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The mechanism of threshold elongation of DNA macromolecule (overstretching) is studied within the frame-
work of phenomenological approach, accounting both external (stretching) and internal (conformational) dis-
placement components. As shown, the overstretching of DNA under the action of an external force can occur in 
two stages. Firstly, due to the coupling between the components, at a some critical value of external force a con-
formational bistability is formed in the macromolecule structure. In turn, the appearance of bistability stimulates 
the formation of domains in the DNA chain with two different conformations (B and S). Secondly, under favora-
ble boundary conditions, the conformationally induced deformation acquires the possibility to propagate along 
the macromolecule as domain walls. In this way the bistability occurrence in the macromolecule conformation 
provides a threshold effect of elongation. The calculated contributions in DNA overstretching show agreement 
with the observed data, and allow to explain the dependence of macromolecule threshold elongation on nucleo-
tide content. 

PACS: 87.14.gk DNA; 
87.15.La Mechanical properties; 
87.15.hp Conformational changes; 
63.20.Pw Localized modes. 

Keywords: DNA deformation, polymorphism, nonlinear mechanics, threshold effect. 

1. Introduction

Mechanical properties of DNA macromolecule are es-
sentially important for understanding the mechanisms of 
biological processes in cells. To interpret the data on 
DNA mechanics, the macromolecule is often modeled as 
an elastic rod. Due to development of a single molecule 
manipulation techniques, the mechanical parameters of a 
DNA double helix (such as Young’s module, bending and 
rotating stiffnesses) have been significantly refined [1–3]. 
But new results on DNA mechanics not always satisfy the 
elastic rod model. Sometimes, under the action of an ex-
ternal force, the deformation of double-stranded (ds) 
DNA occurs as a threshold process (see reviews [4–12]). 
Most clearly such effects manifest themselves in the ex-
periments on DNA chain stretching. It was shown that at 
some critical value of applied force ( crf  65 pN), the 
rotationally unconstrained macromolecule overstretches, 
i.e., elongates 1.5–1.7 times [2–6]. The constrained dsDNA
passes to the overstretched state at a higher force [13,14]. 

Similar effects were observed for synthetic polynucleo-
tides [15,16] and oligonucleotides [17–20], which have a 
DNA-type structure. It should be noted, that for dsRNA 
macromolecules the threshold elongation has not yet been 
observed [5,21]. 

The typical view of a dsDNA overstretching curve 
drawn according to data [3] is shown in Fig. 1. It is consid-
ered [1–6], that the deformation of DNA macromolecule 
occures in a few stages. On the interval of small forces 
(5 pN), the force-extension curve describes the entropic 
extension of dsDNA to its contour length. For larger values 
of applying force, the elastic stretching of the double helix 
itself occurs (contribution a in Fig. 1). Further a deviation 
of the stretching curve from elastic course is observed 
(Fig. 1, contribution b). At certain critical value of external 
force the threshold elongation of the macromolecule is 
observed (Fig. 1, contribution c). The contributions of the 
entropic extension and the elastic stretching to dsDNA 
overstretching have been well understood, but the nature of 
the contributions b and c remains not clear still.  
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Basically, two scenarios of dsDNA overstretching are 
discussed. First one is the force-induced internal melting of 
DNA with a transition of the double helix into a single-
stranded state with destroyed base pairs [10,13,22–26]. 
The second scenario is the cooperative transformation of 
the macromolecule from its usual form (B ) to stretched 
double helix (S -form) with preserved hydrogen bonded 
complementary pairs [2,3,15,27–29]. Thermodynamical 
analysis made in [30,31] and experiments [17–20,29,32,33] 
show that both internal melting and B–S transitions are 
possible for dsDNA. Their realization depends on tempera-
ture, concentration of counterions in solution, and DNA 
nucleotide content. An important result in understanding 
the effect is obtained in the work [19], where the appear-
ance of bistability between B  and S  forms is observed 
during dsDNA overstretching occurrence. 

Despite a rather large number of experimental results, 
the mechanism of the overstretching process in dsDNA is 
not yet clear (see discussions after the article [10], in book 
[12] (Ch. 3), and in the article [34]). In its turn the theoreti-
cal studies still have not come to an unequivocal answer, as 
well. Accordingly to the conformational analysis and mo-
lecular dynamics modeling [2,9,35–37], the probable struc-
ture of S -form is a narrow double helix, where the base 
pairs are strongly inclined with the preservation of hydro-
gen bonding and stacking interactions. The performed 
modelling demonstrates opportunity of dsDNA to transit to 
overstretched state, but no gives the explanation of the 
mechanism of effect. In theoretical works [38–40] it has 
been supposed that the coupling of a dsDNA stretching 
with twisting and bending can explain the dsDNA thresh-
old elongation. Of course, it should be noted that the cou-
pling of the displacement components could give a definite 
quantitative effect in dsDNA stretching, but this in itself 
can not be the origin of the threshold deformation. Authors 
of [29] consider that the overstretching deformation in 

dsDNA happens as a chemical reaction, due to gradual 
appearance of the domains with stretched form. But the 
authors, as well as the previous ones, do not give an expla-
nation of how a gradual process can give a threshold effect. 
Using a polymer approach authors of the paper [41] have 
come to conclusion that for agreement with experiment it 
is necessary to suppose the change in the size of a DNA 
monomer link. That is, it is necessary to take into account 
the structural (conformational) changes within the macro-
molecule itself. 

