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All relativistic corrections to the Scrödinger equation which determine the interlink between spin and orbit of 
moving particles, are directly calculated from the Dirac equation using the spin invariant operators. It is shown 
that among the second order corrections there are not only the well-known Darwin and Thomas terms, but also 
the new ones. Only with the account of the latter corrections the energies found with the obtained spin-orbit in-
teraction operator, coincide with the energies of the Dirac equation exact solution. The problem of electron spec-
trum in the quantum well type structures is studied in details and the physical reasons for the appearance of spin-
orbit interaction operators in the Dresselhaus or Rashba form, are analyzed. 
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1. Introduction

Study of the spin-orbit interaction (SOI) is one of the 
main streams of modern solid state physics [1] which leads 
to important practical applications, such as an effective 
control tool of spin-polarized carrier states in spintronics 
devices. In particular, spin spliting arising from Rashba 
SOI [2] allows manipulating spin in semiconducting 
heterostructures by electric field [1,3]. On the other hand, SOI 
is also the source for some interesting physical phenomena 
such as spin current and Hall effects. At last, SOI determines 
the peculiarities of a new class of condensed systems, so 
called topological dielectrics. According to Rashba’s recent 
remark [4], SOI as the notion and physical reality, “goes glob-
al”, deeply penetrating into many areas of the fundamental 
science or technical applications, providing new phenomena, 
on which future technologies will be based. 

Functioning of spintronics devices at ambient condi-
tions (atmospheric pressure and room temperature) require 
strong enough spin splitting, and, hence, large SOI [3–7]. 
Among such materials there are two-dimensional (2D) or 
quasi-2D systems, such as layered structures and hetero-
structures, crystal surfaces, interfaces, thin films (up to 
monomolecular or monoatomic width). The interest to 
low-dimensional electron phenomena as a whole, has start-

ed growing from 1970-s, but during last 5–7 years it has 
increased dramatically [8] because of their potential per-
spectives in using in the devices of the future generation. 

In systems with broken inversion symmetry, Rashba 
splitting of 2D electron and hole bands takes place in the 
result of the SOI constant finite value. With decreasing 
system dimensionality number of carrier spatial degrees of 
freedom also reduces. Charge particle motion in one or two 
directions becomes finite and SOI proves to be one of the 
factors which determines the mobile carriers states. 

It is generally adopted that the problem of the relation 
of particle propagation and its spin state, described by SOI, 
has been solved. This includes formal derivation of SOI 
and understanding of physical reasons determining its ex-
istence. Starting with the pioneer papers of Dresselhaus [9] 
and Rashba [10], account of SOI in electron structure of 
crystals is based on the solutions of the Schrödinger–Pauli 
equation H Eψ = ψ  for two-component electron wave 
function (spinor) ψ  with the Hamiltonian  
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which defines their eigen energies E . Here ( )V r  is the po-
tential, in which an electron moves, ˆ = i−p ∇  is its mo-
mentum operator, and σ̂ is the spin operator (operator of 
the intrinsic momentum ˆ( /2) σ), whose components are 
represented by Pauli matrices ˆ jσ  ( = , ,j x y z ). The last 
term in the Hamiltonian (1) is known as Thomas correction 
and is usually called SOI operator (Darwin term is omitted 
in (1) as comparatively small). 

As it is generally known, the fundamental basis for 
studying electron states is Dirac theory from which in a 
natural way the existence of an electron spin /2  and Fer-
mi-statistics for electrons follow. Electron spectra, calcu-
lated within this theory, practically coincide with their ob-
servable values. Expanding Dirac equation (DE) with 
respect to the degrees of the ratio /p mc, where p is char-
acteristic momentum, m is mass and c is the light speed, 
one can calculate relativistic corrections to the non-
relativistic Schrödinger equation (SchE). In other words, 
SchE with the Hamiltonian (1) is the limit of DE when 
particle's rest energy, 2mc , significantly exceeds all other 
energy scales. In this sense, SOI operator can be consid-
ered as one of the relativistic corrections of the order 21/c  
to non-relativistic Hamiltonian [11–14]. 

It is worth to recall that 2D electrons can be modeled as 
the states determined by the quantum well (QW) formed 
by a layer of the heterostructure or by a surface of the in-
terface, with the potential changing in one direction only, 
namely in the perpendicular to the plane, z -direction. Free 
motion of carriers in xy -plane is characterized by the 2D 
wave vector = x x y yk k⊥ +k e e  ( je  are corresponding unit 
vectors), and 1D SchE determines discrete eigen states in 
the QW in which each energy level creates 2D electron 
band ( )nE ⊥k . Taking into account that the equality 

= zV e∇  is valid for asymmetric QW with the asymmetry 
arising from the electric field   that is perpendicular to the 
QW plane, one can derive a model with the operator 

ˆ= [ ]R BR zH ⊥λ ×e k σ , which is called Rashba SOI where 
the parameter BRλ ∝   is Bychkov–Rashba constant. For a 
long time this SOI (see Eq. (1)) a priori was considered as 
the only one and as the one appropriate for all physical 
situations. 

Nevertheless, as it has been shown in Refs. 15, 16, there 
can exist several possible solutions of the DE which are 
different from each other and correspond to different spin 
states of a particle. More precisely, they correspond to dif-
ferent mutual directions of the spin quantization axis and 
the direction of the momentum. It has turned out that there 
is a finite number of various situations, among them also 
the situation which is different from the Rashba case, the 
difference between which is controlled by the so called 
spin invariants. These invariants commute with the Dirac 
Hamiltonian but do not commute between themselves [17]. 
This fact has allowed to obtain the general solution of the 
DE and to calculate all relativistic corrections to it in a full 
agreement with the analytical general solution. In these 

papers, however, the SchE which includes such corrections 
has not been derived. In the present paper we find the ex-
plicit form for SOI terms in the SchE which lead to the 
same energy corrections that follow from the exact solu-
tion found in [18]. 

The paper is organized as follows. In Sec. 2 the essen-
tial information of the quantum field theory which allows 
to write down the Dirac Hamiltonian in the second quanti-
zation representation is given. In Section 3 it is shown that 
with the accuracy of the second order of the ratio 

2| | / 1V mc   the Hamiltonian of particles and antiparti-
cles, linked via external potential field ( )V r , can be trans-
formed to the Hamiltonian of non-interacting electrons and 
positrons as it takes place in the case of free particles. In 
Sec. 4 we describe the operator invariants controlling spin 
states of relativistic particles. Section 5 deals with the tran-
sition in the electron Hamiltonian to the non-relativistic 
limit with account of all relativistic corrections among 
which there are the new ones. The case of the potential in 
the form of the QW is considered in Sec. 6 using the re-
sults of the previous section. In particular, the Hamiltonian 
is derived which describes the states of 2D electrons. Their 
states corresponding to the basic spin invariants and to the 
generalized invariant are studied. It is also analyzed when 
and how in the general approach the spin-orbit band split-
ting arises in the Rashba or Dresselhaus form. 

The paper is dedicated to the outstanding theoretical 
physicist Alex Abrikosov whose contribution to physics 
in general, and low temperature physics and physics of 
low-dimensional systems, in particular, is impossible to 
overestimate. The paper was prepared to Alex Abrikosov’s 
90-years jubileum, but in view of his recent unexpected 
demise, turned out to be a tribute to the memory of the 
great researcher and extraordinary personality. 

2. Relativistic Hamiltonian 

Let us start with the DE for a particle in the external 
field:  

 2 ˆˆˆ ˆ= ( )ei c V I mc
t c

∂Ψ   − + + β Ψ  ∂   
p A r α   

where e is elementary charge, A  is vector-potential of the 
external electromagnetic field, ( )V r , similar to (1), is the 

potential, ˆ ˆ= j j
j

α∑ eα  is vector matrix whose components 

ˆ jα  ( = , ,j x y z ) together with the unit matrix Î  and matrix 

β̂ are hermitian Dirac matrices (DM), and, finally, 

( )1 2 3 4( ; ) = TtΨ ψ ψ ψ ψr  is a 4-component function, 
known also as a bispinor, or 4-spinor (here and below a 
symbol ∧ (‘hat’) is used over matrices and matrix opera-
tors, only). 

