕ ξ ϕ ξ + ϕ ξ + ϕ ξ  (13) 

We seek ( , , )lm z tϕ ξ  in the form of the wave propagating 
along the z-axis, 
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 ( , , ) = ( )exp[ )].lm zz t a ik z i tϕ ξ ξ − ω  (14) 

Excluding the x- and y-components of the vector poten-
tial from the wave equation (4) and linearizing sin ,ϕ ≈ ϕ  
we derive the equation for the amplitude ( )a ξ , 

 
2
( ) [ ( ) 1] ( ) = 0
s

a u aξ′′− + ξ − ξ
κ

, (15) 

where the prime denotes derivative with respect to ξ, 

   2 1
2 2

0 0

2 2( ) = (1 )
( ) ( )cosh cosh

u −  
ξ − Ω + 

ξ − ξ ξ + ξ 
, (16) 

and = / JΩ ω ω  is the normalized frequency. Parameter sκ  
represents the normalized x-projection of the wave vector 
in the absence of the dc magnetic field, 

 
2

2 2
2 2= ( 1) 1 ,

1 /
z

s
 κ

κ Ω − + 
− Ω γ 

 (17) 

and =z z abkκ λ  is the normalized z-projection of the wave 
vector. 

Using Eq. (7), we can express the components s
yH  and 

s
zE  of the electromagnetic field in the slab via the function 
( )a ξ , 

 0 2 2 2
( )( ) =

1 /(1 / )
s
y

z

aH ξ′ξ
+ κ − Ω γ

 ,  

 0( ) = ( )s
z

iE aΩ
ξ − ξ

ε
 . (18) 

In the next section we present the analytic solution of 
Eq. (15) and derive the dispersion relations for the locali-
zed modes. 

3. Dispersion relations 

In order to derive the dispersion relation for the local-
ized JPWs in the slab of layered superconductor, we match 
the tangential components of the electric and magnetic 
fields at the interfaces of the slab, 

 
= =

s
z z

s
y y

E E

H H
ξ ±δ

±

±
ξ ±δ

= . (19) 

Rewriting this equation in terms of the amplitude ( )a ξ , 
see Eqs. (2) and (18), we achieve the following relations: 

 
1 2 2

2
( = ) =
( = ) ( 1)

s

d

a
a

−ε Ω κξ ±δ′ ±
ξ ±δ Ω − κ

 (20) 

where = /s dε ε ε  and dκ  represents the normalized spa-
tial decrement for the dielectric half-spaces, see Eq. (3), 

 2 2 2 1 2= > 0.d z
−κ γ κ − ε Ω  (21) 

It should be noted that the symmetry of the studied sys-
tem implies the symmetry of the localized modes, symmet-
ric and antisymmetric with respect to the magnetic field. 
Therefore, we can use relation (20) only for upper inter-
face, = ,ξ +δ  but impose additional conditions in the mid-
dle of the slab, 
 (0) = 0 or (0) = 0a a′  (22) 

for symmetric or antisymmetric mode, respectively. 
Differential equation (15) with condition (20) at =ξ +δ  

and one of conditions (22) define the spectrum of the local-
ized modes. In the following subsections 3.1 and 3.2 we 
present the asymptotic and exact solutions of Eq. (15), re-
spectively. 

3.1. Dispersion relations within the WKB approximation 

In this subsection, we solve Eq. (15) asymptotically. 
We restrict our study to the relatively low frequency range, 

< Jω γω . On the one hand, in this frequency range all the 
features of the anomalous dispersion affected by dc mag-
netic field can be observed. On the other hand, the high 
frequency range is hardly attained in the experiment be-
cause of destroying the superconducting state. It should be 
emphasized that Eq. (15) resembles the one-dimensional 
Schrödinger equation with 1  standing instead of the total 
energy and with ( )u ξ  instead of the potential energy. 
Therefore, in the case  

