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The paper investigates dynamics of nonsingular vortices in a ferromagnetic spin-1 BEC, where spin and mass 
superfluidity coexist in the presence of uniaxial anisotropy (linear and quadratic Zeeman effect). The analysis is 
based on hydrodynamics following from the Gross–Pitaevskii theory. Cores of nonsingular vortices are 
skyrmions with charge, which is tuned by uniaxial anisotropy and can have any fractal value between 0 and 1. 
There are circulations of mass and spin currents around these vortices. The results are compared with the equa-
tion of vortex motion derived earlier in the Landau–Lifshitz–Gilbert theory for magnetic vortices in easy-plane 
ferromagnetic insulators. In the both cases the transverse gyrotropic force (analog of the Magnus force in super-
fluid and classical hydrodynamics) is proportional to the charge of skyrmions in vortex cores. 

PACS: 03.75.Lm Tunneling, Josephson effect, Bose–Einstein condensates in periodic potentials, solitons, vor-
tices, and topological excitations; 
67.85.Jk Other Bose–Einstein condensation phenomena; 
71.70.Ej Spin-orbit coupling, Zeeman and Stark splitting, Jahn–Teller effect. 
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1. Introduction 

Similarly to superfluid 3He, the ferromagnetic spin-1 BEC 
combines properties of a common superfluid and of a mag-
netically ordered system [1]. Correspondingly, one may 
expect coexistence and interplay of spin superfluidity [2,3] 
and more common mass superfluidity. Like common ferro-
magnets, the spin-1 BEC is described at macroscopical 
scales by the Landau–Lifshitz–Gilbert (LLG) theory [4] 
but extended by inclusion of an additional degree of free-
dom of fluid motion as a whole [5,6]. 

Emergence of superfluidity is conditioned by special 
topology of the order parameter space. In the case of scalar 
superfluids the order parameter space is a circumference 
on a complex plane of a complex wave function. Topology 
of the circumference allows mass superfluidity, since cur-
rent states map on paths winding around the circumfer-
ence. These mappings cannot be reduced to a point by con-
tinuous transformation without leaving the circumference. 
As for spin superfluidity in magnetically ordered media, this 
requires the easy-plane anisotropy in the spin space [2,3]. 
This anisotropy can emerge not only from crystal anisotro-
py, but also from long-range magnetostatic (dipolar) inter-
action as shown for the magnon condensate in yttrium–
iron–garnet magnetic films [7]. 

Manifestation of superfluidity is macroscopic persistent 
currents proportional to gradients of phase (phase of the 

wave function for mass superfluidity and the angle of spin 
rotation around some axis in the case of spin superfluidity). 
Persistent current states are metastable states, but they lose 
stability when phase gradients reach some critical values. 
After this frequent phase slips destroy persistent currents 
and relaxation to current-less ground states occurs. Vortices 
also emerge in the equilibrium rotating superfluids. Thus 
vortices are crucial for the phenomenon of superfluidity. 
Its very existence as linear topological defects requires the 
same topology as necessary for existence of superfluidity. 

Investigation of vortices in scalar superfluids started 
from the seminal works of Onsager [8] and Feynman [9]. 
In magnetically ordered systems magnetic vortices also 
were known long ago. Magnetic vortex is an example of 
topological defects in magnetically ordered solids, which 
were in the focus of scientific activity of Arnold Marko-
vich Kosevich and his colleagues [10–12]. At motion of 
a magnetic vortex a reactive gyrotropic force proportional 
and normal to its velocity emerges. This gyrotropic force 
was first revealed by Thiele [13] for magnetic bubbles in 
ferromagnetic films. Later the gyroscopic force was derived 
for magnetic vortices in easy-plane magnets [14,15]. In 
contrast to friction force also proportional to the vortex 
velocity, the gyrotropic force does not depend on the spin 
texture inside the vortex core, but does depend on circula-
tion of the spin phase (the angle of spin rotation in the 
easy-plane). 
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The goal of the present paper is derivation of the equa-
tion of motion of a nonsingular vortex in the ferromagnetic 
spin-1 BEC. Nonsingular vortices are possible in multi-
component superfluids when vorticity is not concentrated 
at a singular line (axis of the vortex) but is continuously 
distributed over a core of finite radius. First they were re-
vealed in the A phase of superfluid 3He [16]. The energy of 
nonsingular vortices is smaller than of singular ones, and 
phase slips with nonsingular vortices are more probable. In 
the ferromagnetic spin-1 BEC mass and spin superfluidity 
coexist, and a nonsingular vortex is a hydrodynamic and a 
magnetic vortex at the same time, i.e., it has circulations of 
mass and spin currents around it. This has an impact on 
phase slips destroying mass and spin supercurrent [6]. 
Normally the core radius of nonsingular vortices exceeds 
microscopical scales, and the hydrodynamical approach is 
sufficient for derivation of the equation of vortex motion. 