Just in the presented work the ability of DNA to change 
the double helix form under the influence of external fac-
tors is taken into account to explain the DNA overstretch-
ing. It is well known that the polymorphism of dsDNA 
structure is the key property of the macromolecule, that 
distinguish it from other molecules of the cell [42–46]. In 
the studying DNA overstretching in the present work the 
two-component approach is used, which takes into account 
both conformational rearrangement of a macromolecule 
and its deformation as well. It should be noted, that the 
two-component approach is a conventional method for 
description of structure mobility of the one-dimensional 
systems with the internal degrees of freedoms, such as one-
dimensional molecular crystals [47,48 (and cited therein)]. 
In DNA investigations this approach has been used for the 
studding the conformational vibrations [49] and the con-
formational solitons [50–53] in DNA macromolecule. 

In the present work, with the help of two-component 
approach the conditions of bistability of B  and S  forms 
realization in dsDNA under the action of an external force 
are defined. The contributions of different mechanical pro-
cesses to the elongation of a polymorphic macromolecule 
are found, and the important role of conformationally in-
duced deformation is shown. The mechanism of threshold 
overstretching in long DNA macromolecule is proposed 
and grounded. The calculated energies and characteristic 
parameters of dsDNA elongation accord to experiment. 

2. Modeling the force action on a DNA macromolecule 

As well known, dsDNA consists of two polynucleotide 
strands, which are formed by alternated groups of phos-
phates and deoxyribose (or sugar) rings. To the sugars the 
nucleic bases are attached. Under natural conditions, in 
ion-hydrate environment, DNA strands form a double he-
lix, where the nucleic bases of different strands are bonded 
in complementary pairs (A⋅T and G⋅C) inside the helix 
[42]. Thus, dsDNA is a polymer, the monomer link of 
which includes two phosphate groups, two sugar rings and 
a complementary pair of nucleic bases (Fig. 2(a)).  

The contour length of the macromolecule is calculated 
as ( 1)L N l= − , where N  is a number of monomers in 
dsDNA chain and l  — the length of base pair step in the 
double helix. The value of l  is determined as a projection 
of a distance between the neighbouring base pairs (parame-

Fig. 1. Typical curve for dsDNA overstretching. The figure is 
drawn in accordance with the data [3], where overstretching of a 
λ -phage DNA is studied, crf  = 65 pN. In the present paper the 
contributions to the dsDNA overstretching are distinguished as: 
(a) elastic stretching of the double helix, (b) deviation from the 
elastic stretching, (c) threshold elongation, as such. 
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ter rise (h) [54] on the helix axis (Fig. 2). Note, that pa-
rameter rise remains unchanged in different forms of DNA 
double helix due to the preservation of van der Waals 
contacts between the atoms of nucleic bases in a step. In 
B-DNA the length of base pair step is practically equal to 
the rise value due to close to orthogonal position of the 
base pairs with respect to helix axis in B -DNA (Fig. 2(a)). 

The analysis of the helix step extension in dsDNA dur-
ing the overstretching process shows [2,35–37] that the 
macromolecule elongation is accompanied by a significant 
inclination of base pairs in the double helix and enlarge-
ment of base pairs slide (Fig. 2(b)). As follows from [55], 
such restructuring of the double helix allow to increase the 
projection of base pair step on helix axis and to enlarge the 
length of DNA step itself. It should be noted, that men-
tioned displacements occurs in the double helix without 
destroying the hydrogen binding in complementary pairs. 
So, it is fair to consider that the dominant component in the 
rearrangement of double helix structure under overstretch-
ing is the inclination of the base pairs as a whole. Note, 
these rearrangements in dsDNA can occur due to the 
changes in the conformation of the sugar rings and the 
sugar-phosphate backbone as well. 

It should be underline, that DNA overstretching occurs 
with the anomalously large (in compare with the thermal 
fluctuations) amplitudes of the base pairs displacements. 
Thus, the effect of DNA overstretching can not be consid-
ered within the framework of elastic deformations, and is 
the subject of the nonlinear mechanics study. 

To consider the mechanism of dsDNA threshold elon-
gation in the present study, the model with two displace-
ment components is used. One component (the external is 

nR ) describes a displacement of nth monomer from its 
equilibrium position in DNA chain under the force action. 

In fact, that component is the double helix stretching, the 
degree of freedom of DNA model as an elastic rod. Anoth-
er model component (the internal is nr ), let it describe a 
displacement of the base pair in nth monomer relative to 
the backbone. Both components are considered as projec-
tions of the corresponding displacements on the axis of the 
double helix (OZ) and are scalar quantities. In the work the 
dynamics of deformation in DNA macromolecule will be 
studied also, and so it is assumed that both model compo-
nents depend on time: ( )nR t  and ( )nr t . Under the investiga-
tion, it is assumed also that DNA macromolecule is already 
extended to its contour length, and the stretching of the 
double helix itself is studied. 

Let us write the energy of a structural transformation of 
dsDNA macromolecule under the action of an external 
force: 

 2 2 2
1

1= { [ ]
2 n n R n n

n
E MR mr k R R −+ + − +∑ 

   

 2
1 1[ ] ( ) ( )[( )r n n n n n nk r r r F r R R− ++ − +Φ −χ − +  

 1( )]} ( ).n nR R A R−+ − +  (1) 

In expression (1) the summation is over all n monomers in 
DNA chain, R , r are derivatives with respect to the time; 

Rk  and rk  are the constants of stiffness, which describe the 
interactions along the macromolecular chain for the exter-
nal and internal components; M  means the mass of mon-
omer link and m is the mass of base pair. 

It is worth to note, that DNA is a heterogenic macro-
molecule due to the heterogeneity of its nucleic bases. But 
on the conformational pathways, when macromolecule 
remains in the double helix form with preserved base pairs, 
dsDNA can be considered as a homogenies polymer be-
cause the masses M  and m have the same value for A⋅T 
and G⋅C pairs [50,51]. 

