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The diffraction of a scalar plane wave from a doubly-periodic surface on which either the Dirichlet or Neu-
mann boundary condition is imposed is studied by means of a rigorous numerical solution of the Rayleigh equa-
tion for the amplitudes of the diffracted Bragg beams. From the results of these calculations the diffraction effi-
ciencies of several of the lowest order diffracted beams are calculated as functions of the polar and azimuthal 
angles of incidence. The angular dependencies of the diffraction efficiencies display features that can be identi-
fied as Rayleigh anomalies for both types of surfaces. In the case of a Neumann surface additional features are 
present that can be attributed to the existence of surface waves on such surfaces. Some of the results obtained 
through the use of the Rayleigh equation are validated by comparing them with results of a rigorous Green’s 
function numerical calculation. 

PACS: 43.20.+g General linear acoustics; 
47.35.Rs Sound waves. 
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1. Introduction

In several resent papers the present authors have studied 
theoretically and computationally the diffraction of p-pola-
rized light from a perfectly conducting grating [1] and 
from a high-index dielectric grating [2], and the diffraction 
of a shear horizontally polarized acoustic wave from a gat-
ing ruled on the surface of an isotropic elastic medium [3]. 
Each of these media does not support a surface wave when 
the surface bounding it is planar, but supports one when it 
is periodically corrugated. The dependence of the diffrac-

tion efficiencies of some of the lowest-order Bragg beams 
on the angle of incidence was found to posses two types of 
anomalies. The first type of anomaly occurred at angles of 
incidence at which a diffractive order begins to propagate 
or ceases to propagate. They were first observed by Wood 
in 1902 [4] in the diffraction of light from a metallic gra-
ting. Their origin was explained by Lord Rayleigh [5], and 
they are now called Rayleigh anomalies. The second type 
of anomaly occurred at angles of incidence at which the 
incident field excites a surface wave supported by the grat-
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ing, when the difference of the components of the wave 
vectors of the incident field parallel to the mean scattering 
plane and of the surface wave is made up by the addition 
of a grating vector. These anomalies were also first ob-
served by Wood in 1902 [4], and were shown to be due to 
the grating-induced excitation of surface plasmon polari-
tons by the incident light by Fano [6]. We refer to them as 
Wood anomalies. Since surface waves don't exist on planar 
surfaces of the media studied in Refs. 1–3, our results ob-
tained in these papers emphasized the necessity of surface 
waves for the existence of Wood anomalies, and that the 
surface waves need not be surface plasmon polaritons, but 
can be of a quite different nature. 

In this paper we extend the work presented in Refs. 1–3 
to the case of diffraction of a scalar plane wave from a dou-
bly-periodic grating (often called a bigrating or a cross-
grating), fabricated on a surface of a medium that when pla-
nar does not support a surface wave, but can support one 
when it is doubly periodic. Specifically, we consider the 
diffraction of a scalar plane wave from a doubly-periodic 
surface on which either the Dirichlet or the Neumann 
boundary condition is satisfied. For brevity, we will refer to 
these two types of surfaces as Dirichlet and Neumann sur-
faces, respectively. It is known that a doubly-periodic Neu-
mann surface supports a surface wave while a doubly-
periodic Dirichlet surface does not [7]. We calculate the 
dependence of several of the lowest-order diffraction effi-
ciencies on the polar angle of incidence for a fixed azimuth-
al angle of incidence, and look for Rayleigh anomalies in 
these dependencies for both types of surfaces, and for Wood 
anomalies in the diffraction from a Neumann surface. 

Calculations of the dependence of the efficiencies of dif-
fraction of light from, or its transmission through, several 
types of doubly-periodic structures on the wavelength of the 
incident light, or on its polar angle of incidence for a fixed 
azimuthal angle of incidence, have been carried out by a 
variety of approaches. Some of them have been devoted to 
the wavelength dependence of the reflectivity and the dip it 
displays that arises from the excitation of a surface wave 
supported by the doubly-periodic structure [8–11], others to 
the phenomenon of total absorption [12], and still others to 
the wavelength dependence of the enhanced transmission of 
light through a doubly-periodic array of nanoscale holes 
piercing a thin metal film [13–16]. Similar calculations of 
higher-order diffraction efficiencies, such as the ones carried 
out in the present work, do not appear to have been carried 
out in these earlier studies. 

The calculations in the body of this paper will be car-
ried out on the basis of the Rayleigh hypothesis [17], per-
haps the simplest approach to solving this scattering prob-
lem. This hypothesis is the assumption that when a rough 
surface is illuminated from above by a downward propa-
gating incoming incident plane wave the scattered field can 
be expanded in a series of upward outgoing plane waves at 
every point above the surface. This scattered field thus 

satisfies the boundary condition of outgoing scattered 
waves at infinity, and together with the incoming incident 
wave satisfies the boundary condition on the rough surface. 
In general this is an approximation, because if the indenta-
tions of the surface are sufficiently deep and narrow, some 
of the scattered waves can be propagating downward to-
ward the surface within them, before becoming upward 
propagating waves due to multiple scattering. Such waves 
are not taken into account by the Rayleigh hypothesis, 
which considers only upward outgoing scattered waves in 
the surface indentations. 

The validity of the Rayleigh hypothesis has been ques-
tioned on occasion [18–20] for this reason. Nevertheless, 
in subsequent work limits of validity of this hypothesis 
have been determined for the scattering of a scalar plane 
wave from a singly-periodic surface [21–26] and from a 
doubly-periodic surface [27], defined by profile functions 
that are analytic functions of the coordinates in the mean 
scattering plane. It has recently been argued that the Ray-
leigh hypothesis is always valid [28]. 