There are two methods to derive the equation of vortex 
motion. The first one is using the solvability condition. The 
hydrodynamic equations (the LLG equations in the case of 
magnetic vortices) are linearized with respect to small per-
turbations of the static solution for a resting vortex. Pertur-
bations are produced by vortex motion and by currents past 
the vortex. This yields nonuniform linear equations. It is 
not necessary to solve the equations explicitly. The equa-
tion of vortex motion is derived from a condition for their 
solvability, which is called also the condition of the ab-
sence of secular terms. This approach was used in the past 
for the analysis of dynamics of nonsingular vortices in 
3He-A [17]. The second method uses the conservation law 
for momentum in a Galilean invariant medium, or for 
quasimomentum if Galilean invariance is broken following 
from Noether’s theorem for translationally invariant media. 
In the absence of external forces or friction force, which 
violate the conservation law for (quasi)momentum, the 
second method yields exactly the same equation of vortex 
motion as the first method [15]. Here we use the second 
method. The equation of motion is the balance equation of 
forces on the vortex. There are a gyrotropic force propor-
tional to the vortex velocity (analog of the Magnus force 
on a hydrodynamic vortex) and a force proportional to 
mass and spin supercurrents past the vortex (Lorentz force 
in superfluid hydrodynamics). These forces depend on 
topological charges of vortices but not on details of the 
core structure, in contrast to the friction force, which does 
depend on details of the vortex core but is not investigated 
in the present work. 

We start our analysis from formulation of hydrodynamics 
of ferromagnetic spin-1 BEC following from the Gross–
Pitaevskii theory (Sec. 2). Section 3 reviews dynamics of 
magnetic vortices in ferromagnet insulators, where mass 
(charge) currents are absent. This is necessary for compari-
son with dynamics of vortices in the ferromagnetic spin-1 
BEC, where both mass and spin currents are possible. Sec-
tions 2 and 3 review previously known results. Dynamics 

of vortices in the ferromagnetic spin-1 BEC is addressed in 
Sec. 4. Discussion and conclusions are presented in Sec. 5. 

2. Gross–Pitaevskii theory for ferromagnetic 
spin-1 BEC 

In the spin-1 ferromagnetic BEC the condensate wave 
function (the order parameter) can be presented as a 3D 
complex vector in the spin space: 

 0= ( ),
2

i
ψ

+ψ m n  (1) 

where scalar 0ψ  and two unit mutually orthogonal vectors 
m and n are real. The two unit vectors m and n together 
with the third vector 

 = ×s m n  (2) 

form a triad of three real orthogonal unit vectors. The unit 
vector s points out direction of full spin polarization. It is 
an analog of the orbital vector l  in the A phase of super-
fluid 3He, which shows direction of the orbital moment of 
Cooper pairs. Neutral and charged superfluids with such 
order parameter are called chiral or x yp ip+  superfluids. 

The gauge transformation of the ferromagnetic spin-1 
order parameter, 

  ( )e = ( cos sin ) ( sin cos ),ii i iθ+ → + θ− θ + θ+ θm n m n m n m n
  (3) 
is equivalent to rotation around the axis s  by the angle 

=sφ −θ and therefore is not an independent symmetry 
transformation. So the full point symmetry group of the 
order parameter is the group (3)SO  of three-dimensional 
rotations. The group is not abelian, and the angle of rota-
tion around any axis including the axis s  depends on the 
path along which the transformation is performed. In par-
ticular, if we deal with the phase = sθ −φ , a result of two 
small consecutive variations 1δ  and 2δ  of θ depends on the 
order of their realizations: 

 1 2 1 2 1 2= [ ].δ δ θ− δ δ θ ⋅ δ ×δs s s  (4) 

This means that the phase θ is not well defined globally, 
although its infinitesimal variations still make sense, and the 
quantum-mechanical definition of the superfluid velocity, 

 = ,s m
θ



∇v  (5) 

is valid. Here m is the mass of a boson. Because of Eq. (4) 
variation of the superfluid velocity is determined not only 
by variation of the phase θ itself but also by variation of 
the spin vector s . As a result, the superfluid velocity is not 
curl-free. Replacing 1δ  and 2δ  in Eq. (4) with two gradients 

1∇  and 2∇  along two different directions (x  and y , or y  
and z, or z and x), Eq. (4) yields the Mermin–Ho relation [18] 
between vorticity and spatial variation of s : 
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 =
2s ikn i k ns s s

m
× ε ×



∇ ∇ ∇v . (6) 

This relation has a dramatic impact on hydrodynamics 
of chiral superfluids. 

For bosons with spin 1 the Lagrangian of the Gross–Pi-
taevskii theory is 

 
*

*= ,
2
i H

t t
 ∂ ∂

⋅ − ⋅ −  ∂ ∂ 


 ψ ψ
ψ ψ  (7) 

where H  is the Hamiltonian, which can depend on the 
wave function ψ and its gradients. 