 1,sκ   (23) 

we can solve this equation by means of the WKB (quasi-
classical) approximation. In turn, inequality Eq. (23) is 
satisfied under following conditions: 

 2 2 21 / , | 1 | 1.zκ − Ω γ Ω −   (24) 

3.1.1. Frequencies higher than Jω  

We start our analysis from the case of relatively high 
frequencies, 1 < <Ω γ , when the parameter sκ  is positive 
(see Eq. (17)) and the potential energy ( )u ξ  is negative 
(see Eq. (16)). In this case, the classical turning points are 
absent and the WKB solution of (15) can be presented as 

 
W
sym( ) = sin[ ( )],

( )

KB

s
a

a b
b

ξ κ ξ
ξ′

  

 
W
asym( ) = cos[ ( )],

( )

KB

s
a

a b
b

ξ κ ξ
ξ′

 (25) 

for the symmetric and antisymmetric with respect to mag-
netic field modes. Here W

asym
KBa  and W

sym
KBa  are the integra-

tion constants, 

 
0

( ) = 1 ( )b du
ξ

ξ ξ′− ξ′∫ . (26) 
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In order to derive the dispersion relations, we substitute 
solutions (25) into Eq. (20). As a result, we get the disper-
sion relations, 

 cot[ ( )] = ,sbκ δ β       tan[ ( )] = ,sbκ δ −β  (27) 

for the symmetric and antisymmetric localized modes. 
Here 

 
1/21 2 2

0
2 2

2
= 1

( 1) 1
s

d

h
−−  ε Ω κ

β + 
Ω − κ Ω −  

. (28) 

If the z-projection of the wave vector is sufficiently large, 
1/2 / ,z

−κ ε Ω γ  then the parameter β  is small, 
1( ) 1.−β εγ   In this case, we can simplify the dispersion 

relation to the form ( ) = ( 2)/2,sb nκ δ π −  where integer 
= 3, 4,n   numerates the dispersion curves from bottom to 

top (see section 4 and Fig. 4). The odd numbers = 3, 5,n   
correspond to the symmetric modes whereas even 

= 4, 6,n   describe the antisymmetric ones. Note that we 
start the numeration from = 3n  because the dispersion 
curves with numbers = 1n  and = 2n  are located in the 
lower frequency range, < 1Ω . The last implicit dispersion 
relation can be rewritten in the explicit form for ( )zκ Ω , 

 
2 2

2
2 2 2

[ ( 2)/2]( ) = 1 1 .
( 1) ( )

z
n

b

   Ω π − κ Ω − −  
γ Ω − δ    

 (29) 

3.1.2. Frequencies lower than Jω  

Now we proceed to the low frequency range, < 1Ω . In 
this case, the electromagnetic field in the layered super-
conductor evanesces across the slab, and the wave in the 
slab can be represented as two weakly coupled surface 
modes localized near interfaces = /2x D  and = /2x D− . 
Therefore, the spectrum of such modes nearly coincides 
with the spectrum of the surface modes localized on the 
interface between the half-infinite layered superconductor 
and the half-infinite dielectric. The spectrum of these sur-
face waves was studied in Ref. 27. 

In the low frequency range, the parameter sκ  is nega-
tive, see Eq. (17), and the potential energy ( )u ξ  is posi-
tive, see Eq. (16). This means that, under conditions 

 
2

2 20
022

0

4 exp( 2 )
< 1 < 2

1 1( )
h

h
h

− δ
− Ω

+ −
, (30) 

there exist classical turning points, = tpξ ±ξ , defined by 
the equation ( = ) = 1tpu ξ ±ξ , or, according to Eq. (16), 

 2
0 2

2( ) =cosh
1

tpξ − ξ
− Ω

. (31) 

Here we keep only one summand 2
0( )cosh tp

− ξ − ξ  in 
Eq. (16) because the other summand, 2

0( )cosh tp
− ξ + ξ , is 

exponentially small. It should be noted that, under assump-
tions (10) and (24), the left-hand inequality in Eq. (30) is 
satisfied for arbitrary 0h . 