With this background, in this paper we derive the Ray-
leigh equations for the diffraction of a scalar plane wave 
from doubly-periodic Dirichlet and Neumann surfaces, and 
solve them numerically. For greater generality, and for 
pedagogical reasons, we begin the derivation by first ob-
taining the Rayleigh equation for the scattering of a scalar 
plane wave from an arbitrary rough two-dimensional 
Dirichlet and Neumann surface, and then specialize this 
equation to the case of a doubly-periodic surface. From the 
solutions of these equations we will calculate the angular 
dependencies of several of the diffraction orders. The va-
lidity of the Rayleigh hypothesis in the context of the prob-
lem studied will be demonstrated by a comparison of some 
of the results obtained by its use with those obtained by a 
rigorous numerical method [29,30]. 

2. Scattering theory 

The system that we consider consists of a liquid in the 
region 3 ||> ( )x ζ x  and an impenetrable medium in the re-
gion 3 ||< ( )x ζ x  where || 1 2= ( , ,0)x xx  is a position vector 
in the plane 3 = 0x . The surface profile function ||( )ζ x  is 
assumed to be a single valued function of ||x , and to be 
differentiable with respect to 1x  and 2x . 

The field ( ; )tψ x  in the region 3 ||> ( )x ζ x  consists of an 
incoming incident scalar plane wave of frequency ω  and a 
superposition of outgoing scattered plane waves of the same 
frequency [ ]inc sc( ; ) = ( | ) ( | ) exp( )t i tψ ψ ω + ψ ω − ω ≡x x x

( | ) exp( )i t≡ ψ ω − ωx . The amplitude function ( | )ψ ωx  is 
the solution of the Helmholtz equation 

 
2

2
2 ( | ) = 0,

c

 ω
∇ + ψ ω 

  
x  (1) 

where c  is the speed of the field in the liquid. The field 
satisfies either (a) the Dirichlet boundary condition 
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3 = ( )||

( | ) | = 0x ζψ ω xx  (2) 

or (b) the Neumann boundary condition 

 
3 = ( )||

( | ) = 0
xn ζ

∂ψ ω
∂ x

x
 (3) 

on the rough surface 3 ||= ( )x ζ x . In Eq. (3) / n∂ ∂  is the 
derivative along the normal to the surface at each point of 
it directed into the region 3 ||> ( )x ζ x , 

 

{ }
1 || 2 ||1/22 1 2 3

||

1= ( ) ( ) ,
1 ( )

n x x x
 ∂ ∂ ∂ ∂
−ζ − ζ + ∂ ∂ ∂ ∂  + ∇ζ  

x x
x

  

  (4) 

where || ||( ) = ( )/ xα αζ ∂ζ ∂x x  ( = 1, 2).α  It is clear that the 
prefactor 2 1/2

||[1 { ( )} ]−+ ∇ζ x  on the right-hand side of 
Eq. (4) can be neglected in what follows. 

In the scattering of a scalar plane wave from either type 
of surface, the incident field inc( | )ψ ωx  can be written as 

 inc || || 0 || 3( | ) = exp i ( , ) ,i k x ψ ω ⋅ − α ω x k x  (5) 

where || 1 2= ( , ,0)k kk  and 2 2 2 1/2
0 || ||( , ) = [( / ) ] ,k c kα ω ω −  

with || < / .k cω  
Similarly, the field scattered from either type of surface, 

sc( | )ψ ωx , can be written 

 
2

||
sc || || || || 0 || 32( | ) = ( | ) exp[ ( , ) ],

(2 )

d q
R i i q xψ ω ⋅ + α ω

π∫x q k q x   

  (6) 

where 2 2 2 1/2
0 || ||( , ) = [( / ) ]q c qα ω ω −  with 0 ||Re ( , ) > 0qα ω  

and 0 ||Im ( , ) > 0.qα ω  Of course the scattering amplitude 
|| ||( | )R q k  will be different for the scattering from a 

Dirichlet surface then it is for scattering from a Neumann 
surface due to the different boundary conditions satisfied on 
the two types of surfaces. Equation (6) is the mathematical 
statement of the Rayleigh hypothesis. 

We now substitute the sum of Eqs. (5) and (6) into the 
boundary conditions (2) and (3). The resulting equations 
for the scattering amplitude can be written as 

____________________________________________________ 

 || || 0 || ||
|| || 0 ||

1
exp ( , ) ( )

( ) ( , )
i i k

k

 
 ⋅ − α ω ζ +    − ⋅∇ζ + α ω  

k x x
k x

  

 
2

||
|| || || || 0 || ||2 || || 0 ||

1
( | ) exp ( , ) ( ) = 0

( ) ( , )(2 )

d q
R i i q

q

 
 + ⋅ + α ω ζ    − ⋅∇ζ − α ωπ   

∫ q k q x x
q x

. (7) 

_______________________________________________ 

We now introduce the function ||( | )I γ Q  by 

 
2

||
|| || || ||2exp ( ) = ( | ) exp ,

(2 )

d Q
i I i   − γζ γ ⋅   π∫x Q Q x  (8a) 

so that 

      2
|| || || || ||( | ) = exp ( ) expI d x i i   γ − γζ − ⋅   ∫Q x Q x . (8b) 

If we differentiate both sides of Eq. (8a) with respect to 
xα  ( = 1,2),α  we obtain the useful result 

 || ||( ) exp ( ) =iα  ζ − γζ x x   

 
2

||
|| || ||2 ( | ) exp

(2 )

d Q Q
I iα  = − γ ⋅ γπ∫ Q Q x . (8c) 