According to Noether’s theorem, gauge invariance leads 
to the mass continuity equation: 

 = 0
t

∂ρ
+ ⋅

∂
j∇ , (8) 

where 

 
*

* *
*

1= = m
i
 ∂ ∂

ρ ⋅ − ⋅ ⋅  ∂ ∂ 

 






ψ ψ ψ ψ
ψ ψ

 (9) 

is the mass density and 

 *
*

1= j j
j ji

 ∂ ∂ ψ − ψ
 ∂ ψ ∂ ψ 

j  
 ∇ ∇

 (10) 

is the mass current. 
Noether’s theorem connects translational invariance with 

the conservation law 

 = 0,i
j ij

g
t

∂
+ Π

∂
∇  (11) 

where 

* * *
*

= = 2( )j j j j j j
j j

i∂ ∂
− ψ − ψ − ψ ψ −ψ ψ
∂ψ ∂ψ

g  






∇ ∇ ∇ ∇  (12) 

is a current, which can be different from the mass current 
in general, and 

 *
*

=ij i k i k ij
j k j k

∂ ∂
Π −∇ ψ −∇ ψ + δ

∂∇ ψ ∂∇ ψ

 
  (13) 

is some flux tensor. 
The third conservation law follows from Noether’s theo-

rem if the Hamiltonian is invariant with respect to any rota-
tion in the spin space: 

 = 0,i
j ij

S
J

t
∂

+∇
∂

 (14) 

where 

 * *
*

= = [ ] =i
m

∂ ∂ ρ
− × − × ×
∂ ∂

S ψ ψ ψ ψ s
ψ

  







ψ
 (15) 

is the spin density and 

 *
*

=ij ijk k k
j j

J
 ∂ ∂ −ε ⋅∇ + ⋅∇ ψ
 ∂∇ ∂∇ 

ψ
ψ ψ
   (16) 

is the spin current tensor. 
If the BEC is Galilean invariant as it should be in the 

absence of optical lattices, the Hamiltonian and the nonlin-
ear Schrödinger equation are 

 
2 4

* | |= ,
2 2i j i j

VH
m
∇ ψ ∇ ψ +

ψ  (17) 

 
2 2

2
*

= = | | .
2

jHi V
t m

∇∂ δ
− + ψ

∂ δ

ψψ ψ
ψ



  (18) 

Only for a Galilean invariant superfluid the current g  coin-
cides with the mass current j, which at the same time is the 
momentum density of the superfluid. Then the conserva-
tion law (11) is the conservation law of the momentum, 
and the flux tensor 

 ( )
2

* *= ,
2ij i k j k i k j ij PM

Π ∇ ψ ∇ ψ +∇ ψ ∇ ψ + δ
  (19) 

is the momentum flux tensor with the pressure given by 

 
4 2

2 2| |= = | | .
2 4

VP
m

− ∇
ψ ψ

  (20) 

In the absence of Galilean invariance we shall call the cur-
rent g  the quasimomentum density and the tensor ijΠ  the 
quasimomentum flux tensor. If the superfluid is in a peri-
odic potential (BEC in an optical lattice, e.g.) the current g  
is a density of the quasimomentum indeed as it is defined 
in the Bloch band theory [19]. The Gross–Pitaevskii theory 
for x yp ip+  superfluids, which is presented here, has al-
ready been used in the past for the A  phase of superfluid 
3He [19,20]. 

Transition from the Gross–Pitaevskii theory to the hyd-
rodynamical description is realized by the generalized Ma-
delung transformation. After the transformation the super-
fluid is described by the mass density 2

0= mρ ψ , the spin 
vector s , and the quantum-mechanical phase θ. In the hy-
drodynamical approach usually they neglect dependence of 
the energy on density gradients (gradients of 0ψ ) responsi-
ble for quantum pressure [19]. The Lagrangian and the 
Hamiltonian after the Madelung transformation become 

 = ,H
m t

∂θ
− ρ −

∂


  (21) 

 
2 2

2
2 2= .

2 4 2
s i i

VH
m m

ρ ρ ρ
+ ∇ ⋅∇ +s sv  (22) 

In hydrodynamics two canonical equations of motion are 
the continuity Eq. (8) and the Josephson equation for the 
phase θ, 
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2

0 = 0.
2
s

m t
∂θ

+µ +
∂


v

 (23) 

They are similar to those in a non-chiral superfluid. Here 

 
2

0 2=
4

i i V
m

µ ∇ ⋅∇ + ρs s  (24) 

is the chemical potential of the superfluid at rest. 
The third hydrodynamical equation is for the unit vector s: 

 [ ]( ) ( ) = 0.
2s i it m

∂
+ ⋅ − ×∇ ρ∇

∂ ρ
s s s s

∇v  (25) 

For a fluid at rest ( = 0sv ) Eq. (25) is identical to the LLG 
equation for magnetization in a solid ferromagnetic insulator. 

