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We present a brief discussion of the phase-coherent dynamics of discrete breathers (intrinsic localized modes) 
in a system of two weakly coupled nonlinear chains and its comparison with periodic tunneling of quantum par-
ticles in a double-well potential and with macroscopic quantum tunneling of two weakly linked Bose–Einstein 
condensates. We consider the dynamics of relative phase of classically-tunneling discrete breathers in two weak-
ly coupled nonlinear chains and show that the dynamics of the relative phase in the π/2 tunneling mode coincides 
with the experimentally observed dynamics of the relative phase of quantum particles, periodically tunneling in a 
double-well potential, both for noninteracting and strongly repulsively interacting particles. The observed coin-
cidence demonstrates the correspondence between the dynamics of classical localized excitations in two weakly 
coupled nonlinear chains and tunneling dynamics of quantum object in the double-well potential. We show that 
in both π/2 and winding tunneling modes the relative phase experiences periodic jumps by π in the instants of 
complete depopulation of one of the weakly coupled chains or potential wells. The connection of the observed 
phase dynamics with the non-quantum uncertainty principle is discussed. 

PACS: 05.45.Yv Solitons; 
63.22.–m Phonons or vibrational states in low-dimensional structures and nanoscale materials; 
03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vor-
tices, and topological excitations; 
74.50.+r Tunneling phenomena; Josephson effects. 

Keywords: discrete breathers, weakly coupled anharmonic chains, dynamics of relative phase, π/2 tunneling mode, 
winding tunneling mode, periodic tunneling, classical and quantum objects, non-quantum uncertainty principle. 

Tunneling through a barrier is purely quantum mechani-
cal phenomenon. On a macroscopic scale it is realized in 
Josephson effect between two weakly coupled phase-
coherent condensates. The latter can be two superconductors 
separated by a thin barrier [1], two reservoirs of superfluid 
helium connected by nanoscopic apertures [2,3], or two weak-
ly linked Bose–Einstein condensates (BECs) in a macroscopic 
double-well potential (single bosonic Josephson junction) [4]. 
Here we discuss the profound analogy between classical 
phase-coherent dynamics of discrete breathers (DBs) in two 
weakly coupled nonlinear chains and tunneling dynamics of 
quantum objects. Corresponding equations of classical tun-
neling dynamics of two weakly coupled DBs (wandering 
breather) were obtained in the first papers in this field [5–7] 
and were later applied to a great variety of nonlinear me-
chanical systems [8]. Here we show that the dynamics of the 
relative phase of DBs in two weakly coupled nonlinear 
chains in the / 2π  tunneling mode, first described in [5–7], 
exactly coincides with the experimentally observed dynam-
ics of the relative phase of quantum particles periodically 

tunneling in a double-well potential, which is characterized 
by the abrupt changes (jumps) of the phase between the / 2π  
and / 2−π  values at the instants when the particles are fully 
localized in one of the coupled potential wells [9]. The coin-
cidence of the phase dynamics is shown both for non-
interacting and strongly repulsively interacting quantum 
particles. We show that in both / 2π  and winding tunneling 
modes, the relative phase experiences periodic jumps by π 
in the instants of complete depopulation of one of the two 
weakly coupled chains or potential wells. 

Nonlinear excitations (solitons, kink-solitons, intrinsic 
localized modes and discrete breathers) can be created 
most easily in low-dimensional (1D and quasi-1D) sys-
tems [10–20]. Recent experiments have demonstrated the 
existence of intrinsic localized modes and discrete breathers 
in various systems such as coupled nonlinear optical wave-
guides [21], low-dimensional crystals [22], micromechanical 
oscillator arrays [23,24], antiferromagnetic materials [25], 
Josephson junction arrays [26,27], optical waveguides and 
photonic crystals [28], α-helices [29], and α-uranium [30]. 
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Slowly-moving DBs, subsonic and supersonic kinks were 
also described in 1D nonlinear chains [15,17,31–37] and 
quasi-1D polymer crystals [38]. One-dimensional arrays of 
magnetic or optical microtraps for BECs of ultracold quantum 
gases with tunneling coupling provide a new field for the 
studies of coherent nonlinear dynamics in low-dimensional 
systems [39,40]. 