When we substitute Eqs. (8) into Eqs. (7) and equate to 
zero the coefficient of || ||exp[ ]i ⋅p x  in the resulting equa-
tions, the equations satisfied by the scattering amplitudes 

|| ||( | )R q k  become 

 ( )
2

||
0 || || || || || || ||2 ( , ) | ( | ) ( | ) =

(2 )

d q
I q M R−α ω −

π∫ p q p q q k   

 ( )0 || || || || ||( , ) | ( | )I k N= − α ω −p k p k , (9) 

where 

 || || || ||( | ) = 1, ( | ) = 1M Np q p k  (10) 

for a Dirichlet surface, and 

 
2

|| ||
|| ||

0 ||

( / )
( | ) = ,

( , )
c

M
q

ω − ⋅
α ω

p q
p q   

 
2

|| ||
|| ||

0 ||

( / )
( | ) =

( , ).
c

N
k

ω − ⋅
−

α ω
p k

p k  (11) 

for a Neumann surface. Equations (9)–(11) constitute the 
Rayleigh equations for the scattering amplitude in the scat-
tering of a scalar plane wave from a two-dimensional 
rough Dirichlet or Neumann surface. 
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3. The differential reflection coefficient 

The scattering amplitude || ||( | )R q k  is of great im-
portance in calculations of scattering from rough surfaces 
because an experimentally accessible quantity, the differ-
ential reflection coefficient, is expressed in terms of it. The 
differential reflection coefficient / sR∂ ∂Ω  is defined such 
that ( / )s sR d∂ ∂Ω Ω  is the fraction of the total time-
averaged incident flux that is scattered into an element of 
solid angle sdΩ  around the direction defined by the polar 
and azimuthal angles of scattering ( , )s sθ ϕ . 

The magnitude of the total time-averaged flux incident 
on the surface is given by 

3 ||

1 2
2 2

inc*inc 1 2 inc
> max ( )31 2

2 2

( | )
= Im ( | ) ,

L L

xL L
P A dx dx

x ζ
− −

 ∂ψ ω
− ψ ω ∂ 

∫ ∫
x

x
x   

  (12) 

where 1L  and 2L  are the lengths of the scattering surface 
along the 1x  and 2x  axes, while A  is a coefficient that 
drops out of the expression for the differential reflection 
coefficient. (For the scattering of a particle of mass m, 

= /A m  where   denotes Planck's constant.) The minus 
sign that appears in on the right-hand side of Eq. (12) 
compensates for the fact that the incident flux is negative. 
For the form of the incident field given by Eq. (5) we find 
easily that 

 inc 1 2 0 ||= ( , ),P AL L kα ω  (13) 

where we have used the fact that 0 ||( , )kα ω  is real. 
Similarly, the magnitude of the total time-averaged 

scattered flux is given by 

____________________________________________________ 

 
3 ||

1 2
2 2

sc*
sc 1 2 sc

> max ( )31 2
2 2

( | )
= Im ( | )

L L

xL L
P A dx dx

x ζ
− −

 ∂ψ ω
ψ ω ∂ 

∫ ∫
x

x
x . (14) 

With the use of the expression for sc( | )ψ ωx  given by Eq. (6), this expression becomes 

( ) { }
1 2

2 22 2 || || * *
sc 1 2 0 || || || || || || || 0 || 0 || 32 2

1 2
2 2

= Im ( , ) ( | ) ( | ) exp exp ( , ) ( , )
(2 ) (2 )

L L

L L

d q d q
P A dx dx i q R R i –i q q x

− −

′   α ω − − ⋅ α ω − α ω =′ ′ ′ ′   π π∫ ∫ ∫ ∫ q k q k q q x

 

 
2 2

2 2|| ||
0 || || || 0 || 3 0 || || ||2 2

< /||

= Im ( , ) ( | ) exp 2 Im ( , ) ( , ) ( | ) .
(2 ) (2 )q c

d q d q
A i q R q x A q R

ω

 α ω − α ω = α ω π π∫ ∫q k q k  (15) 

_______________________________________________ 

In obtaining this result we have used the fact that 0 ||( , )qα ω  
is real for ||0 < < / ,q cω  while it is imaginary for || > / ,q cω  
to obtain the domain of integration indicated. 

We now introduce the polar and azimuthal angles of in-
cidence 0 0( , )θ ϕ  and of scattering ( , )s sθ ϕ , respectively, 
through the relations 

 || 0 0 0= sin (cos ,sin ,0)
c
ω

θ ϕ ϕk  (16a) 

and 

 || = sin (cos ,sin ,0).s s sc
ω

θ ϕ ϕq  (16b) 

It follows that 0 || 0( , ) = ( / ) cos ,k cα ω ω θ  0 ||( , ) =qα ω
( / ) cos ,sc= ω θ  and 2 2

|| = ( / ) cos ds sd q cω θ Ω  where 
,sdΩ  the element of solid angle, is = sin .s s s sd d dΩ θ θ ϕ  

With the use of these results the incident flux can be writ-
ten as 

 inc 0 1 2 0( ) = cos ,P AL L
c
ω

θ θ  (17) 

while the scattered flux becomes 

 sc sc= ( , )s s sP d pΩ θ ϕ∫ , (18) 

where 

 
2 22

sc || ||( , ) = cos ( | ) .
2s s sp A R

c c
ω ω θ ϕ θ  π

q k  (19) 

By definition the differential reflection coefficient is 

 
2 2 2sc

|| ||
inc 0 1 2 0

( , ) cos1= = ( | ) ,
( ) 2 cos
s s s

s

pR R
P L L c

θ ϕ θ∂ ω 
  ∂Ω θ π θ

q k   

  (20) 

where ||k  and ||q  are defined by Eqs. (16a) and (16b), 
respectively. 
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4. Doubly-periodic surface 

The results obtained in the preceding sections of this 
paper apply to an arbitrary two-dimensional rough surface 
defined by the single-valued surface profile function ||( )ζ x  
that is differentiable with respect to 1x  and 2x . In this 
section we specialize these results to the case where the 
surface profile function is a doubly-periodic function of 

|| ,x  namely a bigrating. 
Thus the surface profile function ||( )ζ x  is assumed to 

possess the property ( )|| || ||( ) = ( ),ζ + ζx x x  where the vec-
tor || ( )x   is a translation vector of a two-dimensional 
Bravais lattice [31]. It is defined by 

 || 1 1 2 2( ) = ,+x a a    (21) 

where 1a  and 2a  are the two noncolinear primitive trans-
lation vectors of the Bravais lattice, while 1  and 2  are 
any positive or negative integers or zero, which we denote 
collectively by  . The area of a primitive unit cell of this 
lattice is 1 2= | |ca ×a a . 