After the Madelung transformation the spin current ten-
sor (16) becomes 

 
2

2= = .
2

ij i sj ikl k i sj ikl k j l
j l

HJ S s S s s
s m

∂ ρ
− ε − ε ∇

∂∇
v v  (26) 

The first term in the expression for the spin current pre-
sents advection of spin by fluid motion as a whole. This 
effect is trivial and has nothing to do with special condi-
tions required for existence of spin superfluidity. Only the 
second term, 

 
2

2= ,
2

ij ikl k j lj s s
m
ρ

− ε ∇
  (27) 

connected with stiffness of the spin texture will be later 
called the spin supercurrent. 

The Euler equation for the velocity sv  must follow from 
the Josephson Eq. (23) by applying the gradient operator. 
But one should take into account non-commutativity of the 
operators / t∂ ∂  and ∇  at their actions on the phase θ. 
Namely, according to Eq. (4) 

 ( )
= = .i si

i i i
m

t t t t t
∂ ∇ θ ∂∂θ ∂θ ∂ ∇ − ∇ − ⋅ ∇ × ∂ ∂ ∂ ∂ ∂ 

ss s


v  (28) 

After some algebra using the Mermin–Ho relation (6) and 
the Eq. (25) of spin dynamics one obtains the Euler equation 

 
2

0 2

( )
( ) = 0.

2
j j i

s s s i
s

s
m

∇ ρ∇
+ ⋅ + µ +

ρ


 ∇ ∇ ∇v v v  (29) 

It is possible to avoid dealing with the globally unde-
fined phase θ by introducing Euler angles as hydrody-
namical variables. They determine rotation of the triad ,m  

,n  s  with respect to the original triad ˆ,x  ˆ,y  ẑ  as shown in 
Fig. 1:

 ___________________________________________________  

 

= cos cos cos sin sin , = cos cos sin sin cos , = sin cos ,

= cos sin cos cos sin , = cos sin sin cos cos , = sin sin ,

= sin cos , = sin sin , = cos .

x y z

x y z

x y z

m m m

n n n

s s s

β α ϕ− α ϕ β α ϕ+ α ϕ − β α

− β α ϕ− α ϕ − β α ϕ+ α ϕ β α

β ϕ β ϕ β

 (30) 

 ______________________________________________ 

In terms of the Euler angles the superfluid velocity is 

 = ( cos ),s m
− α + β ϕ


∇ ∇v  (31) 

while the Mermin–Ho relation becomes 

 [ ] = sin [ ].s m
× β β× ϕ



∇ ∇ ∇v  (32) 

According to Eq. (27), the current of the z -component of 
spin is 

 
2

2
2= sin .

2
z

m
ρ

− β ϕj 

∇  (33) 

Using the Euler angles as variables the momentum flux 
tensor is 

( )
2

2
2= sin ,

2
ij i j i j i j ijP

m
ρ

Π ρ + ∇ β∇ β+ β∇ ϕ∇ ϕ + δ
v v  (34) 

where the pressure P  is equal to the Lagrangian deter-
mined by Eq. (21). 

Up to now our equations were isotropic in the spin 
space of the vector s . But in an isotropic ferromagnet vor-

tices as stable linear topological defects do not exist, as 
well as neither mass nor spin superfluidity is possible. 
Thus we shall add to our Hamiltonian terms breaking 
spherical symmetry but still invariant with respect to rota-
tions around the axis z  (uniaxial anisotropy): 

 
2

eff= .
2

z
A z

GsH H Ss ρ
−γ +  (35) 

Here γ  is the gyromagnetic ratio. The first term linear in zs  
is the Zeeman energy. The field effH  can be an external 
magnetic field but not necessarily. Processes violating the 
conservation law of spin usually are weak in comparison 
with the exchange interaction. Pumping magnons one can 
create a non-equilibrium z  component of spin, which re-
laxes quite slowly, and this relaxation can be compensated 
by continuing magnon pumping. With good accuracy one 
may consider this state as a quasi-equilibrium state with 
fixed z  component of spin. Such states under the name 
magnon BEC were realized both in solids [21], and in fer-
romagnetic spin-1 BEC [22]. Then effH  is a Lagrange 
multiplier, which determines the value of fixed total spin. 
The second term in Eq. (35) is called in magnetism easy-
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axis ( < 0G ) or easy-plane ( > 0G ) anisotropy. In the theory 
of cold atoms they call it the quadratic Zeeman energy [1]. 
The anisotropy energy determines two possible phases 
with the orientational phase transition between them. At 

eff >SH Gγ ρ  the energy is minimal at = 1zs  (easy-axis 
phase), while at eff <SH Gγ ρ  the spin is confined in the 
plane parallel to the xy  plane and corresponding to 

eff= /zs SH Gγ ρ  (easy-plane phase). Since in the easy-
plane phase invariance with respect to rotations around the 
axis z  is spontaneously broken, it is called also broken-
axisymmetry phase [1]. 