The WKB solution of Eq. (15) with classical turning 
point tpξ  can be presented in the following form: 

   

W

W

cos[| | ( ) /4], < < ,
( )

( ) =
/2 exp[ | ( ) |], 0 < < ,

( )

KB

s tp

KB

s tp

a b
b

a
a b

b


κ ξ − π ξ ξ δ

ξ′ξ 
 − κ ξ ξ ξ ξ′

 (32) 

where WKBa  is the integration constant and 

 ( ) = .( ) 1
tp

b du
ξ

ξ
ξ ξ′ξ −′∫  (33) 

The first line in Eq. (32) corresponds to the classically al-
lowed region, < <tpξ ξ δ , while the second line describes 
the classically forbidden zone, 0 < < tpξ ξ . Formula (32) 
presents the field near upper interface =ξ +δ  only. This 
solution is valid when exp( 2 | (0) |) 1,sb− κ   and we can 
neglect the weak coupling with the field near lower inter-
face, =ξ −δ , writing “ exp ” instead of “ cosh ” or “ sinh ” 
in the classically forbidden zone. 

Applying solution (32) in Eq. (20), we derive the dis-
persion relation  

 tan[| | ( ) /4] =s bκ δ − π −β  (34) 

for weakly coupled modes localized near interfaces =ξ ±δ . 
Here β  is defined by Eq. (28). If the z-projection of the wave 
vector is sufficiently large, 1/2 / ,z

−κ ε Ω γ  the parameter 
β  is small, 1.β  In this case, we can simplify the disper-
sion relation to | | ( ) = ( 1/4),s b mκ δ π +  where = 0, 1, 2,m  , 
and rewrite it in the explicit form for ( ).zκ Ω  

 
2 2 2

2
2 2 2

( 1/ 4)( ) = 1 1
(1 ) ( )

z
m

b

   Ω π +
κ Ω − −  

γ − Ω δ    
. (35) 

The number m  in this equation is used in Sec. 4 to numer-
ate the corresponding pairs of the dispersion curves with 
numbers = 2 1n m +  and = 2 2n m +  (see the lower inset in 
Fig. 5). In particular, the dispersion curve numbered by 

= 0m  is actually the pair of curves with numbers = 1n  
and = 2n  for antisymmetric and symmetric localized 
modes, respectively, that are close to each other. 

Derived dispersion relations (27) and (34) are valid in 
relatively wide range of the frequencies and wave vectors, 
and in this range they reveal the anomalous dispersion of 
the localized modes (see Sec. 4 for details). Though the 
WKB approximation predicts the non-monotonicity of the 
dispersion curves, this feature is located near light line, 

1/2= zΩ ε γκ , beyond the formal applicability of this ap-
proximation. Moreover, the WKB approximation does not 
capture the behavior of the dispersion curves in the fre-
quency range close to Jω , | 1 | 1.Ω −   In the following 
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subsection, we present the exact solution that is devoid of 
these drawbacks. 

3.2. Exact solution 

One can obtain exact solution of Eq. (15) in terms of 
the associated Legendre functions, see Appendix A. The 
symmetric and antisymmetric with respect to magnetic 
field solutions can be presented in the following forms: 

 0 0
sym

0 0

( ) ( )
( ) =

( ) ( )
p q

p q

f f
a a

f f

 ξ − ξ ξ − ξ
ξ − 

ξ ξ  
,  

 0 0
asym

0 0

( ) ( )
( ) =

( ) ( )
p q

p q

f f
a a

f f

 ξ − ξ ξ − ξ
 ξ −
 ξ ξ′ ′ 

, (36) 

respectively. Here syma  and asyma  are integration con-
stants, and 

 ( ) = [tanh( )], ( ) = [tanh( )],p qf P f Qµ µ
ν νξ ξ ξ ξ  (37) 

where [ ]Pµ
ν τ  and [ ]Qµ

ν τ  are associated Legendre func-
tions of the first and second kind, respectively, with 