According to the quantum field theory, the DE is the 
Euler–Lagrange equation which follows from the variation 
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of the Lagrange functional density  . It depends on the 
two 4-component variables, bispinors Ψ, namely, on its 
components µψ  ( = 1, 2, 3, 4µ ), and † ˆ=Ψ Ψ β is the Dirac 
conjugated bispinor (see, e.g., Refs. 11, 12). The transition 
to the Hamilton form is provided by introducing generali-
zed momenta,  

 †ˆ= = = , = ,i i
t

∂ ∂Ψ
Ψβ Ψ Ψ

∂∂Ψ


 




   

which are canonically conjugate to the components of the 
bispinor Ψ, and Hamilton functional density,  

 † † ˆ= = ( , ) ( , ),Di t H t
t

∂Ψ
Ψ − Ψ Ψ

∂
r r    

in which the operator  

 2 ˆˆ ˆˆ ˆ= ( )DH c V I mc
c

 − + + β 
 
p A rα
  (2) 

is the Dirac Hamiltonian. Subsequently, the spinor field 
operator is reduced to the integral  

 † ˆ= = ( ) ( )DH d H dΨ Ψ∫ ∫r r r r   

where the spatial integration is carried out over the whole 
volume. Here the bispinor Ψ is considered not as the 
Schrödinger wave function, but as an amplitude of some 
physical field which is called ‘a spinor field’ whose com-
ponents are q-numbers in the meaning that the inequality 
∗ ∗
ν µ µ νψ ψ ≠ ψ ψ  takes place. 

Consider, first, particle dynamics in the absence of the 
magnetic field, = 0A . The Dirac Hamiltonian, (2), can be 
represented in the form of the sum of two terms 

(0)ˆ ˆ ˆ=D DDH H V+ , one of which is the Hamiltonian of a free 
particle,  

 (0) 2 ˆˆ ˆ ˆ= ,DH c mc+ βpα  (3) 

and the second one accounts for particle interaction with 
the external field, ˆ ˆ= ( )DV V Ir . This transforms the spinor 
field Hamiltonian to the form:  

 ( )(0)† †ˆ= ( ) ( ) ( ) ( ) ( ) .DH H V dΨ Ψ +Ψ Ψ∫ r r r r r r  (4) 

Any bispinor, ( )Ψ r , can be expanded over the complete 
ortho-normalized bispinor system, in particular, the one for 
free particles, i.e., bispinors which satisfy the equation 

(0) (0) (0)ˆ ( ) = ( )DH EΨ Ψr r . 
Since a free particle momentum is conserved, it is con-

venient to undertake the transition to the momentum repre-
sentation and to use Fourier components of the eigen 
bispinor (0)Ψ , i.e., to expand bispinor ( )Ψ r  over plane 
waves in the cube with the side L  (L →∞ ):  

 ( )(0)
3/2
1( ) = e .i

L
Ψ Ψ∑ kr

k
r k  (5) 

Here = j j
j

k∑k e  with = (2 / )j jk L nπ  ( = , ,j x y z ) where 

the integer numbers jn  take values from −∞  to ∞. In such 
presentation momentum operator is a c-number (wave vec-
tor), ˆ ⇒p k , and the bispinor components ( )(0)Ψ k  are 
determined from the equation  

 ( ) ( )(0) (0) (0)ˆ ( ) = ,DH EΨ Ψk k k   

 (0) 2 ˆˆ ˆ( ) = .DH c mc+ βk k α  (6) 

In a block form the 4-line matrices are expressed via the 
2-line ones [11,12]  

 2

2

ˆˆ 00 ˆˆ = , = ,
ˆˆ 0 0

I

I

  
β     −   

σ
α

σ
 (7) 

where σ̂ is the vector operator, whose components are giv-
en by the Pauli matrices, and 2̂I  is a unit matrix of the se-
cond order. It is convenient also to write the bispinor in the 
block-form, too: (0) ( ) = ( ( ) ( ))T

u dΨ ψ ψk k k , where 

1 2= ( )Tuψ ψ ψ  and 3 4= ( )Tdψ ψ ψ  are the upper and low-
er spinors of the bispinor, respectively. Within this scheme 
Eq. (6) takes a simple form,  
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σ
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 (8) 

Its solution can be found, in particular, using the well-
known Foldy–Wouthuysen (FW) unitary transform (see, 
e.g., Refs. 13, 14). The following four ortho-normalized 
eigen bispinors are the solutions of Eq. (8) (or Eq. (6)):  
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2
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A
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k
 (9) 

where Ak  is the normalization coefficient, and  

 ( ) 2 4 2 2 2= .m c cε +k k  (10) 

The spinors ,ν σχ  ( = ,p aν ) are not fully determined be-
cause the bispinors (9) satisfy Eq. (8) at arbitrary spinors. 

The bispinor (0)
,p σΨ  in Eq. (9) corresponds to the posi-

tive eigen value pE , and bispinor (0)
,a σΨ  — to the negative 

one < 0aE , which are degenerate. The number σ  in 
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Eq. (9) takes two values, which are assigned to the two 
arbitrary chosen spinors of the degenerate state. Therefore, 
the four eigen bispinors (9) (0)

,ν σΨ , where each index, ν and 
σ , takes two values, form a complete ortho-normalized 
system. The condition of their ortho-normalization 

(0)(0) †
, , ,,( ) = ′ ′ν σ ν ν σ σ′ ′ν σΨ Ψ δ δ  directly leads to the ortho-

normalization of the corresponding pair of the spinors 
†

, , ,=′ ′ν σ ν σ σ σχ χ δ . Index σ  has the meaning of the spin 

number and can be assigned the values = 1σ ±  or = ,σ ↑ ↓. 
The relation between the two ortho-normalized spinors 
with different values of σ  is given by the Kramers rela-
tion: , ,

ˆ= KKν −σ ν σχ χ , where ˆ ˆ=K yK i K− σ  is the Kramers 
operator, which includes K -operation of the complex con-
jugation. 

This consideration shows the principal possibility of 
expanding any bispinor ( )Ψ r  over the bispinors (9):  

( ) ( ) ( )( )†(0) (0)
, , ,,3/2

,

1= e .i
p aa b

L
σ σ σ− σ

σ
Ψ Ψ + Ψ∑ kr

k k
k

r k k  (11) 

Here we have used the notations accepted in quantum field 
theory for the creation and annihilation operators, 

† †
, ,/a bσ σk k , , ,/a bσ σk k  of a particle/antiparticle with the 

wave vector k  and spin number σ , respectively. The phys-
ical requirement of positive eigen energy values of the 
Hamiltonian (4) determines Fermi commutation rules (see, 
e.g., Ref. 12):  

 † † † †
, , , ,, , , ,= 1, = 1,a a a a b b b bσ σ σ σσ σ σ σ+ +k k k kk k k k   

with all other pairs of these operators mutually anti-
commuting. 

Substituting expression (11) in Eq. (4) and taking into 
account that  

 [ ]
/2

1 2 ,3 1 2
/2

1 exp ( ) =
L

L

i d
L −

− δ ≡∫ k kk k r r   

 , , ,1 2 1 2 1 2
,k k k k k kx x y y z z

≡ δ δ δ   

where ,1 2
δk k  is Kronecker symbol, one derives the Hamil-

tonian in the occupation number representation,  
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where  

 ( ) ( ) ( )( ) ( )
†( ) (0)(0)

,, ,, = , = , ;V p aν
ν σ′ ′σ σ ν σ′ ′ ′− Ψ Ψ νk k k k k k   

( ) ( ) ( )( ) ( )
†( ) (0)(0)

,, ,, = ,p a
p aV−
σ′ ′σ σ σ′ ′ ′− Ψ Ψk k k k k k  (13) 

( ) ( )( ) ( )( ) ( )
, ,, = , , = e ( ) .a p p a iV V d

∗− − −
′ ′σ σ σ σ′ ′ ∫ krk k k k k r r 

 

From the above it follows that the operator (12) is the sum 
of the three terms, p a p aH H H V −= + + , which are the 
Hamiltonians of particles, pH , antiparticles, aH , and oper-
ator p aV −  which describes their mutual transformation un-
der the scattering in the external potential. After transform-
ing the product of creation and annihilation operators to the 
standard form, the Hamiltonian (12) becomes positively 
determined, except, according to quantum field theory pos-
tulates [12], the infinite additive constant, i.e., energy of 
the state in the absence of any particles, vacuum state, 
from which energies of all elementary excitations of the 
spinor field, particles and antiparticles, are calculated. 