Further we consider the case of incompressible liquid, 
when it is enough to analyze only soft spin modes and to 
neglect density variation. Using the Euler angles for the 
unit vector s  as in Eq. (30), the spin Hamiltonian including 
the anisotropy terms is 

 
2 22

2 2 2 0
2

(cos )
= sin ( ) ( )

2 24
s G s

H
m

 β−  ρ + β ∇ϕ + ∇β + =    


v

 

 
2 2

2 2 2 2( cos ) ( )= sin ( )
2 4

m
 ∇α + β∇ϕ ∇β

ρ + β ∇ϕ + +


   

 
2 2

0
2

(cos )
,

2
m G s β −

+ 


 (36) 

where 

 eff eff
0 = = ,

SH H
s

G mG
γ

γ
ρ

  (37) 

and the superfluid velocity satisfies the incompressibility 
condition 

 = ( cos ) = 0.s⋅ − ⋅ α + β ϕ∇ ∇ ∇ ∇v  (38) 

The equations of spin dynamics in polar angles are 

 2sin cos( ) = ,
2s m m

β β
β+ ⋅ β ∇ ϕ− ϕ⋅ β

 

 ∇ ∇ ∇v  (39) 

2
2 0(cos )

( ) = ( ) cos .
2 sins

mG s
m
  β −∇ β

ϕ+ ⋅ ϕ − ∇ϕ β− + 
β  







∇v  

  (40) 

3. Dynamics of vortices in the LLG theory 
for localized spins 

Although our final goal is dynamics of vortices in the 
ferromagnetic spin-1 BEC, it is useful for later discussion 
and comparison to start from magnetic vortices in ferro-
magnetic insulators, where spin carriers are localized and 
the degree of freedom of motion of the medium as a whole 
is absent. The original LLG theory referred exactly to this 
case. The Lagrangian and the Hamiltonian of the LLG the-
ory in angle variables are 

 1= cos ,H
m t

∂ϕ
ρ β −

∂


  (41) 

22
2 2 2 2 02

2
(cos )

= sin ( ) ( ) .
24

G s
H

m
ρ β−ρ  β ∇ϕ + ∇β + 

  (42) 

The equations of spin dynamics are 

 22 2

1 1

sin cos
= ,

2m m
ρ β ρ β

β ∇ ϕ− ϕ⋅ β
ρ ρ

 

 ∇ ∇  (43) 

2
2 2 02

1 1

(cos )
= ( ) cos .

2 sin
m G s

m
  ρ β −ρ ∇ β

ϕ − ϕ β− + 
ρ β ρ  







∇  (44) 

Here we introduced the densities 1ρ  and 2ρ . The density 1ρ  
in the first term of the Lagrangian (the Wess–Zumino term) 
determines the spin density 1= /S mρ , which is a con-
stant in the LLG theory. The second density 2ρ  determines 
phase stiffness of the magnetic order parameter. In the 
Heisenberg model of ferromagnetic insulators 2ρ  is propor-
tional to the exchange interaction between spins at neigh-
boring sites. Introduction of the densities 1ρ  and 2ρ  makes 
comparison of the LLG theory for ferromagnetic insulators 
and spin-1 BEC more convenient: if 1ρ  and 2ρ  are equal to 
the total mass density ρ these equations coincide with 
Eqs. (39) and (40) but without sv -dependent terms. 

Without anisotropy the order parameter space is 2S , 
which is a 2D surface of a unit sphere in the 3D space. 
Every point of 2S  corresponds to some direction of the 
vector s . Spin superfluidity and vortices are possible only 
in the easy-plane phase when the order parameter space 
reduces to a circumference of the sphere 2S  corresponding 

Fig. 1. Euler angles for the wave function triad. The original posi-
tions of m, n , and s are along the axes x , y , and z  respectively. 
The first rotation by the angle ϕ is in the plane xy , which brings 
the first two vectors to the positions 1m  and 1n . The second rota-
tion by the angle β is in the plane confining the axis z  and the 
vector 1m  (around the vector 1n ). This brings the vector s to its 
final position and rotates the vector 1m  to 2m . The last third rota-
tion by the angle α  is around the vector s, which transforms the 
vectors 2m  and 1n  to the final vectors m and n  determined by 
Eq. (30). 
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to some fixed value of zs  (| |< 1zs ). But only periphery of 
the vortex very far from its axis maps on this circumfer-
ence. The core of the vortex maps on an upper (northern) 
or lower (southern) part of the sphere. The vortex is char-
acterized by two topological numbers [15]. The first one is 
the winding number, i.e., the number of rotations the spin 
makes on going around a vortex (the analogue of the num-
ber of circulation quanta for a vortex in superfluid hydro-
dynamics). The second number, which can be called polar-
ization, takes two values = 1ν ± . Two signs correspond to 
a sign of the spin component zs  at the vortex axis. We 
choose direction of the axis z  so that the in-plane spin 
component rotates counterclockwise around it. The posi-
tive polarization corresponds to mapping on the northern 
part of the sphere, while the negative polarization points 
out mapping on the southern one. Mapping of vortex states 
with two polarizations and various values of the polar an-
gle ∞β  far from the vortex are shown in Fig. 2. The vortex 
core at =∞β π has the structure of a skyrmion with the 
charge = 1Q . The skyrmion charge is a measure of wrap-
ping of the spin vector around the sphere 2S  and equal to 