 2 1 22 1 = , = .8( 1) 1 ss i−ν + µ κΩ − κ +  (38) 

The dispersion relations are defined by Eq. (20) taken at 
=ξ +δ  with ( )a ξ  substituted from Eqs. (36). 
Now we show the transition of the exact solutions to the 

case of absence of the external dc magnetic field. When the 
dc field is close to zero, 0 0h → , we can simplify Eqs. 
(36) in the following way. Firstly, we expand the argument 
of the associated Legendre functions, 

 2
0 0

1tanh ( ) 1 exp[2( )]
2

hξ − ξ ≈ − ξ − δ . (39) 

Then, the associated Legendre functions with argument τ  
close to 1  can be presented as linear combinations of func-
tions /2(1 )±µ− τ , see Eq. (A14) in Apendix A. Therefore, 
taking into account that = siµ κ , we get 

 0 1( ) exp[ ( )],p sf c iξ − ξ ≈ − κ ξ − δ   

 0 2 3( ) exp[ ( )] exp[ ( )]q s sf c i c iξ − ξ ≈ − κ ξ − δ + κ ξ − δ   

where 1c , 2c  and 3c  are constants. Hence, the symmetric 
and antisymmetric solutions (36) obviously take the form 

 sym( ) = sin ,sa aξ κ ξ     asym( ) = cos ,sa aξ κ ξ  (40) 

respectively, leading to the corresponding dispersion 
relations, 

   
1 2

2cot = ,
( 1)

s
s

d

−ε Ω κ
κ δ

Ω − κ
    

1 2

2tan = ,
( 1)

s
s

d

−ε Ω κ
κ δ −

Ω − κ
 (41) 

which are valid in the absence of external dc magnetic 
field (see Ref. 17 for details). 

4. Numerical analysis 

In this section we present the obtained analytical results 
in the graphic form and describe the effect of the dc mag-
netic field on the dispersion curves. 

4.1. The distribution of the dc and ac fields 

Figure 2 shows the spatial distributions of the normal-
ized dc magnetic field ( )dch ξ  (the red dashed curves) and 
the magnetic field ( )yH ξ  of the antisymmetric localized 
Josephson plasma modes (the solid blue curves) at 

= 0.98Ω  in the low frequency range (main panel) and 
= 1.12Ω  in the high frequency range (inset). The exter-

nal dc magnetic field is uniform in the dielectric, 
( ) =dch ξ 0 0 0= /h H  , and penetrates into the layered 

superconductor in the form of the tails of the fictitious 
vortices, Eq. (11), 

 
0 0

1 1( ) = .
cosh( ) cosh( )dch ξ +

ξ − ξ ξ + ξ
 (42) 

The ac magnetic field ( )s
yH ξ  is defined by Eq. (18) with 

solutions (36) and is plotted in Fig. 2 in arbitrary units. 
For the case of high frequencies, > 1Ω , the localized 

JPWs oscillate across the slab, while, for the low frequen-
cies, < 1Ω , the electromagnetic fields oscillate near the 
interfaces and evanesce deep into the slab. In both cases, 
the dc field causes the change of the amplitude and wave-
length of the ac field oscillations near the interfaces. 

Fig. 2. (Color online) The spatial distribution of the ac magnetic 
field ( )s

yH ξ  (blue solid curves), in arb. units, and the normalized 
dc magnetic field (red dashed curves), hdc(ξ), for Ω = 0.98 (main 
panel) and Ω = 1.12 (inset). Parameters: γ = 5, ε = 4, κ = 10, δ = 5, 
h0 = 0.9. 
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4.2. Effect of the dc magnetic field and anomalous 
dispersion 

Firstly, we study the dispersion curves for relatively 
small 1zκ   in two frequency ranges, the low frequen-
cies, < 1Ω , and the high frequencies, > 1Ω . For these 
cases, we plot the curves according to the exact solution 
obtained in Subsec. 3.2 and analyze their variation by 
changing the value 0h  of the external dc magnetic field. 
Secondary, we focus on the frequencies close to the Jo-
sephson plasma frequency Jω , | 1 | 1Ω −  , and the wider 
range over zκ . Here, for certain value of 0h , we examine 
the transition from > 1Ω  to < 1Ω  in the behavior of the 
dispersion curves and compare the exact solution with the 
result obtained within the WKB approximation. 