The operator p aV −  describes mixing of particle and anti-
particle states in the external field, and necessarily has to be 
taken into account. The transformation which separates parti-
cle and antiparticle states in the Hamiltonian (12) exactly, is 
not known. Nevertheless, in the case of interaction (13) the 
perturbation theory can be used with any required accuracy. 

3. Approximate renormalization 

An important problem of non-relativistic physics is ap-
proximate separation of particle and antiparticle states. 
This is possible for potentials that satisfy the inequality 

2| ( ) |V mcr  . In such a case the operator p aV −  can be con-
sidered as a perturbation and one can use the canonical 
transformation of the Hamiltonian 0H H V= + λ  with pa-
rameter λ characterizing the smallness of the perturbation, 
to the new representation exp ( ) exp ( )H S H S= −λ λ  in 
which the value of the non-diagonal part of the Hamiltoni-
an exceeds the given accuracy. For small perturbations, 

1λ , the exponent can be expanded into the series with 
respect to the degrees of λ, and the Hamiltonian after the 
Schrieffer–Wolff transformation [19] takes the form  

 [ ] [ ]
2

e e , ,
2

S SH H H H S H S S−λ λ λ
 = = + λ + +…  .  

To diagonalize this Hamiltonian up to the given accura-
cy, e.g., up to nλ , it is convenient to search the operator S  

( †= S− ) in the form =1= n j
jjS Sλ λ∑ . In particular, for 

diagonalization up to the second order 2λ , it is enough to 
preserve only the first term in the operator Sλ  and to 
choose it from the condition  

 [ ]0 1, 0.V H S+ =   
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Taking into account the explicit form of the operator 
p aV V −=  in the Hamiltonian (12), we get  

 

( )

( )( ) ( )

( )( ) ( )

3
1

, , ,

† (0)(0)
, , ,,

† (0) † †(0)
, ,, ,

=
( ) ( )

.

a p

p a

V
S L
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−

′ ′σ σ

′ ′σ − σ σ′σ

σ ′ σ ′ ′σ − σ

′−
×

′ε + ε

 ′× Ψ Ψ −


′− Ψ Ψ 


∑
k k

k k

k k

k k
k k

k k

k k

 (14) 

From the last expression it follows that the renormalization 
with the second order accuracy is correct if the inequality  

 max min2
| | 1, | |= .

2
V V V V
mc

−  (15) 

is fulfilled. It, as a rule, is valid for any non-relativistic 
potential. 

Therefore, up to terms 2λ  the operator (12) reduces to 
the form  

 [ ]
2

4
0 1 1, ( ),

2 p aH H H S H H Oλ
= + +…= + + λ     

in which the states of particles and antiparticles turn out to be 
independent and can be considered using the Hamiltonians  

( ) ( )( )

†
,,

,

( ) ( ) †
,,, ,3

,

= ( )

1 , , ,

p

p p

H a a

W a a
L

σσ
σ

′ ′σ′ ′ σσ σ σ σ
′ ′σ


ε +



′ ′ + +



∑

∑

kk
k

kk
k

k

k k k k





 (16) 

( ) ( )( )

†
,,

,

( ) ( ) †
,,, ,3

,

= ( )

1 , ,

a

a a

H b b

W b b
L
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kk
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for particles and antiparticles, respectively. In the above 
equations the amplitudes ( )

, ( , )ν
′σ σ ′k k  are given by the ex-

pressions (13) and notations  

( ) ( ) ( )

[ ][ ]

( )( ) ( ) ( )( ) ( )

( ) ( )

( )
1 1, 3

,1 1

1

1 1
†† (0) (0) (0)(0)

, 1 1 ,, ,1 1
( ) ( )
, ,

1, =
2

( ) 2 ( ) ( )
( ) ( ) ( ) ( )

,

, = ,

p

p pa a

a p a

W V V
L

W W

′σ σ
σ

σ ′σσ σ

→
′ ′σ σ σ σ

′ ′− − ×

′ε + ε + ε
× ×

′ε + ε ε + ε

′× Ψ Ψ Ψ Ψ

′ ′

∑
k

k k k k k k

k k k
k k k k

k k k k

k k k k

 (18) 

are used. In the Hamiltonian aH , the product of creation 
and annihilation operators is written in the normal form 
with the change → −k k  in the sum, and the energy of the 
vacuum is deduced. 

The creation and annihilation operators of parti-
cles/antiparticles in the expansion (11) have the indeces k  
and σ , which have the meaning of the quantum numbers 
with σ  corresponding to the spinor / ,p a σχ  in bispinors (9), 
while the spinors themselves are not determined uniquely. 
Their arbitrariness in Eq. (9) indicates that in the general 
case the Hamiltonian (12) is ‘invariant’ with respect to the 
choice of spinors. In particular, without loss of generality, 
one can choose the following pair of the orthogonal spinors 

= (10)T
↑χ , = (01)T↓χ , i.e., to use the simplest spin func-

tions related to the initial coordinate system, which are 
eigen functions of the operator ˆ zσ . 

For free particles such choice is not important, since the 
energy is independent of the spin variable, and any spinor 
can be expressed via the two other spinors. Therefore, one 
can use solutions (9) with spinors / ,p a σχ  which can be 
chosen according to convenience. 

Below we shall show that spin polarization in concrete 
spin states is tightly related to the wave vector, characteriz-
ing spatial motion. This relation is described by some new 
effective interaction called SOI. According to expressions 
(13) and (18), this interaction is directly determined not only 
by the symmetry of the field in which particle propagates, 
but also by its spin when the particle is scattered by this field 
(see the Hamiltonian (12) and expressions (16), (17)). 

4. Spin invariants 

As it has been reminded above, particle spin states, i.e., 
concrete form of the spinors in Eq. (9), can be found using 
spin invariants. For example, the existence of these invari-
ants has allowed to find new spin states of quasi-2D elec-
trons [15,16]. When a particle is free, its dynamics can be 
characterized by several invariants [17]: vector of magnetic 
spin polarization,  

 ( )( )1 1 ˆˆ ˆ ˆ ˆˆˆ = = ,
mc mc

µ+ × − × ≡p k kµ Σ Γ Σ Γ   (19) 

vector of spin polarization,  

 ( )( )
1 1

ˆˆ ˆˆ ˆˆ ˆ= = ,
mc mc

+ρ + ρ ≡
p k k

Ω Ω    (20) 

helicity ˆ ˆˆ=h pΣ, and vector of electric spin polarization 
ˆˆˆ = − ×p Ω . It is easy to see that the latter two invariants 

can be represented in the form ˆ ˆ ˆ=h pµ  and ˆˆˆ = − ×p  , re-
spectively. In formulas (19) and (20) we have taken into 
account that ˆ =⇒p p k . 

The three vector DMs, according to (7), have the block 
form  

 
2

1
2

ˆ ˆ0 0ˆ ˆ= , = ,
ˆ ˆ0 0

ˆˆ 00ˆ ˆ= , = .
ˆˆ0 0

i
i

I

I

−   
   
   

  
ρ     −   

σ σ
Σ Γ

σ σ

σ
Ω

σ

 (21) 
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The matrix Σ̂  determines the spin operator ˆˆ = ( /2)σ Σ  
[11,12,14], and its projections, ˆ ˆ ˆ=j k liΣ − α α , have different 
spatial indeces, which form a cyclic permutation. The other 
projections are given by the expressions ˆˆ ˆ=j jiΓ − βα , 

ˆˆ ˆ=j jΩ βΣ , and, finally, the DM 1ˆ ˆ ˆ ˆ= j k liρ − α α α  has the 
same three cyclic indeces. 