We also introduce the lattice reciprocal to the one de-
fined by Eq. (21). Its lattice sites are defined by the vectors 

 || 1 1 2 2( ) = ,h h h+G b b  (22) 

where the primitive translation vectors 1b  and 2b  are re-
lated to the primitive translation vectors of the direct lat-
tice, 1a  and 2a , by = 2i j ij⋅ πδa b , while 1h  and 2h  are 
any positive or negative integers or zero, which we denote 
collectively by h . 

We now proceed to transform the Rayleigh equation (9) 
for the scattering amplitude || ||( | )R q k  into the Rayleigh 
equation for the corresponding amplitude that arises in the 
diffraction of a scalar plane wave from an impenetrable 
bigrating. 

Due to the periodicity of the surface profile function 
||( ),ζ x  the field in the region 3 ||> ( )x ζ x  must satisfy the 

Floquet–Bloch condition [32,33] 

   ( ) ( )|| || 3 || || || 3( ), | = exp ( ) , | .x i x ψ + ω ⋅ ψ ω x x k x x   (23) 

This condition is satisfied if we rewrite the scattering am-
plitude || ||( | )R q k  in the form 

   ( )2
|| || || || || || || ||

||

( | ) = 2 ( ) ( | ).R rπ δ − − +∑
G

q k q k G k G k  (24) 

In writing this equation we have replaced summation over 
h  by summation over ||G . 

A second consequence of the periodicity of the surface 
profile function ||( )ζ x  is that the function ||( | )I γ Q  de-
fined by Eq. (8b) can now be written 

 ( ) 2
|| || || || ||

( )
| = exp ( ) exp ,

ac

I d x i i   γ − γζ − ⋅   ∑ ∫Q x Q x




  

  (25) 

where ( )ca 
 is the area of the unit cell containing the 

translation vector || ( )x  . The change of variable 
|| || ||= ( ) +x x u , and the relation || || ||( ( )) = ( ),ζ + ζx x x  

yield the result 

 ( )|| || ||| = exp ( )I i γ − ⋅ × ∑Q Q x


   

 2
|| || || ||d exp ( ) exp

ac

u i i   × − γζ − ⋅   ∫ u Q u . (26) 

The use of the relation [34] 

 ( )
2

|| || || ||
||

(2 )exp ( ) =
c

i
a
π − ⋅ δ − ∑ ∑

G
Q x Q G



  (27) 

in Eq. (26) yields the result 

 ( ) ( ) ( ) ( )2
|| || || ||

||

ˆ| = 2 | ,I Iγ π δ − γ∑
G

Q Q G G  (28) 

where 

   ( ) 2
|| || || ||

1ˆ | = exp ( ) exp || .
c ac

I d x i i
a

   γ − γζ − ⋅   ∫G x G x  (29) 

When the results given by Eqs. (24) and (28) are substi-
tuted into Eq. (9), and the integration over ||q  is carried 
out, we obtain the equation 

____________________________________________________ 

 ( )
||

2
|| || 0 || || || || ||

||

ˆ2 ( ) ( ( , ) | ) ( | ) ( | )I K M r
′

π δ − −α ω − =′ ′ ′ ′∑ ∑
K K

p K K K K K K k   

 ( )2
|| || 0 || || || || ||

||

ˆ= 2 ( ) ( ( , ) | ) ( | )I k N− π δ − α ω −∑
K

p K K k K k . (30) 

_______________________________________________ 

In writing this equation, to simplify the notation we 
have defined the two wave vectors  

 || || || || || ||= , = ,+ +′ ′K k G K k G  (31) 

and have replaced summation over ||G  and ||′G  by summa-
tion over ||K  and || ,′K  respectively. On equating the coef-
ficients of || ||( )δ −p K  on both sides of Eq. (30) we obtain 
the Rayleigh equation satisfied by || ||( | )r K k  
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 ( )
||

0 || || || || || || ||
ˆ ( , ) | ( | ) ( | ) =I K M r

′
−α ω −′ ′ ′ ′∑

K
K K K K K k   

 ( )0 || || || || ||
ˆ ( , ) | ( | ).I k N= − α ω −K k K k  (32) 

Equation (32) holds for all possible values of ||K  (or || ),G  
and hence it represents a linear system of equations of infi-
nite dimension. To be able to solve the system numerically, 
we need a system of finite dimension. This can be achieved 
by restricting the vectors || ( )hG  and || ( )h′G  to a domain 

for which their lengths are no more than several times 
/ ,cω  but at the same time no shorter than / .cω  In this way 

a finite dimensional linear system is obtained that can be 
solved for || || ||( ( ) | )r h+k G k  by standard methods. 

5. Diffraction efficiencies 

The total time-averaged flux scattered from our doubly-
periodic surface is obtained by substituting Eq. (27) into 
Eq. (15): 

____________________________________________________ 

 ( ) ( )
2

|| 2 2*sc 0 || || || || || || || || || || || || ||2
< / || ||||

= ( , ) (2 ) ( | ) (2 ) ( | ).
(2 )q c

d q
P A q r r

′ω
α ω π δ − − + π δ − − +′ ′

π
∑ ∑∫
G G

q k G k G k q k G k G k  (33) 

The only nonzero terms on the right-hand side of this equation are those for which || ||=′G G . Then, with the result that in 
two-dimensions 

 ( )2
1 22 ( ) = ,L Lπ δ 0  (34) 

Eq. (33) becomes 

  ( ) 2 22
sc 1 2 || 0 || || || || || || || 1 2 0 || || || || ||

< / || ||||

= ( , ) ( | ) (| |, ) ( | ) .
q c

P AL L d q q r AL L r
ω

′α ω δ − − + = α + ω +∑ ∑∫
G G

q k G k G k k G k G k  (35) 

_______________________________________________ 

The prime on the sum indicates that it extends over only 
those values of ||G  for which || ||| | < / .c+ ωk G  Equation 
(35) demonstrates that each diffracted beam contributes 
independently to the scattered flux. 