The potential function ( )nrΦ  describes the conforma-
tional state of nth monomer itself on the pathway of con-
formational transition from ground to stretched state. In the 
absence of an external force polymorphic dsDNA is in a 
ground state (B -form under the physiological conditions 
[42]), and S -form should be considered as a metastable 
state. Thus, for describing B –S  transition the function 

( )rΦ  should be taken in the shape of a double well with 
two non-equivalent stable states: the ground B -form, and 
the metastable S -form (positions 0r  and 2r  in Fig. 3). Cor-
respondingly, the conformation barrier ( 1r ) lies between 
two defined states.  

The term with the coefficient χ in expression (1) de-
scribes the coupling between internal and external compo-
nents under a macromolecule elongation. The presence of 
coupling term and its sign in expression (1) reflect the fact, 
that polymorphic macromolecule can reduce the energy 
needed for the deformation due to the change of its con-
formation. We will believe that: > 0χ . The value of the 

Fig. 2. Double-stranded DNA in B  (left) and S  (right) forms. The 
structure of the monomer units are shown in bold. (a) for B -form 
the distance between neighbouring base pairs corresponds to the 
value of the parameter rise, Bl h≈ ; (b) for S -form the distance 
between neighbouring base pairs ( Sl ) is the sum of projections of 
rise on the helix axis and the value of monomer elongation under 
B–S  transition, here θ is an inclination angle. 
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coupling depends on pathway of conformational transfor-
mation, and will determine by the shape of potential func-
tion ( )F r . 

The last term in expression (1) describes the action of 
an external force ( f ) on the macromolecule. Herewith we 
assume that the external force is applied to the external 
component, and is directed along the double helix axis. So,   

 1( ) = ( ).n n
n

A R f R R −− −∑  (2) 

In the present work, the model with only one external 
and one internal components of a DNA transformation is 
used, that are the dominant degrees of freedom of the mod-
eled process. It is clear that, in such complex rearrange-
ments as dsDNA overstretching, and other degrees of free-
dom of the double helix have to take place as well. But in 
this study, the simplest model with two dominant dis-
placement components will be studied to understand the 
basic mechanism of threshold elongation of DNA macro-
molecule. 

The model (1), (2) is a development of approach to 
modeling the DNA conformational transitions, in particu-
lar, B – A  transitions in dsDNA [50–53], where the DNA 
rearrangements were studied without the action of external 
force. 

3. Deformation of the polymorphic macromolecule 

To understand the impact of the conformation rear-
rangements in dsDNA deformation let us consider firstly 
the uniform deformations of macromolecule, assuming that 

1( ) ,n nR R −− ≡℘  nr r≡ , = 0R , = 0r . 
Using the model (1), (2), the energy density of the mac-

romolecule that undergoes a uniform deformation can be 
written in the form: 

 21( , ) = [ ( ) 2 ( ) ] .
2 Rr k r F r f℘ ℘ +Φ − χ ℘ − ℘  (3) 

Here = /E N . 
As is clear, the macromolecule conformational state de-

pends on the shapes of potential functions ( )rΦ  and ( )F r . 

The explicit forms of these functions for dsDNA over-
stretching transition are not known by now, but their 
shapes can be determined accurately enough. So, in the 
ground state ( 0r ) it is correct to assume that: 

 0 0( ) = ( ) = 0r F rΦ . (4) 

Then, it can be considered that functions ( )rΦ  and ( )F r , 
by their definition, would increase on the pathway from 
the ground state of the system ( 0r ) up to the transition bar-
rier ( 1r ), and then decrease nearby the metastable state ( 2r ), 
as is shown in (Fig. 3). Thus, it should be assumed that for 
the extrema of potential functions the following inequali-
ties are fulfilled: 

 0 2 1 0 2 1( ) < ( ) < ( ); ( ) < ( ) < ( ).r r r F r F r F rΦ Φ Φ  (5) 

Under the action of an external force the equilibrium 
states of the system could be changed. New conformational 
states and the values of macromolecule deformation can be 
determined by solving the following equations: 

 = 2 = 0,d dF
r dr dr

∂ Φ
− χ ℘

∂
  (6) 

 = ( ) = 0.Rk F r f∂
℘−χ −

∂℘
  (7) 

From Eq. (7) the expression for the polymorphic macro-
molecule deformation can be written in the form:   

 el= ( ),rχ℘ ρ +ρ  (8) 

where 

 el
1= , ( ) = ( ).
R R

f r F r
k kχ

χ
ρ ρ  (9) 

As might be expected, the deformation of polymorphic 
macromolecule (8) is caused by the elastic properties of 
molecular chain, and the macromolecule conformational 
state. The term elρ  in expression (8) describes an elastic 
stretching of a double helix as in the model of elastic rod. 
The second term in expression (8) appears due to the cou-
pling between the external and internal components of a 
macromolecule transformation. 

The conformational state of the macromolecule is de-
scribed by equation (6). After substitution of expressions 
(8), (9) in (6), this equation can be written as: 

 
2 2( ) 2 = 0.
R R

d d F dFf
dr k dr k dr
Φ χ χ
− −  (10) 

Analysing Eq. (10), it is seen that in the absence of external 
force the functions Φ  and 2F  have the same extrema points 
and depend on r  similarly, accurate to constant. Moreover, 
when the condition for the ground state (4) is satisfied, this 
constant should be vanished. So, it can be concluded that for 
these functions the following relation fulfills: 

 2( ) = ( ),or F rΦ ε  (11) 

Fig. 3. The shapes of potential functions for nth monomer link in 
the model (1). 
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where parameter oε  has the dimension of energy, and ( )F r  
is a dimensionless function. The value oε  should be posi-
tive due to the positivity of the potential function in (11). 

