Анизотропия плотности критического тока в слоистом электронно-легированном сверхпроводнике Nd_{2-x}Ce_xCuO_{4+δ}

А.С. Клепикова¹, М.Р. Попов¹, А.А. Иванов², М.В. Медведев³, Т.Б. Чарикова^{1,4}

¹Институт физики металлов УрО РАН, г. Екатеринбург, 620041, Россия E-mail: klepikova@imp.uran.ru

²Национальный исследовательский ядерный университет "МИФИ", г. Москва, 115409, Россия

³Институт электрофизики УрО РАН, г. Екатеринбург, 620016, Россия

⁴ФГАОУ ВПО «Уральский федеральный университет им. Б.Н. Ельцина», г. Екатеринбург, 620002, Россия

Статья поступила в редакцию 3 октября 2018 г., опубликована онлайн 20 декабря 2018 г.

Представлены результаты исследования проводимости и плотности критического тока монокристаллических пленок Nd_{2-x}Ce_xCuO₄₊₈/SrTiO₃ с осью *c*, перпендикулярной или параллельной плоскости подложки, с концентрацией церия x = 0,15 и x = 0,17. Обнаружено, что в стехиометрически отожженных пленках с оптимальным содержанием церия (x = 0,15) величина анизотропии сопротивления максимальна, а анизотропия плотности критического тока составила $j_c^{ab}/j_c^c \cong 3 \cdot 10^3$ при T = 4,2 К. Сильная анизотропия плотности критического тока рассмотрена в рамках модели естественной сверхрешетки с чередующимися проводящими CuO₂-слоями и непроводящими буферными Nd(Ce)O-слоями. Показано, что высокая плотность критического тока вдоль проводящих CuO₂-плоскостей связана с пиннингом вихрей на буферных слоях, а сильная анизотропия плотности критического тока является следствием анизотропного движения вихревой решетки в слоистом сверхпроводнике.

Ключевые слова: электронно-легированный сверхпроводник, критическая плотность тока, анизотропия транспортных свойств.

Введение

Сверхпроводимость в слоистом сверхпроводнике Nd_{2-x}Ce_xCuO_{4+δ} наблюдается только в ограниченной области концентраций Се [1]. В интервале концентраций церия $0,13 \le x \le 0,14$ сверхпроводимость появляется, а при x = 0,15 материал имеет максимальную температуру сверхпроводящего перехода (СП) Т_с = 24 К [2]. Дальнейшее увеличение концентрации Се приводит к уменьшению T_c , и при x = 0,18 сверхпроводящий переход исчезает. Такая фазовая диаграмма наблюдается в образцах, отожженных в бескислородной атмосфере. Основная роль отжига состоит в удалении «лишнего» нестехиометрического кислорода. Располагаясь в вершинных узлах, незанятых в оптимально отожженном Nd_{2-x}Ce_xCuO_{4+δ}, избыточный кислород создает хаотический примесный потенциал, который локализует электроны, поставляемые церием. Удаление избыточного кислорода в процессе отжига уменьшает беспорядок, порог подвижности для электронов понижается, электроны становятся делокализованными и проявляют сверхпроводящие свойства [3]. В данной работе представлены исследования проводимости и плотности критического тока в оптимально отожженных монокристаллических пленках $Nd_{2-x}Ce_xCuO_{4+8}$ /SrTiO₃ с осью *c*, расположенной перпендикулярно и параллельно подложке.

Критическая плотность тока — один из основных параметров сверхпроводников, определяющих возможности их практического использования. Вместе с тем, изучение процессов переноса тока представляет интерес не только с технической, но и с физической точки зрения, так как многие связанные с этим явления имеют глубокую физическую природу и позволяют получить дополнительную информацию о некоторых параметрах сверхпроводящего состояния. Получить надежные данные о критическом токе «монокристалллических» пленок очень нелегко по двум причинам. Во-первых, сложно изготовить образцы специальной геометрии, вовторых, трудно предотвратить влияние джоулева тепла, которое вносит неопределенность в полученные результаты. При измерении критических токов «монокристаллических» пленок часто возникают осложнения, связанные со «слабыми местами» пленок — с областями, которые оказываются либо уже, либо тоньше остальной пленки, либо имеют несколько иные металлургические свойства. Эти слабые места могут перейти в нормальное состояние при токах, меньших истинного критического тока пленки, и нормальная область в результате теплового распространения может разрастись по всей пленке. Этой трудности можно избежать, если применять токи в виде коротких импульсов, во время которых тепло не успевает заметно распространиться.