2= sin ( / 2)Q ∞β . At = / 2∞β π  when at periphery the spin 
is confined in the xy  plane, the core skyrmion is a meron, 
or a half-skyrmion with the skyrmion charge one-half [23]. 
Other values of ∞β  correspond to other fractional skyrmion 
charges. Thus in the presence of uniaxial anisotropy the 
skyrmion charge is not quantized and may vary continu-
ously. 

Skyrmions shown in Fig. 2 are Neel skyrmions with 
non-zero magnetostatic charges proportional to ⋅s∇ . But 
rotation in the spin space around the axis z  transforms 
skyrmions to Bloch skyrmions. Our model is invariant with 
respect to this rotation since it ignores the magnetostatic 
interaction. 

In a straight axisymmetric vortex spin depends only on 
two polar coordinates ,r φ. For a single-quantum vortex ϕ  

does not depend on r  and is equal to the azimuthal angle φ. 
The gradient of the spin phase ϕ , 

 
2

ˆ[ ]= ,z
r
×

ϕ
r

∇  (45) 

has only the azimuthal component 1/ r∝ . The polar angle 
β depends only on r . Then the Hamiltonian (42) does not 
depend on the angle φ and becomes 

 
2 22 2

0
2 2 2

(cos )sin= .
24

G sdH
drm r

   β −β β  ρ  +  +  
     

  (46) 

The Euler–Lagrange equation for this Hamiltonian de-
scribes spin texture in a resting vortex: 

 
2

0
2 2 2

cos1 cossin = 0,
sd d

r drdr r

 β −β β β
+ − β −  ξ 

 (47) 

where 

 = ,
2m G

ξ
  (48) 

and 0 = coss ∞β  is the value of zs  at large distances from 
the vortex axis. At small r  rβ ∝ , while at large r  β ap-
proaches to the equilibrium value ∞β : 

 
2

2
cos

.
sinr

∞
∞

∞

ξ β
β ≈ β −

β
 (49) 

One can define the core radius as a distance r  at which the 
correction to the asymptotic value ∞β  becomes comparable 
with ∞β  itself. This yields the core radius of the order 
cr ξ  excepting very small ∞β , when Eq. (47) becomes 

 
2 22

2 2 2
( )1 = 0.

2
d d

r drdr r
∞β −β ββ β β

+ − −
ξ

 (50) 

This equation is identical to the Gross–Pitaevskii equation 
for radial distribution of the density of the vortex in a sin-
gle-component superfluid. It determines the core radius as 

/cr ∞ξ β , which diverges at 0∞β → . 
In the easy-axis phase ( 0 > 0s  in Eqs. (36) and (46)) 

there is no magnetic vortices with circular spin currents at 
large distances. However, skyrmion with the charge = 1Q  
( =∞β π) is still possible and shown in Fig. 2. Without ani-
sotropy (ξ → ∞ in Eq. (47)) spatial rescaling does not 
change the energy of the = 1Q  skyrmion and it can have 
any size. At fixed scale-invariant distribution of β the 
easy-axis anisotropy energy is smaller at smaller skyrmion 
size, and the skyrmion is expected to collapse to very small 
size. But anisotropy modifies this distribution, and this 
could stabilize the skyrmion at the scale ξ . Numerical cal-
culation [6] showed that the vortex with the = 1Q  
skyrmion core is unstable in ferromagnetic insulators dis-
cussed in the present section, but is stable in the ferromag-

Fig. 2. Spin vectors s in axial cross-sections of skyrmion cores 
and mapping on the space 2S  for vortex states with polarizations 

= 1ν ±  and polar angles = / 4, / 2, 3 / 4∞β π π π , and π . Larger 
arrows show direction of circular spin currents around the vortex 
(skyrmion) axis. 
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netic spin-1 BEC (see below). In ferromagnetic insulators 
the = 1Q  skyrmion can be stabilized by other interactions, 
e.g., by gradient terms of higher order [24,25], or by the 
Dzyaloshinskii–Moriya interaction [26]. 