Under the force action, the positions of macromolecule 
stable states have to change, and new extrema points of the 
conformational energy ( 0 fr , 1 fr , and 2 fr ) should appear. 
As is seen from (10), (11), new extrema can be determined 
by the equation: 

 ( ) = 0.
R

dFF r f
k drχ

 χ
ε − 
 

 (12) 

When writing an expression (12), it is accepted that 

 
2

= .o
Rkχ
χ

ε ε −  (13) 

The consideration of Eq. (12) shows that new extremum 
0 fr  can be obtained by equating to 0 the expression in 

square brackets, that gives 

 0
æ( ) = = ,f

R
F r f f

kχ

χ
ε χ

 (14) 

here 

 
2

2æ = .
o Rk
χ

ε −χ
 (15) 

Two other solutions follow again from the equation: 
/ = 0dF dr , and they are 1 1=fr r , 2 2=fr r . 
As can be seen from (14), the value 0( )fF r  is positive if 

parameter χε  (13), and parameter æ  (15) are positive as 
well. To fulfill these conditions, it is assumed that: 

 2> .o Rkε χ  (16) 

A change of the macromolecule ground state position in 
the presence of an external force can be understood direct-
ly from Eq. (14). It is seen that, as > 0f , then 0( ) > 0fF r  
due to (14). Tacking into account assumed shape of func-
tion ( )F r  (Fig. 3), it may be correct, if the macromolecule 
ground state shifts: 0 0 fr r→ , under the force action. 

To fully determine the peculiarities of the deformation 
of polymorphic macromolecule, let us write the conforma-
tional deformation χρ  (9) in the following form:   

 tr( ) = ( ),or rχ χρ ρ +ρ  (17) 

where the first term   

 0 el= ( ) = æfo
R

F r
kχ
χ

ρ ρ  (18) 

is a primary (before a conformation transition) deformation 
of the macromolecule due to a change of its conformation 
in the frame of ground state under the action of an external 
force. In deriving formulas (17), (18), expressions (9), (14) 
and (15) are used. 

The second term in Exp. (17) 

 tr ( ) = ( )
R

r r
k
χ

ρ   (19) 

is the deformation accompanying a conformational transi-
tion as such, if it occur in the macromolecule. 

In Exp. (19), the function ( )r : 

 0( ) = ( ) ( ),fr F r F r−  (20) 

describes the change of the conformation state of polymor-
phic macromolecule under the action of an external force. 

In accordance with the defined contributions to the de-
formation of polymorphic macromolecule, let us rewrite 
the macromolecule energy. Integrating Exp. (12), one can 
obtain the expression for macromolecule conformational 
energy under the external force action: 

 21( ) = ( ) ( ) ,
2 r

R
r F r fF r C

kχ
χ

ε − +  (21) 

where rC  is the constant of integration, which can be de-
termined assuming that 0( ) = 0fr . In this case   

 0= ( ) .
2 fr

R
C F r f

k
χ  (22) 

Accounting Exps. (14) and (20), the view of the conforma-
tional energy (21) can be rewritten in the compact form: 

 21( ) = ( ).
2

r rχε   (23) 

Accordingly, the energy of the macromolecule uniform 
deformation (3) can be presented as   

 ( , ) = ( ) ( ),r r A℘ + ρ   (24) 

where the first term is the energy of deformation induced 
by the conformational rearrangements as such (23). The 
second term is conditioned by the appearance of elastic and 
primary conformational deformations of macromolecule as 
a reaction on the tension of an external force: 

 el
1( ) = ( ).
2 oA f χρ ρ +ρ  (25) 

4. Critical regime: the formation of conformational 
bistability 

Let us consider the influence of an external force on the 
shape of macromolecule conformational energy. It is seen 
from Eqs. (21), (23), the shape of macromolecule confor-
mational energy is determined by function ( )r , in fact. 
With the growth of external force the position of ground 
state ( 0 fr ) shifts, and the form of double well energy ( )r  
should be changed. Really, as is seen from expressions 
(14,20–23), the value of potential barrier (at 1 fr ) and the 
energy of the metastable state (at 2 fr ) will decrease pro-
portionally under the external force increase. 
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At some critical value of an acting force, the values of 
0( )fF r  and 2( )fF r  can become equal and the conforma-

tional energy should take the shape of double well function 
as shown in Fig. 4. Indeed, for some critical value of the 
external force, the macromolecule conformation can take a 
bistable form with two equivalent stable states, and with a 
reduced transition barrier between them. The conditions of 
such a macromolecule transformation can be found from 
an equality: 

 0 2( ) = ( ).f fr r   (26) 

The realization of equality (26) means that the macromole-
cule transforms into bistable conformation (see Fig. 4, 
curve 3). Such a state of the system we will call the critical 
regime. 

Accounting (23), (26), and that 0( ) = 0fr , for the criti-
cal regime it should be fair: 

 0 2cr cr( ) = ( ) = 0,f fr r   (27) 

and, as follows from relation (20), 0 2( ) = ( )f fF r F r . 
Note that, in view of relations (26), (27), in the critical 

regime the expression for the macromolecule conforma-
tional energy can be approximated by analytical function. 
Really, on the interval ( 0 2,f fr r ) the function (20) can be 
written as: 

 0 2cr 2
1( ) = ( )( ),f fr r r r r

d
− −  (28) 

where 2 0= ( )/2f fd r r− . 
Accordingly, in the critical regime the expression for 

conformational energy (23) can be presented in the form: 

 0 2
2 2

cr 4( ) = ( ) ( ) .
2

f fr r r r r
d
χε − −  (29) 

As is seen, function (29) has two minima and one maxi-
mum ( 1 0=f fr r d+ ). Substituting the coordinate of the 
energy maximum in expression (29), the energy barrier in 
the critical regime can be determined as 

 1cr
1( ) = = .
2f br χ χε ε  (30) 

Using expressions (14) and (27), we can write the ex-
pression for the value of external force under the critical 
regime realization as: 

 om
cr

cr

2
= .