Here we discuss another conceptual aspect of classical 
nonlinear excitations by considering the analogy between 
dynamics of phase-coherent DBs, either stationary or slow-
ly-moving, in two weakly coupled nonlinear chains and 
quantum tunneling dynamics of a quantum particle periodi-
cally tunneling in a double-well potential [9] and of two 
weakly linked macroscopic condensates in a single bosonic 
Josephson junction [5–7]. There are two qualitatively differ-
ent dynamical regimes of the coupled DBs or intrinsic local-
ized modes, the nonlinear Rabi-like oscillations of the low-
amplitude DBs between the chains (tunneling DB), and one-
chain-localization (nonlinear self-trapping) for the high-
amplitude DB. These two regimes, which are separated by a 
separatrix mode with zero rate of energy and excitation ex-
change, are analogous to the two regimes in nonlinear dynam-
ics of macroscopic Bose–Einstein condensates in a single 
bosonic Josephson junction [4]. Phase-coherent dynamics of 
the coupled classical DBs is described by a pair of equations 
completely similar to that for BECs in a single bosonic Jo-
sephson junction [45,46]. The considered evolution of the 
relative phase of two weakly coupled DBs is analogous to 
the evolution of relative quantum-mechanical phase between 
two macroscopic condensates, which was directly measured 
in a single bosonic Josephson junction by means of interfer-
ence [4]. Moreover, the separatrix in the excitation exchange 
between macroscopic phase-coherent ensembles of particles 
in weakly coupled classical chains with “repulsive” nonline-
arity can be considered as a nonlinear dynamical model of 
the reversible interaction-induced superfluid-Mott-insulator 
transition, which was observed in Bose–Einstein condensate 
in a lattice with tunneling intersite coupling [41]. 

1. Model 

Following [5–7], we consider two linearly coupled iden-
tical anharmonic chains (with unit lattice period), which we 
model with the Fermi–Pasta–Ulam (β-FPU) Hamiltonian: 
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where ( )i
nu  is displacement of the nth particle from its equi-

librium position in the i th chain, ( ) ( )=i i
n np u  is particle mo-

mentum, β and C  are, respectively, dimensionless intra-
chain nonlinear and inter-chain linear force constants (in 
units of intra-chain linear force constant). We assume that 

the coupling is weak, C1, and do not include the nonlin-
ear inter-chain interaction. Hamiltonian (1) describes, e.g., 
purely transverse particle motion [15]. 

We are interested in high-frequency and therefore short-
wavelength dynamics of the coupled chains with the fre-
quency close to the top of acoustic phonon band, when the 
displacements of the nearest-neighbor particles are mainly 
anti-phase. For this case we introduce continuous enve-
lope-functions ( )( ) if x  for the particle displacements in the 
chains, ( ) ( )= ( ) ( 1)i i n

nu f x − , ( ) / 1if x∂ ∂  , where =x n  is a 
continuous spatial coordinate along the i th chain, which 
allow us to write partial differencial equations for them, see, 
e.g., [11,15,32–34]. Then from Hamiltonian (1) we get the 
following equations for ( )( ) if x , = 1,2i : 
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In order to deal with the amplitude and phase of the cou-
pled nonlinear excitations, it is useful to introduce complex 
wave fields ( , )ix tΨ  for each chain, cf. [32]: 

 ( ) 1( , ) = ( , ) exp( ) ( , ) exp( ) ,
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where = 4 2 / 4m C Cω + ≈ +  is characteristic frequency 
slightly above the maximal phonon frequency of isolated 
chains (equal to 2 in each chain in the considered units). 
Assuming that characteristic frequencies of the fields 

( , )ix tΨ  are small in comparison with mω , from Eqs. (2) and 
(3) we get the following coupled nonlinear-Schrödinger-type 
equations for ( , )ix tΨ , = 1,2i : 
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and complex-conjugated equations for i
∗Ψ . Similar Schrö-

dinger-type and nonlinear-Schrödinger-type equations for 
complex envelope functions of classical displacement fields 
were obtained in [32,42]. 