We consider the quasimomentum balance in the coordi-
nate frame moving with constant vortex velocity Lv , calcu-
lating the total quasimomentum flux through cylindrical 
surfaces restricting the area around the vortex. All time 
derivatives are / = ( )Lt∂ ∂ − ⋅∇v , and the quasimomentum 
flux tensor in the moving frame is 

( )
2

22
2= sin ,

2
ij i j i j i Lj ijg P

m
ρ

Π ∇ β∇ β+ β∇ ϕ∇ ϕ − + δ
 v  (51) 

where the quasimomentum density is 

 1= = cos .
m

∂
− ϕ − ρ β ϕ
∂ϕ

g  



∇ ∇  (52) 

The quasipressure P  is equal to the Lagrangian (41). We 
expand the expressions for P  and ijΠ  in small deviations 
′β  and ′ϕ∇  from values of the polar angle β and the gradi-

ent ϕ∇  in the stationary vortex. Only terms proportional to 
Lv  and to the constant phase gradient deviation ′ϕ∇  at 

large distances from the vortex axis, which is connected 
with the spin current past the vortex, 

 
2

22
2= sin ,

2
z

m
∞

ρ ′− β ϕj 

∇  (53) 

are important for the quasimomentum balance. Correction 
to the quasimomentum flux is 

 
2

22
2= sin =

2
ij i j Lj i ijg P

m
ρ′ ′ ′Π β∇ ϕ∇ ϕ − + δ

 v   

 
2

22
12 sin cos ,

2
i j i Lj ijm P

m
ρ ′ ′= β∇ ϕ∇ ϕ + ρ β∇ ϕ + δ



 v  (54) 

where the quasipressure perturbation is 

 
2

21 2
2= cos ( ) sin ( ).

2
LP

m m
ρ ρ′ ′− β ⋅ ϕ− β ϕ⋅ ϕ
 

∇ ∇ ∇v  (55) 

In the LLG theory the quasimomentum density g  given by 
Eq. (52) diverges at the axis of the vortex. Because of it 
the total variation of the quasimomentum in the area around 
the vortex is determined by the quasimomentum flux not 
only through the surface at large distances r  but also 
through the surface at very small distances r  from the vor-
tex axis [15]: 

 
0

=ij j ij j
r r

dS dS
→∞ →

Π − Π∫ ∫   

2

1 2
sin2 ˆ ˆ= (1 cos )[ ] [ ] = 0.

2L j jz z
m

∞
∞

 βπ  ′− ρ − β × +ρ × φ 
  

 v ∇   

  (56) 

The quasimomentum balance equation is at the same time 
the force balance equation. The term proportional to the 

vortex velocity Lv  is a gyroscopic force similar to the 
Magnus force on the hydrodynamic vortex. The second 
term in the right-hand side is a force produced by a spin 
supercurrent past the vortex (analog of the Lorentz force 
on the vortex in superconductors and superfluids). The 
Lorentz force is a gradient of the energy of interaction be-
tween the vortex and the spin current past the vortex. This 
energy is determined by cross terms containing the phase 
gradient (45) induced by the vortex and the phase gradient 

′ϕ∇  produced by the spin current. We assumed that the 
spin current is constant far from the vortex line. But in 
general it can vary at scales essentially exceeding the vor-
tex core radius, taking into account phase variation induced 
by other distant vortices. In this case Eq. (56) contains ′ϕ∇  
at distances much larger than the vortex core radius, but 
much smaller than the distance from other vortices. 

Equation (56) yields the relation between the vortex ve-
locity Lv  and the spin current zj . Up to now we considered 
the vortex with positive polarization and one 2π-rotation 
of the spin s  around the vortex axis. Generalizing for arbi-
trary polarization = 1ν ±  and arbitrary integer number n of 
rotation of s : 

 
2

2
2

1 1

( cos )
= = .

2 ( cos )
L z

n nm∞

∞

ν + β ρ ′− φ
ρ ρ ν − β

j


∇v  (57) 

4. Dynamics of vortices in the ferromagnetic 
spin-1 BEC 

In an axisymmetric vortex with a single quantum of cir-
culation of the spin phase ϕ  the azimuthal velocity around 
the vortex axis in general is 

 [ cos ( )]( ) = .s
N rr

mr
− βv  (58) 

Here the integer N  points out the number of full 2π ro-
tations of the Euler angle α around the vortex axis 
(see Eq. (31)). This velocity satisfies the Mermin–Ho theo-
rem connecting the velocity with variation of s  (the term 

cos ( )r∝ β ). 
Both contributions are singular at 0r → . However, we 

look only for nonsingular vortices, with the energy smaller 
than singular ones. Two singular contributions to the ve-
locity cancel one another if = 1N  for the vortex with posi-
tive polarization and = 1N −  for the vortex with negative 
polarization. 

Taking into account Eq. (58) with = 1N  (positive po-
larization) the Hamiltonian (36) for axisymmetric vortex 
becomes 

2 22 2
0

2 2
(cos )(2 cos ) 1= .