æ of
f

ε
ρ

 (31) 

Here, omε  is the energy difference between the ground and 
metastable (deformed) state of the macromolecule in the 
absent of force action:   

 2 2
2

om
1= ( ) = ( ),
2 2

r F rε
ε Φ  (32) 

and 0 el=f oχρ ρ +ρ  is the uniform deformation of the mac-
romolecule in the critical regime. 

Note that using the formula (31), it is possible to deter-
mine the value of omε  from the experimentally measured 
critical force and observed values of 0 fρ  and cræ . 

As is seen, when the acting force approaches to its critical 
value, the contributions of the primary and elastic defor-
mations of the macromolecule increase. Both these contribu-
tions create the uniform deformation of the macromolecule 
( )ofρ , but not constitute to the threshold process. 

5. Conformationally induced deformation and 
threshold elongation in DNA macromolecule 

Under the critical regime the macromolecule confor-
mation transforms to a bistable form, thus the conforma-
tional transition becomes very likely and can induce the 
overstretching deformation in macromolecule chain. As is 
known [56], the realization of structural transitions in a 
macromolecule chain can occur through the formation of 
domains of monomer units with another (then initial) struc-
tural state. If the energies of both conformational states are 
the same, the boundaries of domains (domain walls) can 
move along the chain increasing (or decreasing) the do-
main area [57–60]. Under definite boundary conditions the 
induced in this case deformation can propagate along the 
macromolecule and lead to a threshold effect. Such mech-
anism can explain the process of dsDNA overstretching. 

For understanding the process of dsDNA threshold 
elongation let us study the dynamics of B –S  transition and 
induced by it deformation. Let us go to the continuum ap-
proximation, which is usually used when considering the 
structural transitions dynamics. It should be noted that in 
the case of studding B –S  transition, the continual approx-
imation is also valid. As molecular modeling [2,35,36] sug-
gests, the stretched DNA retains pairs of complementary 
bases and stacking interactions between them up to the criti-
cal value of force. For dsDNA the preservation of its struc-
tural organization is sufficient to the use of the continuum 
approximation [51]. In the continuum approximation it is 

Fig. 4. Transformation of macromolecule conformational state 
under the action of an external force = 0f  (1); cr0 < <f f  (2);   

cr=f f  (3) (critical regime). It is seen the shift of the ground 
state of macromolecule conformation: 0 0 fr r→ . 
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considered = ( , )R R z t , = ( , )r r z t , and 1( ) =n nR R hR− ′− , 
1( ) =n nr r hr− ′− , where R′ and r′ are the derivatives with 

respect to z , and h is the parameter rise, which accords to 
the base pair step in B –DNA. 

The equations of motion for the external and internal 
components of a polymorphic macromolecule deformation 
can be written as 

 2= ;R
h dFR s R r

M dr
χ′′ ′−  (33) 

 [ ]2 1= ( ) .r
dFr s r F r hR

m dr
′′ ′− ε − χ  (34) 

In Eqs. (33), (34) 2 2= /R Rs k h M , 2 2= /r rs k h m, and the 
relation (11) between the potential functions is used also. 

To consider the dynamics of conformational transition 
along the macromolecule chain, let us introduce a wave 
coordinate = z tζ − v  and will seek the solutions having the 
asymptotic of stable states. That are ( 0 fr  or 2 fr ) of dsDNA 
conformation in the critical regime. 

After the wave substitution and one-time integration of 
Eq. (33), we obtain the following expression: 

 2 2( ) ( ) = .R R
hs v R F r C

Mζ
χ

− −  (35) 

Equation (35) determines the dynamics of macromolecule 
deformation. In this equation Rζ  is the derivation with re-
spect to ζ , RC  is the constant of integration. Considering 

/ ,R hζ =℘  and that the initial condition for Rζ  is determined 
by the expression (7), we can obtain = /RC fh M . 

Introducing the wave coordinate in Eq. (34), and taking 
into account expression (35), after integration we obtain 
the equation for describing the dynamics of conformational 
component: 

 2 2 ( ) = 0,fr Q rζ +  (36) 

where 2 ( )fQ r  is an effective potential energy of nonlinear 
oscillator (36). 

The function ( )fQ r  itself is a cumbersome functions r , 

external force f  and the model parameters. But Eq. (36) 
can be simplified, accounting that in experiments on DNA 
stretching the measured processes have the velocities not 
exceeding 10–5 m/s [2], which are much smaller than the 
value of velocity Rs , which can be estimated by formula 

2 1/2= ( / )R Rs k h M . Using the value of stiffness constant Rk , 
which can be calculated from the experimental data on 
dsDNA Yong’s module (see below), one can obtain: 

26 10Rs ⋅  m/s. The velocity rs  should have a close order, 

R rs s≤ , according to our analysis in [51]. 
Thus, for the processes of dsDNA elongation the fol-

lowing inequality is true: 2 2
Rv s , 2

rs . In this case, the 
effective potential function 2 ( )fQ r  can be expressed in 
terms of the conformational energy in its critical view (23), 

and for the critical regime it can be written using expres-
sion (29). So, for the velocities of real experiment, it can 
be obtained the following: 

 2 2
cr2( ) = ( ).f

r
Q r r

k h
χε−   (37) 

The solution of equation (36) with potential (37) for the 
asymptotic of stable states (as ζ → ±∞, 0 fr r→  or 2 fr , 
and 0rζ → ) has the form of the domain wall [57–60]. Af-
ter integration of Eq. (36) with the above-mentioned 
boundary conditions, we can obtain the following expres-
sion for the domain wall in the macromolecule: 

 0( ) = [1 th( )],f rr r d qζ + ± ζ  (38) 

where 

 2 2= /r rq k d hχε  (39) 

has the dimension of inverse length. 
In Exp. (38), the sign has been chosen in accordance to 

the boundary conditions: minus, if at the boundary (say, 
ζ → −∞) 0 fr  state is realized (as th( ) = 1−∞ − ); and plus, if 
2 0= 2f fr r d+  state. It is seen, solution (38) is a wave in 

the form of a step of 2d  size — the transition from state 
0 fr  to 2 fr  one, or the reverse process. 