When the scattered flux is normalized by the total time-
averaged flux of the incident field, Eq. (13), the result can 
be written  

 ( )sc
|| || ||

inc ||

= | ,
P

e
P

′ +∑
G

k G k  (36) 

where 

   ( ) 20 || ||
|| || || || || ||

0 ||

(| |, )
| = ( | ) .

( , )
e r

k
α + ω

+ +
α ω
k G

k G k k G k  (37) 

The quantity || || ||( | ),e +k G k  called the diffraction effi-
ciency, is the fraction of the total time-averaged incident 
flux that is diffracted into a Bragg beam defined by the 
wave vector || ||+k G  (when the incident beam is defined 
by || ).k  It has a physical meaning for only those values of 

||G  for which 0 || ||(| |, )α + ωk G  is real. The propagating 
diffracted beams defined by this condition are called the 
open channels. 

Since there is no absorption in the scattering from an im-
penetrable surface, all the power incident on it must be scat-
tered back into the medium of incidence. Hence, the conser-
vation of energy in the scattering process requires that 

 ( )|| || ||
||

| = 1e′ +∑
G

k G k . (38) 

The closeness to unity of the sum on the left-hand side of 
Eq. (38) is a good test of the quality of the numerical simu-
lation calculations of the diffraction efficiencies. 

The reflectivity of the bigrating is obtained from the dif-
fraction efficiency for the beam defined by || = 0 :G  

 || || ||( ) = ( | ).ek k k  (39) 

6. Results 

We will illustrate the proceeding results by presenting 
simulation results for the dependence of the reflectivity 
and several other diffraction efficiencies on the polar and 
azimuthal angles of incidence 0θ  and 0ϕ , respectively, 
when the bigrating defined by the surface profile function 

 0 1 2
||

2 2
( ) = cos cos

2
x x

a a
ζ  π π    ζ +        

x  (40) 

is illuminated by a scalar plane wave of frequency ω . The 
primitive translation vectors of the square Bravais lattice 
underlying this surface profile function are 

 1 2= (1,0,0), = (0,1,0)a aa a . (41) 

Those of the corresponding reciprocal lattice are 

 1 2
2 2= (1,0,0), = (0,1,0)
a a
π πb b . (42) 

An attractive feature of the form of the surface profile 
function in Eq. (40) is that the Î -integral defined in 
Eq. (29) can be obtained analytically, and takes the form 
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 ( ) 0 01 2|| 1 2
ˆ | ( ) = ( 1)

2 2
h h

h hI h J J+ γζ γζ   γ −       
G , (43) 

where ( )nJ ⋅  represents the Bessel function of the first kind 
and order n . 

In the first set of calculations of the dependence of the re-
flectivity of the bigrating defined by Eq. (40) on the polar 
angle of incidence 0θ  for a value of the azimuthal angle of 
incidence 0 = 0ϕ  ||

ˆ[ = (1,0,0)],k  we assumed that the lat-
tice constant a  had the value = 3.5a λ , where λ  is the 
wavelength of the incident wave, while the amplitude 0ζ  
took several values. The calculated reflectivities for Neu-
mann surfaces characterized by the amplitudes 0 = 0.3ζ λ , 
0.5λ , 0.7λ  are presented in Fig. 1. These results show a 
complex dependence of the reflectivity on the polar angle of 
incidence in the form of the presence of many sharp peaks 
and dips. These features are Rayleigh anomalies, which oc-
cur at values of 0θ  for a given value of 0ϕ  at which diffrac-
tive orders start or cease to propagate. 

To determine the angles of incidence at which the Ray-
leigh anomalies occur, we note that the lateral wave vector 
of the diffractive beam characterized by the index pair 

1 2,h h  is given by 

 || 1 2 || || 1 2( , ) = ( , ).h h h h+q k G  (44) 

This diffractive beam goes from being a propagating one to 
an evanescent one when || 1 2| ( , ) | = / ,h h cωq  which is the 
condition for a potential Rayleigh anomaly to be associated 
with this wave. On squaring both sides of Eq. (44) and 
using Eqs. (16a) and (22), we obtain a quadratic equation 
for 0sin θ  

 2
0 0 || 1 1 2 2

ˆ2sinsin
c ch h θ + θ ⋅ + +  ω ω

k b b   

 
2

1 1 2 2 1 = 0c ch h + + −  ω ω
b b   (45) 

with || 0 0
ˆ = (cos ,sin ,0)ϕ ϕk . 

Equation (45) determines for a general grating where 
Rayleigh anomalies can exist. From its solutions 

 0 || 1 1 2 2
ˆsin = c ch h θ − ⋅ + ±  ω ω
k b b   

1
2 2 2

|| 1 1 2 2 1 1 2 2
ˆ 1 ,c c c ch h h h

      ± ⋅ + − + +      ω ω ω ω    
k b b b b   

  (46) 

under the condition 0| sin | 1θ ≤ , as 1h  and 2h  each run 
over all positive and negative integers and zero, the polar 

Fig. 1. Reflectivity of a doubly-periodic cosine Neumann surface [see Eq. (40)] as a function of the polar angle of incidence θ0 for the 
azimuthal angle of incidence ϕ = 0. The doubly-periodic cosine grating had a period a/λ = 3.5 and amplitudes (a) ζ0/λ = 0.3; (b) ζ0/λ = 
= 0.5 and (c) ζ0/λ = 0.7. The vertical dashed lines display the positions of the Rayleigh anomalies predicted on the basis of Eq. (46). The 
scan over polar angle of incidence, θ0, was done in steps of ∆θ0 = 0.025°. In performing the numerical calculations, it was assumed that 
G||(h) ≤ 4ω/c. 
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angles of incidence 0θ  at which Rayleigh anomalies can 
exist for a specified azimuthal angle of incidence 0ϕ  are 
obtained. The values of 0θ  obtained in this way are indi-
cated by gray vertical dashed lines in Fig. 1. From the re-
sults of this figure we see that the majority of the peaks 
and dips present in the refelctivity are Rayleigh anomalies. 
It should be noted that even if a Rayleigh anomaly is pre-
dicted to exist at a particular polar angle of incidence, it 
may not be observed in the reflectivity, because it is too 
weak to be seen. 