In order to simplify the following explanations, we nu-
merate the dispersion curves from the bottom to top by 

= 1,2,3,n   and study the shift of each curve by variation 
of the normalized amplitude 0h  of the external dc magnetic 
field. 

We start the description from the low frequency range, 
< 1Ω . Figure 3 shows two lowest dispersion curves with 

numbers = 1n  (thin solid lines for antisymmetric localized 
mode) and = 2n  (thick dashed lines for symmetric localized 
mode) at 0 = 0h , 0 = 0.6h , 0 = 0.9h , 0 = 0.98h , and 

0 = 0.999h . As seen, the dispersion curves shift towards the 
lower frequencies and increase their curvature when increas-
ing the external dc magnetic field. The curves with = 1n  and 

= 2n  become close to each other with the increase of 0h . 

This occurs because the symmetric and antisymmetric local-
ized modes can be represented as two weakly coupled sur-
face modes localized near interfaces = /2x D  and 

= /2x D− , and the coupling becomes weaker for the smaller 
values of Ω . Moreover, when 0 1h → , both curves can be 
described asymptotically by the same dispersion relation, 

2 2 1 2
0/3 [1 ( ) ] = 1z d h−κ + Ω + εκ − , and converge to the 

point = 0zκ , = 0Ω . Here dκ  is defined by Eq. (21). 
The dispersion curves presented in Fig. 3 (with the excep-

tion of the curve with = 1n  at 0 = 0),h  are non-monotonous 
and consist of the parts with normal (where / > 0)z∂Ω ∂κ  
and anomalous (where / < 0)z∂Ω ∂κ  dispersions. There-
fore, the curves have maximums, where the group velocity 
vanishes, / = 0z∂Ω ∂κ . These maximums appear near the 
light line, 1/2= zΩ ε γκ  and shift when changing the ampli-
tude of the external dc magnetic field. The possible applica-
tion of this phenomenon is discussed in Subsec. 5. 

Now we examine the high frequency range, > 1Ω . The 
corresponding dispersion curves are plotted in Fig. 4 by the 
solid ( = 3, 5,n   for antisymmetric localized modes) and 
dashed ( = 4, 6,n   for symmetric localized modes) lines 
for 0 = 0h , 0 = 0.6h , 0 = 0.9h , and 0 = 1h . Similarly to 
the case of low frequencies, the increase of the external dc 
magnetic field shifts the curves towards the lower frequen-
cies (see the arrows in Fig. 4). The curves are non-
monotonous and have the parts with normal and anomalous 
dispersions. Comparing the curves for the intermediate 
fields 0 = 0.6h  and 0 = 0.9h  for different n, one can see 
that the shift due to the increase of 0h  is non-uniform and 

Fig. 3. (Color online) The dispersion curves with n = 1 (thin solid 
lines, antisymmetric localized mode) and n = 2 (thick dashed lines, 
symmetric localized mode) for Ω < 1 and the dc magnetic field   
h0: 0.999. The filled area above the light line, Ω = ε1/2γκz, presents 
the forbidden zone, where the localized modes do not exists. Other 
parameters: γ = 5, δ = 5, ε = 4. 