Since the invariants commute with the Hamiltonian, 
(0)ˆ
DH , their eigen bispinors are compatible with the eigen 

bispinors of Eq. (6), or matrix equation (8). This means 
that the bispinors (9) satisfy the equalities  

 ( ) ( ) ( ) ( )( ) (0) (0)
, , , ,

ˆ = ,j
jsν σ ν σ ν σΨ Ψk k k k   

where ( )ˆ ( )j k  is one of the invariants (including Cartesian 
projections in the case of vector matrices), and ( ), ,js ν σ k  is 
the corresponding eigen value. Namely this equality de-
fines the concrete form of the spinors ,ν σχ  in (9). As the 
operators (19), (20) do not commute, each of them corre-
sponds to its own pair of eigen spinors. 

Worth mentioning, any arbitrary linear combination of 
these invariants also commutes with the Hamiltonian (0)ˆ

DH  
and can be considered as some generalized invariant  

 ( ) ( )gen
ˆ ˆˆ= .µ +r k r k µ   (22) 

Then, choosing ( ) =µ µr k r , = 0r  or ( ) = 0µr k , 

( ) =r k r  , one gets both expressions (19) and (20), re-
spectively. A possible dependence of the coefficients 

( )µr k  and ( )r k  on the momentum =p k  can be used to 

find the two other invariants. Indeed, if ( )µr k k , and 

= 0r , one can get from (22) gen
ˆˆ ˆˆ= = h≡k k  µ Σ ; if 

( ) = 0µr k , and ( ) j×r k k e  , gen
ˆ ˆ j   , which recon-

structs j -projection of the operator ̂ . Therefore, choosing 
various coefficients in the operator (22), we can represent 
any invariants and their linear combinations. 

Using the expansion (11) and the explicit forms of the 
bispinors (9) and matrices (21), we come to the following 
expression for the invariant (22):  

( )
†

gen gen

† †† †
, , , , , ,, ,

, ,

ˆ= =

ˆ ˆ ,p p p a a a

d

a a b b′ ′ ′σ σ σ σ σ − σσ ′− σ
′σ σ

Ψ Ψ

= χ χ + χ χ

∫
∑ k kk k

k

r

r r

I 

σ σ

  (23) 

where  

 

( )

( )

2 2

/ 2 2 2

2 2

2 2

( )= ( )
( )

( ) .
( )

p a
c

mc mc mc

c

mc mc

µ
µ

 
ε − ±  ε +   
 
 ± +  ε +   

r kkr r k k
k

r k
r k k

k



 


 (24) 

In view of the fact that the operator (23) splits into the sum 
( ) ( )

gen gen gen= p a+I I I , the invariants for particles ( )
gen

pI  and 

antiparticles ( )
gen
aI  can be diagonalized with respect to the 

spin variables independently. This can be performed using 
the bispinors ,ν σχ , which are eigen bispinors of the matri-
ces ˆνr σ, and, hence, satisfy the equations  

 ( ), , , ,ˆ = | | , = ( , ).p aν ν σ ν ν σχ σ χ νk kr r kσ  (25) 

The direction of the vector /p ar  determines the quanti-
zation axis of the spin /ˆ p aσ  of particles/antiparticles and at 

p a≠r r  the corresponding axes do not coincide. Moreover, 
the matrices ˆνr σ turn out to be spin invariants of free mo-
tion which in the coordinate representation under the change 

ˆ⇒k p  are independent invariants for particles ( )
gen ˆ=p

prI σ  
and antiparticles ( )

gen ˆ=a
arI σ , where ˆ( ).ν ν≡r r p  

In the Cartesian coordinate system arbitrary vectors 
( )µr k  and ( )r k  in Eq. (24) can be represented as de-

scribed ( ) = ( ) ( ) ( )x y zx y zν ν ν ν+ +r k k e k e k e  ( = ,ν µ  ), 
where je  ( = , ,j x y z ) are the basis vectors. This means that 
the spin polarization of particles is determined by six inde-
pendent parameters, that are coordinates of these two vectors. 

On the other hand, to describe polarization of free parti-
cles which are characterized by the wave vector k , it is 
sometimes convenient to make a transition in the momen-
tum space to a local reper which is given by the three mu-
tually orthogonal unit vectors 1e , 2e  and 3e  that are related 
to a unit vector 1 2 3= = / | |×e e e k k . It is easy to see that 
the vectors 1e  and 2e , remaining orthogonal are fixed with 
the accuracy of rotations around the propagation axis 

3e k . Then each of the vectors (24) has also another ex-
pansion, 1 2 3( ) = ( ) ( ) ( )ν ν ν νξ + η + ζr k k e k e k e . Respective-
ly, vector pr  in Eq. (24) which determines electron spin 
quantization axis in this local basis, takes the form  

 
( ) ( )

( ) ( ) ( )

2

2

1 2 3

( )=

.

p
mc

mc
µ

µ µ

ε −
+ + ×

 × ξ + η + ζ 

kr r k r k

k e e k k e





  

Note that in the states corresponding to the invariant 
( )
gen

pI  with independent on k  components ( ) =ν νξ ξk , 
( ) =ν νη ηk , ( ) =ν νζ ζk  ( = ,ν µ  ) in a local system, 

among which there are vanishing components, 
= = = 0µ µξ η ζ , spin quantization axis is determined by 

the vector 1 2 3=p µξ + η + ζr e e e  . This means that in 
such a basis particle spin orientation is the same for all 
momenta. In a particular case, when = = 0ξ η  , = 1µζ , 
this corresponds to a spiral state in which particle spin and 
momentum are parallel. In the case = 0µζ  and = 1η  a 
particle’s spin and momentum are orthogonal. Such spin 
state corresponds to the projection of the operator ̂ . 

In the external field the spin operator ˆ( )νr k σ  can com-
mute with the Hamiltonian (16) or (17) only at certain val-
ues of the coefficients ( )µr k  and ( )r k  which give the 
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direction of the quantization axis with account of the con-
crete symmetry of the field. 

5. General form of the Hamiltonian with the relativistic 
corrections 

In the previous Section we have used the ratio (15) as a 
small parameter. In the non-relativistic case the inequality 

/ 1k mc   is also valid. Respectively, the Hamiltonians 
(16) and (17) can be expanded using this ratio as a small 
parameter as well. In this case the kinetic energy can be 
written as  

 
2 2 2 2

2
2 2( ) = 1 .

2 4
k kmc
m m c

 
ε + −  

 
k     

In view of Eq. (9), the convolution of the bispinors in 
Eqs. (13) and (18) has to be expanded also:  

 

( )( ) ( )

( ) [ ]

( )( ) ( ) ( )

( )( ) ( ) ( )

† (0)(0)
, ,

22 2
†

, ,, , 2 2 2 2

† (0) †(0)
, , ,, ,,

† (0) †(0)
, , ,, ,,

ˆ1 , = , ,
8 4

ˆ ,
2 (26)

ˆ .
2

p apa

a pap

i p a
m c m c

mc

mc

ν σ ′ν σ

′ ′ν σν σ

′ ′σ σ′ σσ

′ ′σ σ′ σσ

′Ψ Ψ

 ′− ′χ − + × χ ν
 
 

′ ′Ψ Ψ χ − χ

′ ′Ψ Ψ − χ − χ

kk

kk

kk

k k

k k
k k

k k k k

k k k k









σ

σ

σ









 

Supposing that both ratios 2| | /V mc  and /k mc  are of 
the same order λ , one can neglect renormalization of 
particles and antiparticles up to the second order, since, as 
it was indicated above (see Eqs. (18) and (26)), the small-
ness of ( ) 3

, ( , )pW ′σ σ ′ λk k   exceeds this accuracy. In the re-
sult, the Hamiltonian of particles (16) in the non-
relativistic approximation takes the form  

 

( )

( )

2 2
(0) †2

,,
,

†
, ,,3

,

= 1
2

1 , ,

SO
kH k a a
m

a a
L

σσ
σ

′ ′ ′σ σ σσ
′ ′σ


 − λ +




′+



∑

∑

kk
k

kk
k

k k





 (27) 

where their energy is counted from the rest energy 2mc . 
The scattering amplitudes in the second sum, according to 
(13) and (26), are given by expression  

 

( ) ( )

( ) [ ]

†
, ,

(0)
2 (0)

,

, =

ˆ1 ,
2
SO

SO

V

i

′σ σ σ

′ ′σ

′ ′− χ ×

 λ
 ′ ′× − − + λ × χ
 
 

k

k

k k k k

k k k k



σ
 (28) 

For the sake of simplicity here and below we consider par-
ticles only, therefore, the index “p” is omitted. The Hamil-
tonian for antiparticles can be derived in a similar way. 