Using Eqs. (4), one can readily show the existence of 
the following integrals of motion and inter-chain flux: 
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which describe, respectively, the total number of excita-
tions, total energy, total momentum along the chain axis, 
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and total inter-chain flux of excitations (which conserves 
the total number of them, = 0i iN J+ ), cf. [32]. The exist-
ence of these integrals of motion and inter-chain flux 
demonstrates that the exchange of energy between two 
coupled nonlinear systems is a coherent phenomenon, 
which depends, in general, on the initial conditions. 

2. Tunneling dynamics of weakly coupled 
discrete breathers 

To describe the slowly-moving DB, periodically tunnel-
ing between two weakly coupled nonlinear chains with posi-
tive (repulsive) anharmonic force constant β, we assume the 
following form for the complex fields 1Ψ  and 2Ψ  [5–7]: 
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where 0Ω >  describes small shift of the DB frequency ω 
with respect to mω , 1V   and 1k   are the velocity and 
wavenumber related with the moving DB, iκ  describe in-
verse localization lengths. Here = ( / )t kx∆ ∆ − ω  stands for 
the reduced phase of the lattice excitations in the coupled 
chains, while the parameter = ( / )t kxΘ Θ − ω  describes the 
relative population (population imbalance) of the two chains 

1 2 1 2= ( ) / ( ) = cos 2z n n n n− − Θ, where 2
1=in Ψ  is local 

density of excitations in the i th chain, and 1 2 =n n+  
2

max = const.= Ψ  
Parameters ∆ and Θ determine the inter-chain flux of 

excitations, cf. Eq. (8): 
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The relative phase Φ , which we will compare below 

with the relative phase in quantum tunneling dynamics, is 
defined as 
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It is worth underlining that the relative and reduced 
phases Φ  and ∆ coincide in the case of tunneling dynam-
ics, in which the tunneling object does not reach during its 
evolution the state of complete depopulation of one of the 
weakly coupled atomic chains or potential wells, which 
corresponds to = 1z . Such tunneling dynamics, with equal 
relative and reduced phases, was realized, e.g., in Ref. 4 
for the Bose–Einstein condensate in weakly linked double-
well potential (bosonic Josephson junction). 

Using Eqs. (4), (9) and (10), after some algebra we ob-
tain dispersion equations for the introduced parameters, 
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and evolution equations for the parameters Θ and ∆: 
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Angular brackets in Eq. (14) denote the time-averaged 
and therefore time-independent quantities, which take into 
account the possibility of the integration along the trajecto-
ry of the slowly-moving DB in the integrals like that given 
by Eqs. (5)–(8). In the derivation of Eqs. (15) and (16), it 

was assumed explicitly that the ratio 1

2

cosh[ ( )]
cosh[ ( )]

x Vt
x Vt

κ −
κ −

 is 

equal to one. The latter is valid for small-amplitude DBs 
with long localization lengths, 1,2 1κ  . In this case the 
above assumption, which is exact for the central region of 
the DBs, x–Vt 0≈ , will be (approximately) valid for a large 
number of particles, which form weakly localized tunnel-
ing DB in weakly coupled nonlinear chains. Equations, 
similar to Eqs. (15) and (16), were derived, e.g., in 
Refs. 43, 44 for the description of energy exchange be-
tween two nonlinear molecules or weakly coupled classical 
anharmonic oscillators. 