Fig. 4. (Color online) The dispersion curves for Ω > 1 and the dc 
magnetic field h0: 0, 0.6, 0.9, and 1 plotted by solid (n  = 3, 5,…, 
antisymmetric localized modes) and dashed (n = 4, 6,…, symmetric 
localized modes) lines. The arrows show the increase of the field h0. 
The other parameters and notations are the same as in Fig. 3. 
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depends on n. When increasing n, the curves with 0 0.6h ≤  
come close to each other, while the distance between curves 
with 0 0.6h ≥  increases. Figure 4 shows the curves for suf-
ficiently small zκ  and do not capture the interesting feature 
induced by the external dc magnetic field: at finite 0 > 0h  
and sufficiently large zκ , all the dispersion curves with 

= 3, 4,n   intersect the line = 1Ω  and end at = 0.Ω  
To study the mentioned feature, we proceed to the fre-

quency range | 1 | 1Ω −   close to the Josephson plasma 
frequency. The main panel in Fig. 5 shows the behavior of 
two curves with = 3n  and = 4n  at 0 = 0.9h  in this fre-
quency range for sufficiently large zκ  while the upper inset 
in Fig. 5 shows the curves with = 3, 4, 5, 6n  in more nar-
row range of zκ . The solid lines represent the exact disper-
sion curves, in accordance with Eqs. (20) and (36), while the 
dashed and dotted lines describe the dispersion curves ob-
tained in the WKB approximation. The dashed curves are 
plotted using Eqs. (27) and (34), where we leave β  in the 
right-hand side. Though the WKB approximation formally 
is not valid close to the light line, 1/2= zΩ ε γκ  where the 
maximums appear, one can see a good agreement between 
the solid and dashed curves for Ω  not very close to 1. The 
dotted curves are plotted using Eqs. (29) and (35), where we 
neglect β  in the right-hand side. The dotted curves are close 
to the solid ones for sufficiently great zκ , where the WKB 
approximation is applicable, see condition (24). 

One can see from Fig. 5 that the curves with = 3n  and 
= 4n  intersect the line = 1Ω . Moreover, these curves 

come close to each other, when < 1Ω , due to the weak cou-
pling between two interfaces. The same behavior is revealed 
by each pair of the dispersion curves, antisymmetric mode 
with = 2 1n m +  and symmetric mode with = 2 2n m + , 
with the same = 1, 2, 3,m  . The curves with = 1, 2, 3, 4m  
are plotted in the lower inset of Fig. 5 for < 1Ω . In this fre-
quency range, all the curves end at = 0Ω . 

5. Internal reflection of the localized modes in the 
inhomogeneous dc magnetic field 

In this section, we predict the internal reflection phe-
nomenon that is related to the non-monotonous dispersion 
affected by the external dc magnetic field. 

The dispersion curves discussed in the previous section 
are non-monotonous as functions zκ  for fixed value of h0. 
Therefore, for fixed value of Ω , there are two values of 

zκ  on each dispersion curve which correspond to the parts 
with the normal and anomalous dispersions. This means 
that the dispersion curves presented as functions 0( )z hκ  
for fixed value of Ω  should be two-valued. This feature is 
shown in Fig. 6, where the dispersion curves with numbers 

= 3n  (dash-dotted line), = 4n  (dashed line), and = 5n  
(solid line) are plotted as functions 0( )z hκ  for fixed va-
lues = 1.07Ω , = 1.25Ω , and = 1.5Ω , respectively. 

Fig. 5. (Color online) The dispersion curves with n = 3, 4 (main 
panel) and n = 3, 4, 5, 6 (upper inset) obtained for h0 = 0.9. Solid 
lines are described by exact solution, Eqs. (20) and (36); dashed 
lines are plotted using the WKB formulas (27) and (34); dotted 
lines correspond to the simplified expressions Eqs. (29) and (35). 
The lower inset shows the pairs (numbered by m = 1, 2, 3, 4) of 
the dispersion curves with numbers n = 2m + 1 and n = 2m + 2, 
which are close to each other. The other parameters and notations 
are the same as in Fig. 3. 