Operators †
,a σk  and ,a σk  in the Hamiltonian (27) are 

creation and annihilation operators of an electron with the 
momentum k  in the spin state corresponding to the invar-
iant (23). This means that the spinors ( )σχ k  in Eq. (28) are 
the solutions of Eq. (25) (with = pν ), hence, they are eigen 
spinors of the matrix ˆ( )r k σ  with ( ) p≡r k r  (see Eq. (24)). 
Therefore, in the non-relativistic limit, vector ( )r k  also has to 
be expanded with respect to the small parameter. In particular, 
up to the second order it is given by the expression  

 ( ) (0) (0) (2)2 ,SO+ λk kr k r r  (29) 

 ( ) ( )(0) = ,µ +kr r k r k   

 ( )( ) ( )(2) = ,µ − × × kr r k k k r k k k   

which shows that in such a case the spinors also contain 
the relativistic corrections. 

As it has been pointed, the direction of the vector ( )r k  
determines spin quantization axis for each k -state. This 
axis can be obtained from the initial z -axis via the rotation 
using some operator ω̂. Then, the spin functions σχ  trans-
form into functions ˆ=σ σχ ωχ , and matrix ˆ( )r k σ , trans-

forms into matrix †ˆ ˆˆ ˆ( ) = ( ) zrω ω σr k kσ . In the latter ex-
pression the matrix ˆ zσ  refers to a new (rotated or local) 
coordinate system. Therefore, its spinors σχ  are eigen 
spinors for this Pauli matrix, and, hence, have the form ↑χ  
and ↓χ , as it has been underlined above. From them the 
spinors in the initial coordinate system can be calculated 
by the action of the operator ˆ ( )ω k :  

 ( ) ( )†ˆ= ,σ σχ ω χk k   (30) 

 ( ) ( ) ( ) ( )† †ˆ ˆ= , = .+ −↑ ↓χ ω χ χ ω χk k k k 

  
It can be shown that the corresponding rotation (ne-

glecting the common phase multiplier) can be realized by 
the above operator  

 
( ) ( ) ( )

( )
( )

( ) ( )
( ) ( )

2
ˆˆˆ = ,

2

.

z

z

z

r
I i

r r
 +

ω +  + 
≡ ×  

k e r k d k
k

k k e r k

d k e r k

σ

 (31) 

Using vector r in the form (29) and choosing without the 
loss of the generality (0)

kr  in (29) as a unit vector, one can 
write down the expansion for the matrix (31) with respect 
to the parameter /k mc :  

 ( ) ( ) ( )(0)(0) (2)ˆ ˆ ˆ2 .SOω ω + λ ωk k k   
where  

 
( )

( )

(0) (0)
(0)

2 (0)

†(0) (0)
2

ˆ1 ˆˆ = ,
2 1

ˆˆ ˆ = ,

z
I i

z

I

 +
 ω +
 + 

ω ω

k k

k

d
k

σ

 (32) 
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( )
(2) (0)(0)

(2)
2 (0)

ˆ1 ˆˆ = ,
2 1

Qz
Q I i

z

+
−

  −+   ω + + 
 

k kk

k

d d
k

σ
 (33) 

and, according to (29), the notations  

 

(2) (2) (2)
(2) (0) (2)

(0) (0) (0)

( ) ( ) ( ) ( )

1= , = ,
2

= , = , = 1,2j j j j
z z

r z r
Q r

r z r

z j

±

 +
 ±
 + 

×

k k k
k k k

k k k

k k k k

r r

d e r r e

 (34) 

are used. Matrix ˆ ( )ω k  is unitary up to the required accura-
cy due to the relation  

 ( )( ) ( ) ( ) ( )( ) ( )
† †(2) (0) (0) (2)ˆ ˆ ˆ ˆˆ= =

2
i

ω ω − − ω ωk k k k kΛ σ   

  (35) 

in which  

 ( )
(2) (2) (2) (0)

(2) (0)
(0) (0)= .

1 1

r z

z z

+ ×
− −

+ +
k k k k

k k
k k

d d
k d dΛ   

Using equalities of vector algebra and definitions (34), 
this expression can be reduced to the following form:  

 ( )
( )

(0) (2)
(0) (2) (0)

(0)= .
1

z

z

 × × +
+

k k
k k k

r e r
k r r r

k
Λ  (36) 

To calculate the relativistic corrections to the spinors, 
we will use the expression (30) and matrix expansion (31) 
taking into account that matrix (32) is unitary:  

 

( )( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

( )( )

† †(0)(0) (2)
,

† † †(0)(0) (2) (0) (0)

(0) (0)
2 ,

ˆ ˆ= 2 =

ˆ ˆ ˆ ˆ= 2 =

ˆ ˆ= , (37)

SO

SO

SOI i

σ σ

σ

σ

 χ ω + λ ω χ 
 

 ω + λ ω ω ω χ 
 

− λ χ

k

k

k k

k k k k

k





Λ σ
 

where the equality (35) has been used and 
(0) (0) †

, ˆ= ( ( )) σσχ ω χk k  . 
After the substitution of obtained expression for ,σχk  

into Eq. (28), the scattering amplitudes become  

( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) [ ] ( ) ( ) ( )

†(0) (0)
, , ,

(0)
2 (0)

2

Th

Th

ˆ, = , ,

ˆ ˆ ˆ, = 1 , ,
2

, = , , ,
, = , , = .

SO
SO

BEL

BEL

V

I i

′σ σ σ ′ ′σ′ ′ ′− χ χ

 λ
 ′ ′ ′− − + λ
 
 
′ ′ ′+

′ ′ ′ ′× −

k kk k k k k k

k k k k k k

k k k k k k
k k k k k k k k

 

 Λ σ

Λ Λ Λ
Λ Λ Λ Λ

 (38) 

The Hamiltonian (27) with matrix elements ( ), ,′σ σ ′k k  
in the form (38) contains all relativistic corrections up to 
the second order both in the kinetic and potential energies. 

Among them there are the well known corrections, such as 
Darwin correction (the second term at the unit matrix), and 
Thomas correction ( )Th , ′k kΛ  [11–14]. Recall, the term 
which contains the spin operator σ̂ in (38) is called SOI, 
since it brings the interdependence between particle’s spin 
and motion in a inhomogeneous potential. One can see, 
however, this interaction includes not only Thomas correc-
tion, but also one more term ( ),BEL ′k k Λ  which is fully 
determined by the relativistic corrections to the spinors. So 
far to our knowledge, the latter correction has not been 
derived before and its role has not been investigated. 

Comparing all relativistic corrections to the Schrödinger 
Hamiltonian, it is clear that in the case of the non-relativistic 
motion the correction to the kinetic energy is negligibly 
small. Besides, the second order is, strictly speaking, satis-
factory only under the condition of small changes of the 
fields on the distances of the order of the Compton wave-
length [12]. This condition, as a rule, is fulfilled for particles 
in macroscopic (including crystal) fields, hence, the Darwin 
correction in the potential energy is also small and usually 
(as in Eq. (1)) is omitted. This explains why the Schrödinger 
operator is adoptedly corrected with the one SOI term, only. 
In particular, SOI provides relatively small, but experimen-
tally observable spin splitting of energy levels (bands) and, 
essentially, determines spin quantization axis which is not 
arbitrary, but depends on the form of the potential. Just the 
spin polarization of particles in condensed systems is now 
the subject of numerous studies and this is why investigation 
of SOI effects is important. 