We see from Fig. 1 that as the amplitude of the surface 
profile function 0ζ  is increased, the polar angles of inci-
dence at which the Rayleigh anomalies occur do not change, 
as must be the case, but the forms of the anomalies can 
change. Peaks and dips can change their magnitudes, and 
broaden, and dips can change into peaks, and peaks can 
change into dips. 

The numerical calculations that produced the results 
presented in Fig. 1 were performed under the assumption 
that || ( ) 4 / ,G h c≤ ω  and the linear system of equations 
satisfied by || ||( | ),r K k  Eq. (32), was solved by the rou-
tine la_gesv from LAPACK95 [35]. For this value of 

||max ( )G h  the simulation time required per angle of inci-
dence to produce the results in Fig. 1 was 1.5s, or less on 
average, when the simulations were performed on a ma-
chine equipped with an Intel i7-5930K CPU running at 
3.50 GHz. The energy conservation condition (38) was 
found to be satisfied with an error no greater than 10–10 
for all the values of 0θ  and 0ζ  that we considered. 

In Fig. 2 we present the dependence of the reflectivity 
on the polar angle of incidence when the azimuthal angle 
of incidence is 0 = 45 .ϕ   In this case the unit vector ||k̂  
becomes ||

ˆ = (1/ 2, 1/ 2,0),k  and the values of 0θ  at 
which Rayleigh anomalies are predicted to occur are dif-
ferent from the values at which they occur in Fig. 1. With 
an increase of the amplitude of the surface profile function, 
these anomalies undergo the same kinds of changes in their 
forms as they do in the case where 0 = 0 .ϕ   

We now turn to the diffraction of a scalar plane wave 
from a doubly-periodic Dirichlet surface defined by 
Eq. (40). In Fig. 3 we present the reflectivity as a function 
of 0θ  for the case where 0 = 0 .ϕ   The parameters defin-
ing the surface profile function are = 3.5a λ  and 

0 = 0.3ζ λ , 0.5λ , 0.7λ , namely the values assumed in 
obtaining the results presented in Figs. 1 and 2. The values 
of 0θ  at which Rayleigh anomalies are predicted to exist 
are the same as those at which they are predicted to exist in 
Fig. 1. However, these anomalies are significantly weaker 
than those occurring at the same values of 0θ  in Fig. 1. 
This difference demonstrates the important role played by 
the boundary condition on the surface of the bigrating sat-
isfied by the field in the region 3 ||> ( )x ζ x  in forming the-
se anomalies. 

A further comparison of Figs. 1 and 3 prompts the fol-
lowing observation. In Fig. 1(a) we see a dip in the reflec-
tivity at a value of 0 88.0 ,θ ≈   an angle at which no Ray-
leigh anomaly is predicted to exist. In Fig. 1(b), for a larger 
amplitude of the bigrating profile function, this dip has 

Fig. 2. The same as Fig. 1 but for ϕ0 = 45°. 
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broadened and shifted to a smaller value of 0θ , namely 
0 84.5 .θ ≈   Again, no Rayleigh anomaly is predicted to 

occur at this angle. With a further increase of the amplitude 
of the bigrating profile function, we see in Fig. 1(c) a break 
in the slope of the reflectivity curve at a value of 0 80 .θ ≈   
Such a dip is more clearly visible at these three values of 

0θ  in Figs. 2(a)–(c). No such feature is present at these (or 
other) angles in Figs. 3(a)–(c). It is known [7] that a dou-
bly-periodic Neumann surface supports a surface wave, 
while a doubly-periodic Dirichlet surface does not. It is 
also known that changing the amplitude of the surface pro-
file function shifts the nonradiative and radiative branches 
of the dispersion relation (in the reduced zone scheme) of 
the surface wave on a Neumann bigrating [7]. Since a 
Wood anomaly arises due to the excitation of a surface 
wave on a periodically modulated surface by the incident 
field [1,6] the angles of incidence at which these anomalies 
occur will shift with changes in the surface profile func-
tion. These properties of the large angle dip suggest that it 
represents a Wood anomaly. However, confirmation of this 
conjecture has to await the determination of the branches 
of the dispersion curve of the surface wave supported by 
the doubly-periodic Neumann surface, in the radiative re-
gion of the ||( , )ωk  plane as well as in the nonradiative 
region. 

Features similar to those observed in Figs. 1–3 are pre-
sent in the dependence of other diffraction efficiencies on 

0θ  for a given value of 0ϕ . In Fig. 4 we plot this depend-
ence for the efficiencies of the {1,0},  { 1,0},−  {0, 1},±  
{1, 1},±  and { 1, 1}− ±  beams diffracted from the Neumann 

surface defined by Eq. (40) with 0 = 0.5ζ λ  and = 3.5a λ . 
The azimuthal angle of incidence is 0 = 0 .ϕ   The notation 

1 2{ , }h h±  indicates that the 1 2{ , }h h  and 1 2{ , }h h−  effi-
ciencies are identical. This identity is a consequence of the 
symmetry of the scattering system under reflection in the 

1x  axis when 0 = 0 .ϕ   The predicted angular positions of 
the Rayleigh anomalies are indicated by the gray vertical 
dashed lines. It is seen that all of the peaks and dips in the-
se dependencies occur at these angles, but not every one of 
these angles has an anomaly associated with it. 