24
G sdH

drm r

   β −− β − β  ρ  +  +  
     

  

  (59) 
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The Euler–Lagrange equation for this Hamiltonian is 

 
2

0
2 2 2

cos1 2 cossin = 0,
sd d

r drdr r

 β −β β − β
+ − β −  ξ 

 (60) 

where 0 = cos < 1s ∞β  in the easy-plane phase. In the theory 
of the A phase of superfluid 3He the vortex at = / 2∞β π  
(meron) was known as Mermin–Ho vortex, while the vortex 
at =∞β π was called the Anderson–Toulouse vortex [16]. 
This vortex has circulation of sv  but no circulating spin 
current far from the vortex. All other vortices at <∞β π 
have both circulations. In contrast to ferromagnetic insula-
tors with the Euler–Lagrange Eq. (47), according to nume-
rical solution of Eq. (60) [6], anisotropy is able to stabilize 
the skyrmion with the charge 1 ( =∞β π) (see discussion 
below Eq. (50)). 

The ferromagnetic spin-1 BEC is Galilean invariant, 
and the quasimomentum does not differ from true momen-
tum. As in the previous section, we consider the momen-
tum balance in the coordinate frame moving with the ve-
locity Lv  and expand the momentum flux tensor ijΠ  in 
small perturbations produced by vortex motion and cur-
rents past the vortex: 

 
2

2
2= ( ) sin ,

2
ij si j Lj i j ijP

m
ρ′ ′ ′Π ρ − + β∇ ϕ∇ ϕ + δ

v v v  (61) 

where the pressure perturbation is determined from the 
Bernoulli law: 

 
2

2
2= [( ) ] sin .

2
L sP

m m
ρ ρ′ ′− ⋅ θ − β∇ϕ∇ϕ
 

∇v v  (62) 

In contrast to the LLG theory for localized spins, there is 
no terms in the momentum flux tensor divergent at the 
vortex axis. Therefore the variation of the total momentum 
around the vortex is determined only by the momentum 
flux through the surface far away from the vortex axis: 

 { ˆ= 2 (1 cos )[ ( )]ij j s L j
r

dS z
m ∞

→∞

π ρ
Π − β × − −∫

 v v   

 
2sin ˆ[ ] = 0.
2 jz∞ β ′− × φ 


∇  (63) 

Generalizing this equation on the vortex with polarization 
= 1ν ±  and integer number n of 2π-rotations of s  around 

the z  axis the vortex velocity is 

( cos )
= = .

2 ( cos )L s z
n nm∞

∞

ν + β ′− φ +
ρ ρ ν − β
j j


∇v v  (64) 

This is a generalization of Helmholtz’s theorem, which 
tells that in a scalar superfluid (or an ideal fluid in classical 
hydrodynamics) the vortex moves with the fluid velocity 

sv . In the ferromagnetic spin-1 BEC not only the mass 
current j but also spin current zj  produces the Lorentz 

force driving the vortex. The transverse gyroscopic force 
(Magnus force in hydrodynamics) is 

 2 ˆ= ( cos ) [ ].G L
n z

m ∞
π

− ν − β ρ ×F  v  (65) 

The force is proportional to the circulation of the superflu-
id velocity = ( / )( cos )s d nh m ∞⋅ ν − β∫ l



v . It is interesting 
that the gyrotropic force in ferromagnetic insulator see 
Eq. (56)] is given by a similar expression (apart from the 
difference between two densities ρ and 1ρ ), although there 
is no superfluid velocity in the theory. On the other hand, 
the superfluid circulation is proportional to the skyrmion 
charge in the vortex core, which is present in the both theo-
ries. Thus, a more careful statement is that the gyroscopic 
force is proportional to the core skyrmion charge. 

5. Discussion and conclusions 

We analyzed dynamics of nonsingular vortices in a fer-
romagnetic spin-1 BEC, where both mass and spin super-
fluidity are possible in the presence of uniaxial anisotropy. 
Vortices are nonsingular only if there is circulation of the 
wave function phase and the spin phase (the angle of spin 
rotation around a chosen axis). Their cores have structure 
of skyrmions with charges tuned by uniaxial anisotropy. 

The equation of vortex motion is derived from the quasi-
momentum conservation law following from Noether’s 
theorem for translationally invariant media. The ferromag-
netic spin-1 BEC is Galilean invariant, and the quasimo-
mentum does not differ from the true momentum. Vortex 
dynamics in a ferromagnetic spin-1 BEC is compared with 
dynamics of magnetic vortices following from the LLG 
theory for ferromagnetic insulators. In the latter case the 
vortex is driven by the spin current past the vortex, while 
in the former one both the mass and the spin currents make 
the vortex to move. In the both cases the driving force (Lo-
rentz force in superfluid hydrodynamics) is balanced by 
the transverse gyrotropic force proportional to the vortex 
velocity Lv  (analog of the Magnus force in scalar superflu-
ids and classical ideal fluids). The gyrotropic force is pro-
portional to a charge of a skyrmion emerging in a vortex 
core. 

In a ferromagnetic spin-1 BEC the core skyrmion charge 
determines circulation of the superfluid velocity. On the 
other hand, the frequencies of vortex precession in a poten-
tial trap or of Kelvin waves along vortex lines are propor-
tional to the superfluid circulation [19]. This can be used for 
experimental check of the results of the present analysis. 
 ________  
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