Equations (15) and (16) can be written in an equivalent 
form for the reduced relative phase ∆ and relative popula-
tion of the two chains 1 2 1 2= ( ) / ( ) = cos 2z n n n n− + Θ, 
which are canonically conjugate, except the point of | |= 1z , 
see below: 
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with the following effective Hamiltonian (which has the 
dimension of frequency):  
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The very same equations were derived in [45,46] in 
connection with theoretical studies, based on macroscopic 
quantum Gross–Pitaevskii equation, of coherent atomic 
tunneling and coherent oscillations between two weakly 
coupled Bose–Einstein condensates, which were later used 
in the analysis of the experimental realization of a single 
bosonic Josephson junction [4]. In our case, Eqs. (17) 
and (18) describe the exchange of lattice excitations be-
tween the chains rather than atomic tunneling. One can 
consider such excitation exchange as a classical counter-
part of macroscopic quantum tunneling dynamics. 

It is noteworthy that the evolution equations, similar to 
Eqs. (15) and (16), describe the dynamics of two weakly 
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coupled identical nonlinear oscillators [43,44]. Therefore the 
tunneling intrinsic localized modes or discrete breathers can 
be considered as weakly coupled phase-coherent nonlinear 
macroscopic oscillators. Since nonlinear macroscopic oscil-
lators can posses nonlinearity of both signs, the evolution 
equations (15) and (16) and their derivatives, Eqs. (23) be-
low, can be considered in general for both positive and nega-
tive sign of the anharmonic force constant β. 

Equations (15) and (16) can be solved analytically for 
the given initial conditions. [For the weak coupling, in the 
following we assume = 2mω ]. Using the ansatz, 

 cos = ( ) / sin (2 ),A t∆ Θ  (20) 

where = 0A  for = 0Θ , we get from Eqs. (15) and (16): 

 2
max= (3 / )sin (4 ) .A C− βΨ Θ Θ   (21) 

We are seaking for the solution of Eqs. (15) and (16) 
with the initial condition (0) = 0Θ , which corresponds to 
zero complex field (complex wave function) 2Ψ  in the 
second chain at t = 0. For (0) = 0Θ  and (0) = 0A , we ob-
tain the following exact solution of Eqs. (15) and (16): 
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which corresponds to (0) = / 2∆ π  mod π. Then Eqs. (15) 
and (16) can be reduced to the equations 
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4
C

Θ ∆   
2
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= cos (2 ),
4

βΨ
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which will be solved below with the initial conditions 
(0) = 0Θ  and (0) = / 2∆ π . 
Finally, from Eqs. (22) and (23) we get the following 

two equivalent pendulum equations: 
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sin = 0
4

C
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for = 2δ ∆ − π, and 
 2

0 sin = 0Ξ +Ω Ξ  (25) 

for = 4Ξ Θ , where 2
0 max= 3 / 4Ω βΨ . 

The pendulum equation can be solved exactly, see, e.g., 
Refs. 44, 47. We are interested in the solution of Eq. (24) 

with the initial conditions (0) = 0δ  and 2
max

3(0) =
2

δ βΨ . 

The corresponding initial conditions for Ξ in Eq. (25) are 
(0) = 0Ξ  and (0) = CΞ . 

The important property of Eqs. (23) and of correspond-
ing pendulum equations (24) and (25) is the existence of 
two qualitatively different dynamical regimes of excitation 
and energy exchange, which have a separatrix realized for 
the condition = 1S , where 2

max= 3 / (2 )S CβΨ  is the non-
linearity-over-coupling parameter. 