In a view of result (38), let us find the displacement of 
external component induced by the conformational transi-
tion. Using Eq. (35) and substitution (20) one can obtain: 

 0cr cr
1= ( ) ( ) .f

R
R f F r r

hkζ  + χ + χ   (40) 

According to expressions (9), (17), and using (40) the elonga-
tion of polymorphic macromolecule can be written as: 

 tr( ) = ( ),ofL Nδ ζ ρ +ρ ζ  (41) 

where ofρ  is the uniform deformation of the macromole-
cule chain, and trρ  is the wave of deformation induced by 
the wave of conformational transition (Fig. 5(a)).  

The conformationally induced deformation can be ex-
pressed as   

 tr cr tr
0

( ) = ( ) = [1 th( )],r
R

d r a q
hk

ζ
χ

ρ ζ ζ ± ζ∫   (42) 

where tr = / R ra hk qχ . Here, the solution for ( )r ζ  (38) and 
expression (28) for cr ( )r  are used. To derive expression 
(42), it is supposed that states 2 fr  and 0 fr  are realized at 
different sides of the macromolecular chain. Thus, 

tr= 2of a℘ ρ +  at one side of the domain wall (where 
2= fr r ), and = of℘ ρ  at another side ( 0= fr r ) (Fig. 5(a)). 

It should be noted that obtained solutions for the de-
scribing domain walls (38), (42) are the topological soli-
tons. This type of solitons remains stable for unchanged 
boundary conditions in a macromolecule chain [57–60], 
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and their appearance in the macromolecule happens at the 
end of the chain. The physical nature of these excitations is 
connected with the nonlinear character of the conformational 
energy and the existing of the coupling between the external 
and internal components in the macromolecule (1). 

Besides, the Eqs. (36) and (40) have also two-soliton 
solutions, which describe the occurrence of the domains of 
another conformation inside the macromolecule with some 
different conformation. These solutions are shown in Fig. 5 
as well. Note, that realization of one-soliton solution is 
more favorable energetically, because it requires the for-
mation of only one domain wall at the end of macromole-
cule chain in this case. 

The one- and two-soliton solutions differ from each 
other not only by the number of domain walls, but also by 
the boundary conditions for their realization. For the reali-
zation of one-soliton solution, it is important to have dis-
tinct stable states ( 0 fr  or 2 fr ) at the different ends of the 
transition region. For the realization of two-soliton solu-
tion, it is necessary to have the same stable states (say, the 
ground state 0 fr ) at the domain boundaries. 

6. Quantitative results 

The developed approach allows us to study the proper-
ties of the overstretching process in dsDNA on the quanti-
tative level. It is of interest to determine amplitude, thick-
ness and energy of domain walls for the regime of dsDNA 
threshold elongation. For these purposes let us firstly get 
the expressions for estimations of these values and to de-
termine the parameters used for calculations. 

The choice of model parameters. As is seen from expres-
sion (42), the amplitude of macromolecule elongation in-

duced by conformational transition has the value: tr tr2aρ = . 
Substituting rq  (39), in the expression for tra  we can ob-

tain tr 2 æ / .r Rd k kρ =  
Hereinafter in this section we assume that the value of 

parameters æ  and χ corresponds to their critical value. 
Assuming that the constants rk  and Rk  for DNA mac-

romolecule are of the same order of values, the following 
simple formula for the estimation of the elongation ampli-
tude can be obtained: 

 tr 2 æ.dρ ≈  (43) 

It should be noted, that whereas d  is a constant defined by 
a transition pathway, the amplitude of macromolecule 
elongation varies proportionally to the square root of æ . 

The length of the double helix step in S -form should be 
calculated as a sum:   

 = cos ,Sl h θ+℘  (44) 

where the first term is the projection of rise on the helix 
axis (here θ is the inclination angle, Fig. 2(b)), and the se-
cond term is the value of monomer elongation under B –S  
transition: 

 el= (1 æ) 2 æ.d℘ ρ + +  (45) 

Here the expressions (8), (9), (18) and (43) are used. 
The domain wall thickness should be determined as 

1= 2dw rl q−  [57]. Using expressions (13), (15) and (39), the 
following formula for the domain wall thickness under the 
macromolecule overstretching can be obtained: 

 tr= / .dw Rl hk ρ χ  (46) 

The probable value of χ can be determined, using ex-
pression (15): 

 2 æ= .
1 æ o Rkχ ε
+

 (47) 

As is seen, to estimate the parameter χ it is necessary to 
use the values of æ  (which is observed), the known param-
eters of macromolecule stiffness and the energy oε . 

The energy of domain wall can be determined as fol-
lowing: 

 
/2

4

/2

1= ch ( ) .
2

ldw

dw b r
ldw

q d
h

−
χ

−

ε ζ ζ∫  (48) 

To derive expression (48), the solution (38) and expres-
sions (29), (30) are used. 

After integration in (48), the resulting formula is: 

 = 0.61 .dw
dw b

l
h χε  (49) 

The obtained expressions allow us to determine the neces-
sary parameters of the model. 

Fig. 5. Propagation of the wave of a conformationally induced 
deformation along the macromolecule chain under conditions of 
the critical regime: (a) macromolecule deformation comprises 
the deformation induced by the conformational transition ( trρ ), 
and by the sum of elastic and primary deformations of the mac-
romolecule ( el=of oχρ ρ + ρ ); (b) the energy distribution in the 
macromolecule chain under a threshold elongation, dw  and dwl  
are the energy and thickness of a domain wall, crA  is the work 
of the external force to form a uniform deformation in the mac-
romolecule. 
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In the calculation of the relative DNA elongation in 
S -form in compare with the same in B -form, the expres-
sion (44) is used. Accordingly, the DNA relative elonga-
tion is calculated as: / /o SL L l h= . 