To proceed, let us rewrite the Hamiltonian (27) in the 
following form:  

 

( ) ( )

2 2
†

,,
,

†
, ,,3

,

=
2

1 , ,

kH a a
m

V a a
L

σσ
σ

′ ′ ′σ σ σσ
′ ′σ


+




′ ′+ −



∑

∑

kk
k

kk
k

k k k k





 (39) 

where σ̂-dependent quantity  

 
( ) ( ) ( )

( ) ( )( )

†(0) (0)
, , ,

†(0) (0) (0)
2, ,

ˆ, = ,

ˆ ˆ, ,SOI i

′σ σ σ ′ ′σ

σ ′ ′σ

′ ′χ χ ≈

′≈ χ + λ χ

k k

k k

k k k k

k k

 

Λ σ
 (40) 

includes the matrix of the spin-orbit scattering. The latter 
contains both corrections, according to the definitions (38): 

Th ( , )′k kΛ  and ( , )BEL ′k kΛ . In (40) spinor (0)
,σχk , as in Eq. 

(37), is a non-relativistic eigen spinor of the matrix (0) ˆkr σ . 

Hence, the unit vector (0) = ( ) ( ) ( )x x y y z zγ + γ + γkr k e k e k e  
determines the spin quantization axis with the guiding co-
sines ( )jγ k  that are given by the sum of the corresponding 

vector coefficients ( )µr k  and ( )r k  from Eq. (22). It is 
easy to find that  
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( )

( )

( )

/2

/2(0) (0)
, ,

/2

1
e

2, = e ,
1

e
2

= 1,

iz
i

iz

− ϕ

σϕ
σ σ

ϕ

 + σγ
 σ
 χ ϕ ϑ ≡ χ  −σγ  
 

σ ±

k

kk kk k
k

k

k  

where tan = ( )/ ( )y xϕ γ γk k k . Using the equalities ( ) =xγ k  
sin cos= ϑ ϕk k , ( ) = sin sinyγ ϑ ϕk kk , ( ) = cos ,zγ ϑkk  one 

can introduce spin variables (angles) ϑk  and ϕk , on which 
the spinors in the zero approximation depend:  

(0) (0)
, ,

cos e sin
2 2= , = .

e sin cos
2 2

i

i

− ϕ

+ −
ϕ

ϑ ϑ   −   
   χ χ

ϑ ϑ   
   
   

k kk

k k
k kk

 (41) 

In fact, these variables can be considered and indeed are 
the free parameters. 

Such a picture is radically changed in the presence of the 
external potential when these parameters become fixed. This 
follows from the fact that the stationary electron states can be 
found diagonalizing the Hamiltonian (39) to the form  

 †=H E a aν ν ν
ν
∑  (42) 

where Eν  are the energies of these states, and index 
= ,nν σ is a set of the quantum numbers with the spin 

number σ  taking two values. 
For diagonalization of the Hamiltonian (39) it is con-

venient to choose the spinors (41) for which the matrix 
element (40) is proportional to , ′σ σδ . They diagonalize the 

invariant (23), ( )
gen

pI , and in non-relativistic limit are deter-

mined as eigen spinors of the operator (0) ˆkr σ  with (0)
kr  giv-

en in Eq. (29). Therefore the operator ( )
gen

pI  should com-
mute with the Hamiltonian (39). This condition implies the 
restrictions on the free parameters values, or the vectors 

( )µr k  and ( )r k ; on the other side, such a condition results 

in the equation which determines the vector (0)
kr  that coin-

cides with the spin quantization axis and, hence, the spin 
variable dependence appears. 

The analysis of obtained equation depends on the struc-
ture of the Fourier transformation ( )V ′−k k  of the poten-
tial and has to be performed in the general case in the cur-
vilinear coordinate system over the surface in which the 
equipotential surfaces are formed, and perpendicular to 
them directions are determined by the potential gradients 
in each point. This allows to find the solutions at least in 
the vicinity of singular points or lines that are characteristic 
for this potential, if not in their whole definition area. The 
main difficulty here is the dependence of the local reper 
orientation on the coordinates of the studied spatial point. 
This is the reason why it is impossible to find the general 

expression for SOI in the coordinate space for the general 
form potential. Below we consider one of the simplest but 
nevertheless actual case of electrons in quasi-2D system. 

6. Two-dimensional motion 

Any 2D system, in fact is quasi-2D with a finite spatial 
width, for example, in z  direction. In such a case the po-
tential in the Hamiltonian (39) reflects a translational 
symmetry in xy -plane: ( ) ( ) ( )= , = ,V V z V z⊥ ⊥ ⊥+r r r l  

where 
=1,2

= j j
j

l⊥ ∑l a  is a translation vector in 2D lattice 

structure with basis vectors ja  ( jl  are integer numbers). 
Such potentials can be represented by Fourier series  

( ) 0

0

, = ( )e = ( ) ( , ),

( , ) = ( )e

i

i

V z V z V z V z

V z V z

⊥ ⊥
⊥ ⊥ ⊥⊥

⊥

⊥ ⊥
⊥ ⊥ ⊥

≠⊥

+∑

∑

g r
g

g

g r
g

g

r r

r
 (43) 

where vectors 
=1,2

= j j
j

n⊥ ∑g b  are defined by basis vectors 

jb  of the corresponding reciprocal lattice with jn  being 
integer numbers. Expansion coefficients in Eq. (43), which 
in a general case can depend on z , are determined by the 
formula  

 ( )
cell

1( ) = , e iV z V z dxdy
S

− ⊥ ⊥
⊥⊥ ∫ g r

g r   

where integration is carried out over unit cell of an area 
cellS . 

According to (43), the potential can be represented as a 
sum of two components, namely zero harmonic 0 ( )V z  and 
periodic in plane part ( , )V z⊥ ⊥r . In this case the Fourier 
transformation of the potential is  

 ( ) ( ) ( )2
, 0= , ,z z z zV L V k k V k k′ ⊥ ⊥ ⊥⊥ ⊥

′ ′ ′ ′− δ − + − −k kk k k k   

which allows to present the Hamiltonian (39) in the form 
(0)

per2DH H V= +  where  

( ) ( )

( ) ( )

2 2
(0) †

,,2
,

†
, 0 , ,,

,

†
per , ,,3

, ,

=
2

1 , ,

1= , .

D

z z

H a a
m

V k k a a
L

V V a a
L

σσ
σ

′ ′ ′ ′σ σ σσ⊥ ⊥
′ ′σ

′ ′ ′⊥ σ σ σσ
′ ′σ σ


+




′ ′+ δ −



′ ′−

∑

∑

∑ ∑

kk
k

k k kk
k

kk
k k

k

k k

k k k k







 (44) 

with ( ), ,′σ σ ′k k  is given in Eq. (40) and, as above, 
= z zk⊥ +k k e . 
As the first stage of finding the energy spectrum let us 

consider the Hamiltonian (0)
2DH  only. The matrix element 

(40) in (0)
2DH  is calculated at = z zk⊥ +k k e  and 
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= z zk⊥′ ′+k k e . This leads to the following expressions 
for Thomas part ( ) ( )[ ]Th , = z z zk k ⊥′ ′− ×k k e kΛ  and ad-

ditional part ( ) ( ) ( ), = , ,BEL z zk k⊥ ⊥′ ′−k k k kΛ Λ Λ  of SOI 
(see (38)). 