It is apparent from the results presented in Fig. 1, for in-
stance, that the reflectivity of the doubly-periodic cosine 
Neumann surface depends strongly on its amplitude 0ζ . 
To further investigate this dependence, we present in Fig. 5 
as a solid line the reflectivity of such a surface of period 

= 3.5a λ  as a function of the amplitude 0ζ  for polar and 
azimuthal angles of incidence 0 = 0θ   and 0 = 0 ,ϕ   re-
spectively. These results were obtained on the basis of a 
numerical solution of the Rayleigh equation (32) for the 
same values of the numerical parameters assumed in ob-
taining the results in Fig. 1. Figure 5 shows that the reflec-
tivity of the doubly-periodic Neumann surface decreases 
monotonically from unity to approximately 3·10–5 when its 
amplitude increases from zero (planar surface) to 

0 = 0.371ζ λ . Increasing the amplitude beyond this value 
causes the reflectivity of the surface to increase monoton-
ically, and it reaches the value 0.1357 when 0 = 0.7ζ λ . 
What happens to the reflectivity when 0 / > 0.7,ζ λ  we 
have not investigated here. 

Fig. 3. Same as Fig. 1 but for doubly-periodic Dirichlet surfaces. 
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To validate our use of the Rayleigh equation in obtain-
ing the results presented in this work, we performed addi-
tional calculations obtained on the basis of a rigorous 
Green's function-based numerical approach [29,30]. To 
this end, the latter approach was used to calculate the re-
flectivity for normal incidence as a function of the corruga-
tion strength 0ζ . The results of such calculations are pre-

sented as open symbols in Fig. 5, and they show satis-
factory agreement with the corresponding results obtained 
on the basis of the Rayleigh equation approach. In particu-
lar, the five orders of magnitude variation of the reflectivi-
ty is consistently predicted by both approaches. It is only 
for 0 / > 0.5ζ λ  that some minor discrepancy starts to de-
velop. As we will comment below, it it not entirely clear if 

Fig. 4. Several diffraction efficiencies e(k|| + G||(h)|k||) for values of h given in each panel as functions of the polar angle of incidence θ0 
for the azimuthal angle of incidence ϕ0 = 0°. The doubly-periodic Neumann surface, defined by Eq. (40), is characterized by the pa-
rameters ζ0 = 0.5λ and a = 3.5λ. These are the same parameter values assumed in obtaining the results presented in Figs. 1(b), 2(b), and 
3(b). Here also the scan over the polar angle of incidence was done in steps of ∆θ0 = 0.025°, and G||(h) ≤ 4ω/c  was assumed in perform-
ing the numerical calculations. 
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this should be interpreted an indication that the Rayleigh 
equation approach starts to become less accurate. 

We now briefly detail how the rigorous Green's func-
tion-based numerical calculations were performed; Ref. 30 
gives additional details. Since the Green's function-based 
approach as formulated in Ref. 30 does not explicitly use 
the fact that the surface is periodic, the first step of the cal-
culation is to restrict the doubly-periodic surface (40) to a 
square region of the x1x2 plane of edges L. Next, this sur-
face profile, as well as its derivatives up to order two, are 
discretized on a square lattice of points of lattice parame-
ters x∆ . To avoid diffraction artifacts from the edges of 
the surface, the incident beam is assumed to be a Gaussian 
beam of 1/e half-width W. In the numerical calculations 
using the Green's function approach that we report in 
Fig. 5 the values of the numerical parameters were 

= 38 ,L λ  = 15 ,W λ  and = 0.15 .x∆ λ  The reflectivity of 
the surface was calculated by integrating the differential 
reflection coefficient / sR∂ ∂Ω  over an angular region 
around the specular direction in such a way that only the 
contribution from the fundamental diffractive order was 
included. Since the period of the surface that we consider 
is sufficiently long [ = 3.5a λ ], the diffractive orders were 
well separated. For the calculation of the reflectivity we 
used a region defined by || ||| | < 0.1 / .c− ωq k  We also 
checked and found that minor adjustments of the size of 
this angular region did not affect the reflectivity values 
obtained in any significant way. It should be remarked that 

for the largest values of 0ζ  that we considered we found a 
weak but detectable dependence of the reflectivity on the 
parameters L  and W  when it was calculated by the 
Green's function approach as described above. Hence the 
discrepancy seen in Fig. 5 in the reflectivity obtained by 
the two approaches for the largest values of the corrugation 
strength is not necessarily due to the Rayleigh approach 
becoming inaccurate. 

The calculations based on the Green's function ap-
proach, whose results are reported in Fig. 5, took about 
34 min (or about 2000 s) of cpu-time to complete per 
value of 0ζ  when the calculation was performed on an 
Intel i7 960 processor running at 3.20 GHz, and the 
memory footprint of the calculation was almost 19 Gb. A 
similar calculation using the Rayleigh equation approach 
took about 1s of cpu-time when performed on the same 
computer for the numerical parameters that we assumed 
and it required only a faction of the computer memory 
needed by the Green’s function calculation. 

Finally we should remark that the rigorous Green’s func-
tion approach [30] described and used above is not ideal for 
a doubly-periodic system. An approach of this kind that is 
adapted to doubly-periodic systems uses periodic Green’s 
functions [36]. However, the usual expressions for doubly-
periodic Green’s functions contain slowly convergent series 
[36], and have to be subjected to accelerated transformations 
[36–38] to make them useful in calculations. We have there-
fore decided not to pursue it in this work. 