For 1S  , Eqs. (23) describe the mode, in which the 
parameter Θ linearly grows with the “running” time t ≡  

/t kx≡ − ω, = 2ω : 
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In this regime, Θ spans the full range from 0 to 2π, which 
corresponds to the total energy exchange between the nonlin-
ear chains and therefore to the DB, periodically tunneling 
between the two chains, when the reduced phase ∆ is close to 

/ 2π . We call the excitation exchange in this regime as the 
/ 2π  tunneling mode of DB. According to Eq. (11), the fre-

quency of periodic inter-chain flux of excitations and energy 
in this mode, 1 max maxsin 2 sin sin ( / 2),J C C Ct∝ Ψ Θ ∆ ≈ Ψ 

  
is determined by the inter-chain coupling / 2C , reduced by 
the nonlinearity parameter 2

maxβΨ , see Eq. (29). 
The relative phase Φ  is defined by Eq. (12) and its time 

evolution in the / 2π  tunneling mode, described by Eqs. (26) 
and (27), is presented in Fig. 1 for different values of the 
nonlinearity-over-coupling parameter 2

max= 3 / (2 )S CβΨ . 
Figure 1 clearly shows that there are abrupt changes 

(jumps) of the relative phase Φ  by π, between / 2π  and 
– / 2π , at each instant when the DB is located completely 
in one of the coupled chains and the relative population is 
equal to unit in modulus, = 1z . According to Eq. (27), the 
interval between such instants in the weakly-nonlinear lim-
it is given by 2 / Cπ . In the case of vanishing nonlinearity, 
the time evolution of the relative phase Φ  coincides exact-
ly with the experimentally observed dynamics of the rela-
tive phase of the tunneling quantum particles in a double-
well potential [9]. The jumps of the relative phase at the 
instants of = 1z  are related with the uncertainty of the 
phase when the particle wave function is exactly zero in 
one of the coupled potential wells or chains, = 0iΨ  either 
for = 1i  or = 2i , see Eqs. (9) and (10). On the other hand, 
the abrupt change of the relative phase can be related with 
the (non-quantum) uncertainty principle: the variables z  
and Φ  are canonically conjugate, see Eqs. (17) and (18), 
and therefore cannot be measured simultaneously because 
the product of their uncertainties z∆  and ∆Φ  is bounded 
from below by the inequality 1/ 2z∆ ⋅∆Φ ≥ . At the instants 
of = 1z , the inter-chain tunneling current is zero, = 0z , 
see (11), and therefore the relative population z  and corre-
spondingly the location of the DB or quantum particle is 
well defined, which makes the value of Φ  be uncertain at 
these instants. 
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Equations (28) and (29) also predict substantial reduction 
of the tunneling frequency by the nonlinearity, which in turn 
can be compared with the observed transition from the high 
first-order (single-particle) to low second-order (two-particle 
co-tunneling) tunneling rates of quantum particles in the 
double-well potential, caused by the repulsion between par-
ticles [9]. Figure 1(c) shows phase dynamics in the / 2π  
tunneling mode, which describes periodic complete depopu-
lation of the coupled chains for = 0.95S − , which corre-
sponds to the β-FPU Hamiltonian (1) with negative β. This 

value of the nonlinearity-over-coupling parameter S can be 
put in line with strong repulsion between periodically tunnel-
ing quantum particles with positive masses in the experi-
ments [9] because lattice excitations in acoustic phonon band 
in monatomic chain with nearest-neighbor interactions pos-
sess negative effective mass [32,36]. Nonlinear excitations in 
the β-FPU model with negative β are the dark lattice 
solitons [15,16] (and tunneling dark lattice solitons in two 
weakly coupled chains), which are formed due to effective 
repulsion between the quasiparticles with negative effective 
mass. In the tunneling dark lattice solitons in coupled β-FPU 
chains, the factors max exp[ ( )] / cosh[ ( )]ii kx t x VtΨ −Ω κ −  
with Ω > 0 in the complex fields (9) and (10) are replaced by 
the factors ( ) ( )max exp tanh ii kx t x VtΨ −Ω κ −       with 
Ω < 0, = 1,2,i  see, e.g., [15]. The origin of dark lattice 
solitons in the β-FPU chain with negative β can in turn be put 
in line with the origin of the dark solitons and vortices in 
Bose–Einstein condensate, which are formed due to the repul-
sion between quantum particles with positive masses, which is 
described by the nonlinear term 2g Ψ Ψ with positive g  in 
the Gross–Pitaevskii equation [48]. Figure 1(c) demonstrates 
the dynamics of relative phase Φ  with reduced tunneling rate, 
which is similar to the phase dynamics observed in the exper-
iments [9] in the case of slow second-order co-tunneling of 
quantum particles with strong repulsion. 