Spin states can be chosen arbitrary, and it is convenient 
to take such spinors (0)

,σχk  (41) that satisfy the condition 

( ) ( ), ,, , = , ,z z z zk k k k′ ′σ σ ⊥ σ σ σ ⊥′ ′δk k  . In view of the 

matrix structure and ortho-normalization of spinors (0)
,σχk , 

this condition is fulfilled, provided, first, the zero order 
spinors in (44) does not depend on zk , that means the de-
pendence of its spin quantization axis on ⊥k  only. Second-

ly, diagonalization of (0)
2DH  with respect to spin numbers is 

performed if the spinors (0)
,σ⊥

χk  are the eigen spinors of the 

matrix ˆ( , )′k kΛ σ . Since (0)
,σ⊥

χk  are defined as eigen spinors 

of the matrix (0) ˆ
⊥kr σ, this condition is fulfilled provided the 

commutator (0)ˆ ˆ[ ( , ) , ]
⊥

′ kk k rΛ σ σ  is equal zero which leads to 

the equality (0)( , ) = 0
⊥

′ × kk k rΛ . 

Taking into account Eq. (36), Eq. (29) and condition 
(0) (0)=

⊥k kr r  the following expressions for the additional 

correction can be obtained  

 

( ) ( )

( )

(0)

(0)
(0)

(0)

, = , ,

, ,
,

1

BEL z z

z z z

k k

k k

z

⊥⊥

⊥⊥
⊥

⊥

′ ′× +

′×  
+

+

k

k
k

k

k k r k

r e k
r

Λ λ

λ  (45) 

where  

 

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )( ) ( )

(2) (2)
, ,

2 2

, , =

= ,

=

,

= .

z z k kz z

z z z z

z z

z

z z z z

k k

k k k k

⊥ ′⊥ ⊥

⊥ ⊥

⊥ ⊥ µ ⊥ ⊥

⊥ ⊥ µ ⊥ ⊥

⊥ ⊥ µ ⊥

′ − =

′ ′ ′− + −

 − + 
 + − 

 ′ − × × 

k kk r r

k k

k r k e r k e k

r k k r k k e

k r k e e r k e e







λ

λ λ

λ

λ

 (46) 

Therefore, in this 2D case the SOI vector (see (38)) in 
Eq. (40) is  

( )

( ) ( )
( )

( ) ( )
( )

(0)
(0) (0)

(0)

(0)
(0) (0)2 2

(0)

, =

=
1

1

z
z z z

z
z z

k k
z

k k
z

⊥⊥
⊥ ⊥⊥ ⊥

⊥

⊥⊥
⊥⊥ ⊥

⊥

′

 ×   ′− × + × + + + 
 

 ′×   ′ ′+ − × + + 
 

k
k k

k

k
k k

k

k k

r e k
e k r k r

r e k
r k r

Λ

λ
λ

λ
λ

 

from which the condition  

( ) ( )

[ ] ( ) ( )( )
( ) ( ) ( )( )

(0)

(0) (0) (0)

(0) (0)2 2

, =

= 0

z z

z

z z

k k

k k

⊥

⊥ ⊥ ⊥⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

′ ′× − ×

 × × × + − +  
 ′ ′ ′+ − −  

k

k k k

k k

k k r

e k r k k r r

k k r r

Λ

λ λ

λ λ

 (47) 

is obtained. It can be satisfied only when the equality 
( ) = 0⊥′ kλ  is valid. The latter, according to Eq. (46), im-

plies constrains on the vectors ( )µ ⊥r k  and ( )⊥r k , which 
have to satisfy the equations  

 ( ) ( )= 0, = 0.z zµ ⊥ ⊥×r k e r k e   

This immediately leads to expressions ( ) =⊥r k  
= ( ) ( )x yx y⊥ ⊥+k e k e   and ( ) = ( ) zzµ ⊥ µ ⊥r k k e . Hence, 
the guiding cosines of a unit vector (cp. Eq. (29))  

 
( ) ( )

( ) ( ) ( )

(0) = =

= x y zx y z

µ ⊥ ⊥⊥

⊥ ⊥ µ ⊥

+

+ +

kr r k r k

k e k e k e



 

 (48) 

are determined by the three parameters ( ) = ( )x x⊥ ⊥γ k k , 
( ) = ( )y y⊥ ⊥γ k k  and ( ) = ( )z z⊥ µ ⊥γ k k . With such al-

lowed vectors values the term proportional to ( ')z zk k−  in 
relation (47), is identically equal zero. Therefore, there are 
no additional conditions for the parameters ( )x ⊥k , 

( )y ⊥k , ( )zµ ⊥k , so that they are indeed arbitrary. 

Substituting the found values of vectors ( )µ ⊥r k  and 
( )⊥r k  into (45), one calculates the vector ( , )′k kΛ  which 

characterizes SOI in matrix (40) for 2D case:  

 

( ) ( ) ( )

( )
[ ]

(0)
2

(0)

(0)

, = ,

= .
1

D z z

z

z

k k f

f

⊥ ⊥

⊥ ⊥
⊥

⊥

′ ′−

×

+

k

k

k

k k k r

e k r
k

e r

Λ

 (49) 

As seen, it provides the diagonal form of , ( , , )z zk k′σ σ ⊥ ′k  
with respect to σ  and each spin state is described by its 
own Hamiltonian  

( )

( ) ( ) ( )

2 2 2
†

, ,, ,
,

†
0 , ,, ,

=
2

1 1 ,

z
kk zzkz

z z z z kk zzkz

k
H a a

m

V k k i k k f a a
L

⊥
σ σσ ⊥⊥

⊥

′⊥ σσ ⊥⊥′

 + +



′ ′+ − − σ −   


∑

∑

kk
k

kk

k

k



 

so that (0)
2DH Hσ

σ
=∑ . 

The further diagonalization of the Hamiltonian with re-
spect to zk  projections can be performed using the unitary 
transformations  

Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 6 743 



A.A. Eremko, L.S. Brizhik, and V.M. Loktev 

 

( )

( ) ( )

, , , , , ,

, , , , ,

= ,

= .

k zz

z z
kz

a k a

k k

σ ν σ ν σ⊥ ⊥ ⊥
ν

∗
′ ′ν σ ν σ ν ν⊥ ⊥

ψ

ψ ψ δ

∑

∑

k k k

k k
 (50) 

Here the coefficients , , ( )zkν σ⊥
ψ k  satisfy the equation  

( )
( )

( ) ( ) ( )( ) ( )

( ) ( )

2 2 2

, ,

(0)
0 , ,

, , ,

2
1 1

= .

z
z

z z z z zSO
kz

z

k
k

m

V k k i k k f k
L

E k

⊥
ν σ⊥

⊥ ν σ⊥
′

ν σ ⊥ ν σ⊥

+
ψ +

′ ′ ′+ − − − σλ ψ =

ψ

∑

k

k

k

k

k

k



 

Its solution can be found after the transition to the coordi-
nate representation  

 , , , ,
1( ) = e ( )ik zz z

kz

z k
Lν σ ν σ⊥ ⊥

ψ ψ∑k k   

which leads to the stationary 1D SchE for each spin state  

( ) ( )

( ) ( )

2 22 2
(0) 0

02

, ,

( )
2 2

= .

SO
dV zd V z f

m m dzdz

z E z

⊥
⊥

σ σ⊥ ⊥

 
− + + + σλ ×  
 

× ψ ψk k

k k

 (51) 

The fourth term in the l.h.s. of the latter equation is ap-
peared due to the SOI. Namely this non-relativistic equa-
tion determines the wave functions , , ( )zν σ⊥

ψ k  and eigen 

values ,= ( )E Eν σ ⊥k  with account of SOI and coincides 
with equation obtained in [16,18] where the general analyt-
ical solution of the DE was found for the given problem. 
Notice, there can be situations when the electron spinor 
components will be represented as linear combination of 
functions , , ( )zν +⊥

ψ k  and , , ( )zν −⊥
ψ k . 