7. Conclusions 

We have derived the Rayleigh equation for the ampli-
tude of the scattered field when a scalar plane wave is inci-
dent on a two-dimensional rough surface on which the 
Neumann or Dirichlet boundary condition is imposed. 
From this equation we have obtained the equation for the 
amplitudes of the diffracted Bragg beams, when the rough 
surface is a doubly-periodic one. This equation has been 
solved by a rigorous numerical approach, and from the 
solution the dependence of the diffraction efficiencies of 
several of the lowest-order diffracted beams on the polar 
and azimuthal angles of incidence has been determined. 
These dependencies display a rich structure of peaks and 
dips as functions of the polar angle of incidence for a spe-
cified azimuthal angle of incidence. These features occur at 
the angles at which a diffracted beam starts or ceases to 
propagate. Hence they are the analogues for a doubly-
periodic grating of the anomalies that were first observed 
by Wood [4] in the diffraction of light by a classical metal 
grating, and were subsequently explained by Lord Ray-
leigh [5]. They are now called Rayleigh anomalies. These 
anomalies are observed in the diffraction of a scalar wave 
from both a Neumann and a Dirichlet surface. In the case 
of diffraction from a Neumann surface an additional 
anomaly, a dip, is observed in the reflectivity at angles of 
incidence for which no Rayleigh anomaly is predicted to 

Fig. 5. Reflectivity of a doubly-periodic cosine Neumann surface 
[see Eq. (40)] of period a/λ = 3.5 as a function of the amplitude 
ζ0 for the polar and azimuthal angles of incidence θ0 = 0° and 
ϕ0 = 0°, respectively. The solid line represents the results ob-
tained on the basis of the Rayleigh equation (32) while the open 
symbols were obtained by a rigorous Green's function-based nu-
merical approach [29]. In performing the latter calculations it was 
assumed the edge of the square region of the x1x2 plane covered 
by the doubly-periodic surface was L = 38λ, the width of the 
Gaussian incident beam was W = 15λ, and ∆x = 0.15λ was the 
discretization interval used. 
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occur. No such anomaly is presented in diffraction from 
doubly-periodic Dirichlet surfaces. A doubly-periodic 
Neumann surface supports a surface wave, while a doubly-
periodic Dirichlet surface does not. From this and respons-
es of the dip to changes of the surface profile function of 
the Neumann surface, it is conjectured that it is a Wood 
anomaly that was first reported by Wood in Ref. 4, and 
was subsequently explained by Fano [6] as due to the exci-
tation of the surface electromagnetic wave supported by 
the grating by the incident light through the periodic modu-
lation of the surface. This conjecture can only be verified 
when the branches of the dispersion curve of the surface 
wave on the Neumann bigrating in the radiative region of 
the ||( , )ωk  plane have been determined. That will be the 
subject of a separate work. It should be noted that neither 
the Neumann nor the Dirichlet surface supports a surface 
wave when it is planar. Finally, by comparing results ob-
tained from solutions of the Rayleigh equation with results 
obtained by a rigorous Green's function-based numerical 
approach [29], we have validated the use of the Rayleigh 
equation in the calculations reported here. 
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Appendix: The mean differential reflection coefficient 

For completeness we note that if the surface profile 
function ||( )ζ x  is a stationary, zero-mean, isotropic ran-
dom process, it is the average of the differential reflection 
coefficient over the ensemble of realizations of ||( )ζ x  that 
we must calculate: 

 
2 2 2

|| ||
1 2 0

cos1= ( | )
2 cos

s

s

R R
L L c

θ∂ ω 
  ∂Ω π θ

〈 〉q k . (A1) 

Here, and in all that follows, the angle brackets denote an 
average over the ensemble of realizations of the surface 
profile function. If we write the scattering amplitude 

|| ||( | )R q k  as the sum of its average value and the fluctua-
tion from the mean value 

 || || || || || || || ||( | ) = ( | ) ( | ) ( | ) ,R R R R 〈 〉 + − 〈 〉 q k q k q k q k   

  (A2) 

we find that each term contributes separately to the mean 
differential reflection coefficient, 

 
coh incoh

=
s s s

R R R∂ ∂ ∂
+

∂Ω ∂Ω ∂Ω
, (A3) 

where 

   
2 2 2

|| ||
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2 cos

s
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R R
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q k  (A4) 

and 
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cos1= ( | ) ( | ) .
2 cos

s R R
L L c

θω   〈 〉 − 〈 〉    π θ  
q k q k   

  (A5) 

The first term on the right-hand side of Eq. (A3) is the con-
tribution to the mean differential reflection coefficient 
from the field scattered coherently (specularly), while the 
second term is the contribution from the field scattered 
incoherently (diffusely). Recently, expressions similar to 
those that appear in Eqs. (A4) and (A5) were used to calcu-
late the mean differential reflection coefficient on the basis 
of the numerical solutions of the Rayleigh equations for the 
scattering of light from a two-dimensional randomly rough 
perfectly conducting surface [39]. 

For the type of randomly rough surfaces considered 
here it is the case that 

 2
|| || || || ||( | ) = (2 ) ( ) ( )R r k〈 〉 π δ −q k q k . (A6) 

The delta function is a consequence of the assumed sta-
tionary of the surface profile function, while the fact that 

||( )r k  is a function of ||k  only through its magnitude is 
due to the isotropy of the surface profile function. 

The reflectivity of the randomly rough surface is given by 

 
2

0
coh0

( ) = sin .s s s
s

Rd d

π
π

−π

∂
θ θ θ ϕ

∂Ω∫ ∫  (A7) 

With the use of Eqs. (A4), (A6), (34) and the result that 

 ( )
2

0 0
|| ||

0 0

( ) ( )
= ,

sin cos
s sc δ θ − θ δ ϕ − ϕ δ −   ω θ θ

q k  (A8) 

Eq. (A7) simplifies to 

 
2

2
0 || 0( ) = ( ) = sin .r k r

c
ω θ θ  

  (A9) 

From Eqs. (A6) and (34) we find that 

 || || ||
1 2

1( ) = ( | )r k R
L L

〈 〉k k . (A10) 
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