Figure 1 also shows that both the reduced phase ∆ and 
parameter Θ are continuous and single-valued functions 
(of time) and the wave functions (9) and (10) of the dis-
placement fields, which are determined by these parame-
ters, are the single-valued functions as it is required by 
quantum mechanics [49], and the jumps by π of the rela-
tive phase Φ , which is determined by (12), do not make 
the wave functions ambiguous functions. The continuity of 
the ∆ and Θ functions is confirmed by the existence of the 
second-order equations (24) and (25) for these functions, 
which provide description of the tunneling dynamics, equiv-
alent to that given by Eqs. (23). Since both the classically 
tunneling DBs in a system of two weakly coupled nonlinear 
chains and the quantum particles, periodically tunneling in a 
double-well potential, can be described with the use of the 
canonically conjugate relative population z  and reduced 
phase ∆ (and relative phase Φ ), there is clear coincidence of 
the phase dynamics and the correspondence between period-
ic tunneling of classical and quantum objects. 

The phase dynamics in the / 2π  tunneling mode can al-
so be compared with the phase dynamics in the quantum 
Rabi oscillations, see, e.g., [50]. Here, for the superposition 
of two states 
 1 2( ) = ( ) 1 ( ) 2t a t a tΨ +  (30) 

with equal on-site energies 1 2=E E E≡ , Schrödinger 
equations for the complex amplitudes 1a  and 2a  are the 
following: 
 1 1 2= ,ia Ea a− γ  (31) 

 2 2 1= ,ia Ea a− γ  (32) 

Fig. 1. (Color online) Time evolution of parameter Θ  (green 
lines), reduced phase ∆  (blue lines) and relative phase Φ  (red 
lines) of two DBs in the / 2π  tunneling mode between two weak-
ly coupled nonlinear chains: (a) for = 0S , (b) for = 0.25S , and 
(c) = 0.95S − . Dynamics of the relative phase is described by 
Eqs. (12), (26) and (27), time is measured in 1C− . 
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where parameter γ  is the coupling matrix element between 
the states, and = 1 . For the initial conditions 1(0) = 1a  and 

2 (0) = 0a  and the value of the coupling parameter = / 4,Cγ  
which corresponds to Eqs. (4), Eqs. (31) and (32) have the 
solution 
 1 = cos ( )exp ( ) = cos ( / 4)exp ( ),a t iEt Ct iEtγ − −  (33) 

 2 = sin ( ) exp ( ) = sin ( / 4)exp ( ),a i t iEt i Ct iEtγ − −  (34) 

which exactly corresponds to the / 2π  tunneling mode, 
described by Eqs. (26) and (27) in the linear case = 0S  for 

= / 4CtΘ  and = / 2∆ π . [In the system of two weakly 
coupled atomic chains, the linear case = 0S  corresponds to 
two weakly coupled identical harmonic chains, with 1C   
and equal final lengths, when the / 2π  tunneling mode 
describes the periodic inter-chain tunneling of the confined 
harmonic vibrational mode at the top of acoustic band of 
the chains, with eigenfrequency = 2mω ω ≈ .] Therefore 
the / 2π  tunneling mode for 0 <| |< 1S  can be considered 
as the nonlinear Rabi-like oscillations of excitation popula-
tion in two coupled anharmonic chains, in which the com-
plex wave functions 1Ψ  and 2Ψ  in the ansatz (9) and (10) 
play role of the complex amplitudes 1a  and 2a  in the su-
perposition of two states (30). The / 2π  tunneling mode, 
which is described by the single-valued wave function in 
accordance with the requirement of quantum mechan-
ics [49], can also be realized in two weakly linked macro-
scopic quantum Bose–Einstein condensates. 