Fig. 6. (Color online) Dispersion curves with numbers n = 3 
(dash-dotted line), n = 4 (dashed line), and n = 5 (solid line) as 
functions κz(h0) for the fixed frequencies Ω = 1.07, Ω = 1.25, and 
Ω = 1.5, respectively. The arrow shows the variation of κz along 
the mode propagation in the non-homogeneous dc magnetic field, 
while the solid and empty circles correspond to the initial (h = 0, 
κz = 0.23) and critical (h0 = hmax = 0.31, κz = 0.28) points of this 
variation. Other parameters are the same as in Fig. 3. 
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Now we presume that the localized mode propagates 
along the slab of the layered superconductor and that the 
external dc magnetic field is non-homogeneous and 
smoothly increases along the z-axis from 0 = 0h  to 

0 = 0.5h . Considering, for example, the mode frequency 
= 1.5Ω  and the initial z-projection of the wave vector 
= 0.23zκ , we examine the solid curve in Fig. 6. When 

the external dc magnetic field increases along the propa-
gation, zκ  traces the curve (along the arrow in Fig. 6) from 
the initial point (marked as a solid circle) to the critical point 
(marked as an empty circle) with 0 max= = 0.31h h  and 

= 0.28zκ . After the critical point, when 0h  continues to 
increase, the wave vector should become imaginary, so the 
wave attenuates along the z-axis. Thus, in this point the 
localized mode should reflect, i.e., the phenomenon simi-
lar to the total internal reflection occurs. This phenome-
non is of particular interest and can be used to control the 
localized mode propagation. 

6. Conclusions 

In this work, the effect of the external dc magnetic 
field on the Josephson plasma modes localized on a slab 
of layered superconductor is studied theoretically. The 
dispersion relations for the localized modes are obtained 
analytically within the WKB approximation and in the 
exact form in terms of the Legendre functions. The analy-
sis is performed both for the frequencies ω  higher and 
lower than the Josephson plasma frequency Jω . It is 
shown, that for the wide range of frequencies and wave 
numbers, the anomalous dispersion can be observed. The 
symmetry of the studied system implies the symmetry of 
the localized modes, symmetric and antisymmetric with 
respect to the ac magnetic field. For high and low fre-
quency ranges, the localized modes have the different 
behavior. For > ,Jω ω  the external dc magnetic field 
shifts relatively slightly the dispersion curves towards the 
lower frequencies. For < ,Jω ω  the shift caused by the 
dc field is more significant. In this range, the localized 
modes evanesce deep into the slab, and waves near two 
interfaces are coupled weakly. Therefore, the dispersion 
curves for the symmetric and antisymmetric modes nearly 
coincide. Additionally, due to the dc magnetic field, all 
the dispersion curves starting at > Jω ω  descend to 

< Jω ω  at sufficiently great values of the wave vectors 
and end at = 0ω . The variation of the dispersion curves, 
when changing the dc magnetic field, reveals the way to 
control of the localized modes. In particular, we discuss 
the internal reflection of the localized modes propagating 
in the external inhomogeneous dc magnetic field. Dis-
cussed phenomenon can be applied in terahertz electron-
ics and photonics for manipulation by the localized Jo-
sephson plasma modes. 

We dedicate this paper to the memory of outstanding 
physicist-theoretician Alexei Alexeevich Abrikosov on the 
occasion of his 90th birthday. Gone, but not forgotten. 

We gratefully acknowledge partial support from the 
grant of State Fund For Fundamental Research of Ukraine 
(Project No. 76/33683) 

Appendix A: Associated Legendre functions 

Here we describe how the solutions (36) can be derived 
in terms of the Legendre functions. 

Firstly, we consider Eq. (15) with ( )u ξ  taken in the form 

 
2 1

2
2(1 )( ) = .