The estimation of the parameters values. For calcula-
tions of the characteristics of dsDNA overstretching 
process, the following values of model parameters are 
used: /Rk s h= , where dsDNA stretch module (S) has 
the value 1100±200 pN [39], and the rise h = 3.34 Å (in 
accordance to [61]). Thus, Rk  =4.71±0.86 kcal/mol⋅Å2. 
The value of parameter oε  = 6 kcal/mol is adopted by 
the data of conformational analysis of DNA backbone 
[42,62] obε . 

From the observed overstretching data for dsDNA with 
an average nucleotide content and for the critical value of 
an external force ( crf  = 65 pN) [2,3,6,22,25,27] one can 
estimate the ratio: el/oχρ ρ ≈1. This evaluation allows to 
estimate the parameter æ  as equal 1. Then, using formula 
(47) with known values of oε  and Rk , one can obtain the 
value of coupling parameter: crχ  = 3.76 kcal/mol⋅Å2. 

The determination the value of parameter d , that uses in 
(38), (43), (45), can be done from the data of [35]. By these 
results, under overstretching of dsDNA, the base pair incli-
nation angle increases on ~ 34° in compare with B -form 
(our estimation by the data of [35], Fig. 3(b), structure 1.6). 
This gives the following estimate for the displacement of the 
base pair center in dsDNA (the middle point of the C6C8 
line in DNA base pair [54]) along the double helix axis: 2.7 
Å. The obtained value accords to the contribution of the 
conformational rearrangements in the elongation of the 
monomer link (17). Subtracting the primary deformation, 
that for dsDNA with the average value of the stretch module 
and value of the parameter æ  = 1, is oχρ  = 0.2 Å, we obtain 
the following estimate for parameter d  — 1.25 Å. 

Dependence on nucleotide content. The parameters 
evaluated in such a way allow to calculate the characteris-
tics of the overstretching process for dsDNA with an aver-
age value of the stretch module. The results of this calcula-
tions are presented in Table 1, in the 2nd row. But the 
DNA is a heteronomic macromolecule, and accordingly to 
results [15,16] the dsDNA overstretching depends strongly 
on nucleotide content. 

 

To study the dependence of DNA overstretching pro-
cess on nucleotide content the calculations of dsDNA 
elongation characteristics are performed also for double 
helix with stretch module, which differ from their average 
value by ±200 pN. Conditionally, in accordance with data 
[15,16], we will assume that dsDNA with lower stretch 
module will describe the dsDNA with A⋅T-rich content 
(1st row in Table 1), and the dsDNA with higher stretch 
module — the dsDNA with G⋅C-rich content (3th row in 
Table 1). In this case the values of parameter æ  are calcu-
lated by formula (15) with different values of Rk , due to 
their deviations from the average value. The calculations of 
overstretching characteristics for dsDNA with different 
stretch modules are done with the same values of parame-
ters ε, χ, and d , assuming that these parameters are not 
depend considerably from nucleotide contents. All values 
in the table are calculated with the accuracy up to the se-
cond decimal point and then are rounded to the first one. 

As is seen from Table 1, the calculated values of dsDNA 
elongation per monomer correspond in order of their magni-
tudes to experimental data [1–6]. Over the range of DNA 
stretch module variation, the contribution of the elastic de-
formation elρ  changes moderately, only in the second deci-
mal point. In contrast, the contributions of the primary and 
transition deformations, and the value of parameter æ  
change significantly, and are larger for macromolecule with 
smaller stretch module (with A⋅T-rich content). The defor-
mation trρ  gives the largest contribution to the value of mac-
romolecule deformations in each case (more then 80%). The 
obtained results correspond with the data of the overstretch-
ing kinetics study in the force-clamp experiments [18,29], 
where it is shown that the macromolecule stretching ampli-
tude increases by an order in the force interval of the DNA 
threshold elongation. 

Note, the results presented in Table 1 show also that in 
conditions of the critical regime the transition barrier be-
tween unstretched and stretched DNA forms falls signifi-
cantly (in compare with its initial value, ~ 3 kcal/mol). 

It is seen also that the sizes of domain walls ( dwl ) are 
practically unchanged on the interval of stretch module 
variation. Here, two processes (a decrease of the parameter 
æ  and an increase of the macromolecule stiffness) proceed 
concurrently (43), (46). 

Table 1. The calculated characteristics of dsDNA overstretching under the action of a critical force ( crf  = 65 pN): the values of pa-
rameter æ; the threshold elongation of the double helix per monomer link (℘) and the contributions to it; the values of B–S  transition 
barrier ( bχε ); the thicknesses of domain walls ( dwl ), the energies of their formation, and the value of relative elongation. The data are 
presented for dsDNA with an average stretch module (2nd row), and the same for DNA with differ by ±200 pN stretch modules (1st and 
3th rows). 

S, pN æ  ℘ ( elρ , oχρ , trρ ), Å bχε , kcal/mol dwl , h cr ; ,dwA   kcal/mol L/L0 

900 1.6 3.7; (0.2; 0.4; 3.1) 1.2 3.2 0.9; 2.3 1.9 
1100 1.0 2.9; (0.2; 0.2; 2.5) 1.5 3.1 0.6; 2.8 1.7 
1300 0.7 2.4; (0.2; 0.1; 2.1) 1.7 3.1 0.4; 3.3 1.5 
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Note, the energies for initiating the appearance of domain 
walls are not so large in order to destroy a base pairs, in all 
cases the sum of the work ( crA ) and the domain walls them-
selves ( dw ) is less then the denaturation energy of a pair. 