The separatrix, realized for = 1S  and eff = / mH C ω , is 
characterized by infinite oscillation period of the physical 
pendulum (24) or (25), which corresponds to the infinite 
period of inter-chain energy exchange. For the considered 
initial conditions, the separatrix is described by the follow-
ing solution of Eqs. (23): 

 = arctan exp( ) ,
2 4
C t π Θ −  

  = 2arctan exp ( ) ,
2
C t ∆   

 (35) 

 (0) = 0,  (0) = 1,  ( ) = 0,  (0) = ,  ( ) = .
2

z z π
Θ ∞ ∆ ∆ ∞ π   

  (36) 
There is no difference between the reduced ∆ and relative 

Φ  phases in the separatrix mode for > 0t  because the state of 
complete depopulation of the one of the coupled chains = 1z  
is reached only at = 0t , see Eq. (36). The flux of the inter-
chain excitation exchange is zero at the separatrix for t →∞ : 

= 0iJ  since ( )sin ( ) = 0∆ ∞ , see Eq. (11). 
Beyond the separatrix, in the limit of 1S  , one can 

obtain the following expressions for the evolution of Θ, ∆ 
and z  with the running time /t t kx≡ − ω , = 2ω :  

 2
max2

max

3sin ,
43

C t Θ ≈ βΨ 
 βΨ







 (37) 

( )
2

2 2
max max22

max

3 3sin ,
2 4 218

Ct tπ  ∆ ≈ + βΨ + βΨ 
 βΨ

 

 



 (38) 

 
( )

2
22
max22

max

2 31 ,sin
49

Cz t ≈ − βΨ 
 βΨ







 (39) 

 
2

2 2
max max 2

max
   = .

9
C

βΨ βΨ −
βΨ

  (40) 

This dynamical regime corresponds to the asymmetric non-
linear mode (known, e.g., for two coupled nonlinear wave-
guides [51–53]), in which one system, here is chain 1, car-
ries almost all vibrational energy while the other is almost 
at rest. This excitation-exchange regime can be called as 
the winding tunneling mode of DB because of linear in-
crease in time (winding up) of the reduced phase ∆, see 
Eq. (38) and Fig. 2. As one can see in Fig. 2, the relative 
phase Φ  experiences periodic jumps by π, with the period 
of 2 / Sπ . The time instants of the relative-phase jumps 
coincide with the instants of complete depopulation of one 
of the coupled chains, when = 1z , similar to the case of 
the phase jumps by π in the / 2π  tunneling mode shown in 
Fig. 1. As one can see in Figs. 1 and 2, both the reduced 
phase ∆ and parameter Θ are continuous and single-valued 
functions in the / 2π  and winding tunneling modes, which 
makes the wave functions (9) and (10) of the displacement 

Fig. 2. (Color online) Time evolution of parameter Θ  (green 
lines), reduced phase ∆  (blue lines) and relative phase Φ  (red 
lines) of two DBs in the winding tunneling mode between two 
weakly coupled nonlinear chains: (a) for = 1.25S , (b) for 

= 1.25S − . Dynamics of the relative and reduced phases is de-
scribed by Eqs. (12), (37) and (38), time is measured in 1C− . 
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fields be the single-valued functions as it is required by 
quantum mechanics [49]. In the winding tunneling mode, 
the energy exchange between the coupled chains is rela-
tively weak and gradually decreases with the increase of 
the parameter S  beyond the separatrix value of = 1S . 
The frequency of periodic inter-chain flux of excitations 
and energy in this mode, 1 max sin 2 sinJ C∝ Ψ Θ ∆ ∝  

2 2
maxmax( / )sin (3 / 2),C t∝ βΨ βΨ   is determined by the 

nonlinearity parameter 2
max3 / 2βΨ , reduced by the inter-

chain coupling C , see Eq. (40). 
The two dynamical regimes of energy and excitation 

exchange between DBs in two weakly coupled nonlinear 
chains, given by Eqs. (26), (27) and (37), (38), are analo-
gous, respectively, to anharmonic Josephson-like oscilla-
tions and nonlinear self-trapping, which were detected in a 
single bosonic Josephson junction [4]. 