( )cosh
u

−− Ω
ξ

ξ
 (A1) 

Introducing new variable = tanh( )τ ξ  we can rewrite 
Eq. (15) as 

  
2

2
2(1 ) ( ) 2 ( ) ( 1) ( ) = 0,

1
a a a

 µ
− τ τ − τ τ + ν ν + − τ′′ ′  

− τ  
 (A2) 

where 

 
2 1 2 2 2( 1) = 2(1 ) , = .s s

−ν ν + − Ω κ µ −κ  (A3) 
The solutions of Eq. (A2) are ( )Pµ

ν τ  and ( )Qµ
ν τ , the 

associated Legendre functions (see, e.g., [29]) of the first 
and second kinds, respectively, 

 1 2( ) = ( ) ( ),a C P C Qµ µ
ν ντ τ + τ  (A4) 

or, returning to variable ξ , 

 1 2( ) = [tanh( )] [tanh( )].a C P C Qµ µ
ν νξ ξ + ξ  (A5) 

It should be noted that associated Legendre functions 
can be represented in the following form:  

 
/21 1( ) = [ , 1;1 ;(1 )/2],

(1 ) 1
P F

µ
µ
ν

+ τ τ −ν ν + − µ − τ Γ − µ − τ 
  

  (A6) 

 
2 /2

1 1
( 1) (1 )( ) =

2 ( 3 / 2)
Q

µ
µ
ν ν+ ν+µ+

π Γ ν + µ + − τ
τ ×

Γ ν + τ
  

 2
1 2 3 1, ; ;

2 2 2
F ν + µ + ν + µ + × ν + τ 

 (A7) 

where ( )zΓ  is the Euler gamma-function, 

 1

0
( ) = ez xz x dx

∞
− −Γ ∫ , (A8) 

and [ , ; ; ]F a b c z  is the hypergeometric function that is a 
solution (regular at z = 0) of Eulers hypergeometric diffe-
rential equation, 

 [ ](1 ) ( 1) = 0,z z F c a b z F abF− + − + + −′′ ′  (A9) 

where prime denotes derivative with respect to z . The 
hypergeometric function can be also defined by power series, 
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=0

( ) ( )
( , ; ; ) = ,

( ) !

n
n n

nn

a b zF a b c z
c n

∞

∑  (A10) 

where ( )nq  is the rising Pochhammer symbol 

 
1, = 0,

( ) =
( 1) ( 1), = 1,2, .n

n
q

q q q n n

 + + −  

 (A11) 

Now we use general solution (A5) to find the symmet-
ric and antisymmetric solutions of Eq. (15) with ( )u ξ  de-
fined by Eq. (16). For this purpose, we consider this equa-
tions only for 0 < <ξ δ  with one of conditions (22). Since 
we presume relatively thick slabs, exp( / ) 1,cD λ   we 
can reduce ( )u ξ  to 

 
2 1

2
0

2(1 )( ) =
( )cosh

u
−− Ω

ξ
ξ − ξ

, (A12) 

because the second term in the square brackets in Eq. (16) 
is negligible. Therefore, the general solution of Eq. (15) 
can be presented in the same form as Eq. (A4) but with 
changing ξ  to 0ξ − ξ , 

  1 0 2 0( ) = [tanh( )] [tanh( )]a C P C Qµ µ
ν νξ ξ − ξ + ξ − ξ . (A13) 

Finally, we apply one of conditions (22) to the last equa-
tion and achieve the solutions presented in Eqs. (36). 

It worth noticing that the associated Legendre functions 
display the following asymptotic behavior, 

 
/2

/22[ ] (1 ) , 0 < 1 1,
(1 )

P
µ

µ −µ
ν τ ≈ − τ − τ

Γ − µ
   

 
/2

/22 cot( )[ ] (1 )
2 (1 )

Q
µ

µ −µ
ν

π πµ
τ ≈ − τ +

Γ − µ
  

       
2 /2

/22 csc( ) csc[ ( )] (1 ) .
2 (1 ) ( ) (1 )

−µ
µπ πµ π µ + ν

+ − τ
Γ + µ Γ −µ − ν Γ − µ + ν

 (A14) 

These asymptotic expressions are used in the main text to 
examine the case of weak dc magnetic fields, see Eq. (40). 
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