In the case of the QW potential the discrete eigen num-
bers = nν  correspond to the bound states of electrons 
which are trapped by a QW and propagate as free particles 
in its plane. In fact, the ensemble of such electrons is a 2D 
electron gas. Obviously, the solutions of Eq. (51) depend 
on the QW form. The presence ( 0 0( ) ( )V z V z− = ) or ab-
sence ( 0 0( ) ( )V z V z− ≠ ) of the inverse symmetry of the QW 
is the main factor of Rashba spin splitting of 2D electron 
bands [1–4]:  

 ( ) ( ) ( )
2 2

, = 0 ,
2n n SOE E f

m
⊥

σ ⊥ ⊥+ −σλ
kk k  (52) 

(0)= .SO QWSOaλ λ  

Here function ( )f ⊥k  (see (49)) introduces the explicit 
dependence of the splitting on electron spin state = 1σ ± . 
Parameter QWa  in Eq. (52) depends on the form of the QW 
[15,16,18] and characterizes its asymmetry, which can be 
intrinsic or caused by external electric field perpendicular 

to xy -plane. The expression (52) without any assumption 
about the connection with a spin state, is the basic for 
study of SOI effects in a 2D electron gas using the Hamil-
tonian of free 2D particles,  

 ( )(0) †
, , ,2 , ,

, ,
= .n nD n

n
H E a aσ ⊥ σσ ⊥⊥

σ⊥

∑ kk
k

k  (53) 

Here the operators †
, ,na σ⊥k  and , ,na σ⊥k  are creation and 

annihilation operators of electrons with wave vector ⊥k  in 
spin states determined by the spinors (41) whose quantiza-
tion axis is parallel to vector (0)

⊥kr . 

Usually the Hamiltonian of a 2D electron gas is written 
using the operators ,a ↑⊥k  and ,a ↓⊥k  which are related to 

the spinors (0)
↑

χ  and (0)
↓

χ  with the quantization axis in z -

direction of the initial Cartesian system. Naturally, in such 
a case the expression (53) is not diagonal with respect to 
spin = ,σ ↑ ↓. The transformation from the operators 

†
, ,na σ⊥k  and , ,na σ⊥k  to the operators ,a ↑⊥k  and ,a ↓⊥k  is 

performed by the unitary matrix  

 
, ,

, ,

cos e sin
2 2= ,

e sin cos
2 2

i

i

aa

a a

− ϕ⊥ ⊥⊥
+ ↑⊥ ⊥

ϕ− ↓⊥ ⊥ ⊥ ⊥⊥

ϑ ϑ 
   
   
   ϑ ϑ      −
 

k kk
k k

k k k kk
  

where the relations are used  
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,

,

cos e sin
2 2=

e sin cos
2 2
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i

i

a a
a

a a

a

a

− ϕ⊥ ⊥⊥
+ −⊥ ⊥

σσ ⊥⊥ ϕσ ⊥ ⊥⊥
+ −⊥ ⊥
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↓⊥

ϑ ϑ 
− 

 χ =
 ϑ ϑ
 +
 

 
 
 
 

∑
k kk

k k
kk

k kk
k k

k

k
 

With account of the explicit form (49) of functions ( )f ⊥k  
in the representation of the operators †

,a σ⊥k  and ,a σ⊥k  
( = , )σ ↑ ↓ ), the Hamiltonian (53) takes the form  

 ( )
2 2 ,(0) (2 )† †

2 , ,
,

ˆ= 0
2

D
D SO

a
H a a E V

am
↑⊥⊥

↑ ↓⊥ ⊥ ↓⊥⊥

     + +       
∑

k
k k

kk

k   

  (54) 

which contains SOI determined by the confinement potential 

 
[ ]( )(0)

(2 ) (0)
(0)

ˆ ˆ=
1

zD
SOSO

z
V

⊥ ⊥
⊥

⊥

×
−λ

+

k
k

k

e k r
r

e r
σ. (55) 
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The latter expression evidently shows the mentioned above 
dependence of SOI on the wave vector components and 
angles 

⊥
θk , 

⊥
ϕk , i.e., on the spatial and spin degrees of 

freedom, respectively. 
Expression (55) indicates directly that SOI is absent if 

the quantization axis is parallel to one of the vectors ze  or ⊥k . 
As it follows from Eq. (48), in the first case the equality 

(0) = = zµ⊥kr r e  is valid, and the invariant (22) reduces to z-

component of invariant (19): gen
ˆ ˆ= zµ . In the second case 

at (0) = ( ) = / | |⊥ ⊥ ⊥⊥kr r k k k , this invariant becomes 

gen
ˆ ˆ= ⊥k  . 

Above the vector (0)
⊥kr  has been expressed in the Cartesian 

coordinate system in the form of the expansion with respect to 
unit vectors xe , ye  and ze . In a 2D system it is convenient to 
use a local reper with another three unit vectors  

 1 2 1 3= / | |, = , = ,z z⊥ ⊥ ×e k k e e e e e  (56) 

where ( ) ( ) ( )(0)
1 1 2 2 3 3= ⊥ ⊥ ⊥⊥
γ + γ + γkr k e k e k e  and the 

coefficients jγ  ( = 1,2,3j ), playing the role of the guiding 
cosines. It follows from expression (55) that SOI attains its 
maximum value at (0)

2=
⊥kr e , where 2e  is defined by (56). 

This corresponds to the invariant gen
ˆ ˆ= zε . On the contra-

ry, SOI vanishes, (2 )ˆ = 0D
SOV , if (0)

2⊥
⊥kr e . This convincing-

ly demonstrates the possibility of continuous changes of 
the SOI value under the smooth changes of the spin state, 
when, according to (22), the generalized invariant is repre-
sented in the form of a linear combination of operators µ̂  

and ̂ . This combination has to be either predefined or 
given for each concrete situation, and in the general case 
this linear combination has fundamental meaning, only. 

7. Conclusions 

This study demonstrates that SOI conventionally used 
in SchE, does not describe all possible spin electron states. 
If the potential operator commutes with one of the spin 
invariants, the SOI operator has to be generalized to take 
into account all possible states. This is reflected in the fact 
that the vector (0)

⊥kr  is not fixed a priori, and, hence, spin 
variables in the operator (54) can take arbitrary values. 

Our results prove the spin lability of 2D electrons and 
show that their spectrum depends on the direction of the 
quantization axis which is determined by such factors as 
carriers concentration, form of the potential, presence of 
external fields, etc. In a free 2D electron gas the most ad-
vantageous energy state is the state corresponding to the 
invariant ẑ , when SOI operator reduces to Rashba SOI, as 
it has been indicated in [16]. This interaction arises when 
only zero-harmonic of the potential (43) is taken into ac-
count, and, in this sense it can be considered as the zero 
approximation of SOI in real 2D (or quasi-2D) systems. 

The Hamiltonians (53), (54) describe free 2D electrons, 
whose two-dimensional behavior in a homogeneous iso-
tropic plane is determined by the QW, which means their 
localization in the potential 0 ( )V z . The full Hamiltonian 
includes also the periodical part, ( , )V z⊥ ⊥r , and is given by 

the expression (0)
2 per2D DH H H V→ = + , where the expres-

sion for perV  is written in (44). 

After the transition to the operators †
, ,na σ⊥k  and , ,na σ⊥k  

with the help of the unitary transformation (50), the Hamil-
tonian 2DH  describes 2D electrons in a periodic field with 
account of SOI in the form (55), and from the potential 

perV  of crystal lattice. In literature, operator (2 )ˆ D
SOV  is usual-

ly called Rashba SOI, and operator which results from the 
potential perV , is called Dresselhaus SOI. 

The explicit calculation of SOI with account of periodic 
potential requires special consideration and is not the subject 
of the present paper. Nevertheless, it is worth mentioning that 
calculation of quasi-particle bands in such potential even 
without account of SOI is a rather difficult problem which is 
based on a spatial symmetry group of the crystal and can be 
done only approximately. For bulk crystals when 0 = constV  
and SOI is not present in the zero approximation, spin-orbit 
splitting of such bands has been analyzed in details by 
Dresselhaus in Ref. 9 for zincblende structure and by Rashba 
and Sheka in Ref. 10 for wurtzite-type crystals. These papers 
were based on the group theory using the kp  perturbation 
approximation with account of point symmetries of the 
Brillouin zone. The relativistic corrections to the spinors were 
taken into account in the first order perturbation theory. Such 
calculations are rather cumbersome and accurate calculation 
of the generalized SOI based on the secondary quantization 
representation taking into account periodic potential, will be 
reported elsewhere. 
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