7. Discussion. 

According to the developed theory, the overstretching 
process in dsDNA takes place in two stages. At the first 
stage, at cr<f f , under the external force action the uni-
form deformation appears in the macromolecule chain. The 
arising deformation consists of elastic stretching of DNA 
chain ( elρ ), and of the stretching caused by primary chang-
es in the double helix conformation ( χoρ ) before conforma-
tional transition. 

At the second stage, at cr=f f , the macromolecule con-
formation transforms to a bistable state together with a 
decreasing of the energy transition barrier before the over-
stretching. The appearance of a bistable conformation in 
the double helix makes it possible to realize the cooperative 
B –S  transition in a macromolecule chain, when the B –S  
boundaries propagate along macromolecule as domain 
walls. This scenario of the overstretching process in 
dsDNA is in accordance with the observation of the 
bistability of B  and S  forms in the range of the critical 
force action [19,20]. 

As is seen from developed theory, the propagation of the 
domain walls is strictly conditioned by boundary conditions 
and depends on the dsDNA state on the ends of the macro-
molecule under the force action. The predicted dependence 
of DNA overstretching on the boundary conditions is in a 
qualitative agreement with the results of the conformational 
analysis [35], and the experimental data [27]. 

Under constructing of dsDNA stretching model it was 
assumed that the macromolecule conformational rear-
rangement takes place as the displacement of the base pairs 
at the expense of the sugar-phosphates backbone transfor-
mations. This assumption can be confirmed by the obser-
vation of significant changes of the DNA Raman bands 
around 800–900 cm–1 and 1100–1200 cm–1 in single mol-
ecule experiments [63]. As known, these bands reflect the 
specific vibrations of DNA sugar rings and phosphate 
groups, respectively [42]. 

From the results of Table 1, it is seen that the over-
stretching deformation should be different for double helix 
fragments with different nucleotide content. According to 
the calculations made the overstretching deformation (and 
parameter æ) should be larger for dsDNA with smaller 
stiffness. So, because the stretch module for A⋅T-rich DNA 
is smaller than for G⋅C-rich DNA (as follows from the re-
sults of [15,16]), the overstretching deformation should be 
larger for A⋅T-rich DNA. Note, that this conclusion is in 
accordance with results of [19], where the larger ampli-
tudes of the overstretching deformation are observed for 
A⋅T-rich DNA. 

According to the conformational analysis [35,36], under 
overstretching the base pairs in S -DNA are greatly in-
clined with large uphill slide. These structural changes in 
DNA should lead to the losses in the base pairs stacking. 
As is known [64], the base stacking on a par with hydrogen 
bonding stipulate the base pairing in the double helix and 
dsDNA stability as a whole. Thus, the larger overstretching 
deformation of DNA with A⋅T-rich content should lead to 
disruption of base pairs and the subsequent internal melt-
ing. Hence, under overstretching of DNA with rich content 
of A⋅T pairs, or of DNA with reduced stability (due to 
temperature increasing, or counterions concentration de-
creasing), the overstretching process should lead to melting 
transition. Therefore, it can be concluded, the S -form is 
not stable for dsDNA with reduced helix stability. Such a 
conclusion agrees with the experiments [19,20], where 
some intermediate (between B  and melted) state is ob-
served under overstretching of A⋅T-rich oligonucleotides. 
As is shown in [19,20], this intermediate state is unstable 
under physiological conditions, and transmits to the melted 
state. So, it can be just the observation of unstable S -form 
for A⋅T-rich DNA. 

It is important that the energy losses under propagation 
of B –S  transition along dsDNA are considerably less than 
for the melting process. Really, under B –S  transition the 
losses for internal component is minimal, because, in this 
case, the base pairs move as a unit, whose masses are the 
same [50,51]. In addition, under B –S  transition propaga-
tion in dsDNA the losses for the external component due to 
the interaction with environment cannot be large, as well. 
This is so correct, because under B –S  transition the dou-
ble helix diameter is significantly reduced [28,35] in con-
trast with melting transition. The ability of the B –S  do-
main walls to propagate in a heteronomic DNA is 
supported also by the results of quantitative estimations 
shown in Table 1, where is seen, that the size of domain 
walls remains sufficiently stable under the variability of 
the dsDNA stretch module. 

Thus, there is every reason to believe that overstretch-
ing process in real dsDNA occurs as follows. Initially, at 
the critical value of acting force, B –S  transition spreads 
across whole extended DNA chain, then in DNA sections 
with a rich A⋅T content the S -form, because of its instabil-
ity, goes into the melted state. 

Conclusions 

It can be concluded that dsDNA as a polymorphic mac-
romolecule has an additional mechanism of deformation 
that arises because of the coupling between stretching and 
conformation of the double helix. The elongation of 
dsDNA macromolecule can occur as a threshold effect due 
to the conformational bistability appearance and subse-
quent B –S  transition propagation in the double helix as a 
domain wall. It should be noted that the absence of poly-
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morphic properties in an RNA macromolecule can be the 
reason for not observing the overstretching effect for it. 

As our analysis shows, the implementation of such a 
mechanism has definite differences for A⋅T-rich and G⋅C-
rich dsDNA fragments. The overstretching for A⋅T-rich 
sequences, due to their lower stiffness, has a larger value 
of deformation, that leads to the larger losses in base pairs 
stacking. Therefore, the S -form in dsDNA is no stable for 
A⋅T-rich sequences, and a melting transition becomes more 
profitable here. Besides, B –S  transition in G⋅C-rich 
dsDNA should occur very quickly, covering large frag-
ments of the macromolecule due to the relatively small 
dissipation energy of the domain walls propagation. 
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