It is worth mentioning that the form and frequency of a 
stationary or slowly-moving DB in an isolated chain can be 
obtained only in the winding tunneling (self-trapping) mode, 
in which one can consider the limit of C 0→ . Indeed, accord-
ing to Eq. (37), in this limit one has = 0Θ  in Eqs. (9) and (10) 
and DB frequency is obtained from Eqs. (9), (13), (22) 
and (38), and is equal to 

 
2

2
max

3= 2 ( / 2) / = 2 .
2 4

ktω +Ω+ ∂ ∆ ∂ + βΨ −  (41) 

This expression for the DB frequency exactly coin-
cides with the known expression for a single stationary or 
slowly-moving DB in the small-amplitude limit, see, 
e.g., [5–7,11,32]. This coincidence confirms the correct 
choice of the distribution of the reduced phase ∆ between 
the tunneling objects, given by / 2i− ∆  and / 2i∆  in the 
exponents in Eqs. (9) and (10), similar to that in the super-
position of two states in quantum mechanics [50]. It is im-
portant to underline that to get this expression for ω, one 
has to take explicitly into account in Eq. (9) the linear in-
crease in time (winding up) of the reduced relative phase ∆ 
in the self-trapping mode, given by Eq. (38). The winding 
up of the relative phase of two weakly coupled macroscop-
ic BECs in the nonlinear self-trapping mode has been di-
rectly measured in a single bosonic Josephson junction [4]. 
This finding gives us an additional argument in favor of 
the profound similarity between macroscopic tunneling 
quantum dynamics and phase-coherent dynamics of weak-
ly coupled discrete breathers. 

3. Conclusions 

In conclusion, we have presented analytical description 
of two qualitatively different regimes of energy exchange 
between phase-coherent discrete breathers (intrinsic local-
ized modes) in two weakly linked nonlinear chains. These 
regimes have a profound analogy, and are described by a 
similar pair of equations, to the anharmonic Josephson-like 
oscillations and nonlinear self-trapping, which were ob-

served in a single bosonic Josephson junction. We show that 
the dynamics of the relative phase in the / 2π  tunneling 
mode coincides with the experimentally observed dynamics 
of the relative phase of quantum particles, periodically tun-
neling in a double-well potential, both for noninteracting and 
strongly repulsively interacting particles. The / 2π  tunneling 
mode can also be observed in two weakly linked Bose–
Einstein condensates. The observed coincidence demon-
strates the correspondence between the dynamics of classi-
cal localized excitations in two weakly coupled nonlinear 
chains and tunneling dynamics of quantum particles in a 
double-well potential. In both / 2π  and winding tunneling 
modes, the relative phase Φ  experiences periodic jumps by 
π in the instants of complete depopulation of one of the 
two weakly coupled atomic chains or potential wells. The 
connection of the observed phase dynamics with the non-
quantum uncertainty principle is discussed. The obtained 
dispersion and evolution equations, together with the wave 
functions of the coupled nonlinear excitations, can be ap-
plied to the tunneling macroscopic Bose–Einstein conden-
sate, moving along two weakly linked bosonic waveguides, 
to classically-tunneling phase-coherent discrete breathers 
(intrinsic localized modes) in two weakly linked macro-
molecules, α-helices or DNA, and to electron-phonon and 
exciton-phonon polarons in two weakly coupled polymer 
molecules or semiconductor waveguides. 
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