Образцы и методика эксперимента

Образцы в виде эпитаксиальных пленок Nd2-xCexCuO4+8/SrTiO3 были синтезированы в национальном исследовательском ядерном университете «МИФИ», (г. Москва) методом распыления исходного вещества керамической мишени сфокусированным лазерным пучком с последующим осаждением на нагретую монокристаллическую пластину SiTiO₃ [4]. Концентрация церия определялась его содержанием в исходном материале керамической мишени, изменение концентрации кислорода достигалось отжигом образцов при высокой температуре (около 780 °C) в вакууме или окислительной среде. Для температуры, при которой осуществлялся отжиг, было определено давление, близкое к термодинамическому равновесию, при котором обеднение кислородом происходит достаточно медленно, что облегчает контроль параметров в синтезируемых пленках.

В работе представлены результаты измерения плотности критического тока в оптимально отожженных монокристаллических пленках. Оптимальный отжиг в бескислородной атмосфере ($\delta \rightarrow 0$) приводит к удалению апексного кислорода и увеличению температуры сверхпроводящего перехода до максимального для данного соединения. Рентгеноструктурные исследования пленки Nd_{2-x}Ce_xCuO_{4+ δ}/SrTiO₃, выполненные на дифрактометре ДРОН-3, показали высокое структурное совершенство полученных образцов. Толщина пленок, измеренная интерференционным микроскопом МИИ-11, составила 1000–4200 Å.

Для определения плотности критического тока монокристаллической пленки $Nd_{2-x}Ce_xCuO_{4+\delta}/SrTiO_3$ было изготовлено четыре образца с содержанием церия 15%, 17%. Образцы N1, N2 изготовлены так, что монокристаллические пленки имеют ориентацию (001), плоскость *ab* лежит в плоскости пленки, а образцы N3, N4 выращены с ориентацией (110) — ось *с* лежит в плоскости пленки. В таблице 1 представлены основные характеристики пленок.

Номер образца	Содержание церия	Толщина, Å	Ориентация монокристал-
			лической пленки
1	0,15	1000	001
2	0,17	1000	001
3	0,15	4200	110
4	0,17	1400	110

Таблица 1. Основные характеристики пленок

Разработанная нами установка для измерения критических токов в пленках основана на импульсном методе. Длительность импульса тока, пропускаемого через образец, составляла 150 мкс. Величина тока определялась величиной напряжения на конденсаторах, входящих в установку. В зависимости от величины тока образец либо переходил из сверхпроводящего состояния в нормальное, либо оставался в сверхпроводящем состоянии. При переходе в нормальное состояние на зондовых контактах образца появлялось напряжение отклика, которое фиксировалось запоминающим осциллографом.

Результаты и обсуждение

На монокристаллических пленках $Nd_{2-x}Ce_xO_{4+\delta}/SrTiO_3$ измерения проводимости выполнялись в интервале температур 1,5–300 К, а плотность критического тока определялась при температуре T = 4,2 К.

На рис. 1 представлены температурные зависимости сопротивления $\rho_{ab}(T)$ и $\rho_c(T)$ для оптимально легированной пленки (x = 0,15) Nd_{2-x}Ce_xCuO₄₊₈/SrTiO₃ с оптимальным отжигом. В интервале температур $T = 300-T_c$ К сопротивление в CuO₂-плоскости оптимально отожженной пленки имеет металлическое поведение ($d\rho/dT < 0$): $\rho_{ab}(T) \sim T^2$. При температуре $T_c = 22$ К наблюдается переход в сверхпроводящее состояние. Удельное сопротивление перед сверх-

Рис. 1. Температурные зависимости удельного сопротивления $\rho_{ab}(T)$ и $\rho_c(T)$ Nd_{1,85}Ce_{0,15}CuO₄/SrTiO₃.

проводящим переходом составило $\rho_{ab}(T) = 28$ мкмОм·см, а отношение $\rho_{ab}(300 \text{ K})/\rho_{ab}(T_c) \cong 5$.

Оптимально отожженный образец имеет резкий сверхпроводящий переход шириной $\Delta T \approx 1,4$ К и металлический характер зависимости $\rho_{ab}(T)$.

Одновременно с этим $\rho_c(T)$ увеличивается с понижением температуры: $\rho_c(T) \sim 1/T$. Таким образом, для области оптимального легирования (x = 0,15) наблюдается металлический ход зависимости сопротивления $\rho_{ab}(T)$ и полупроводниковый ход $\rho_c(T)$. Также имеет место наибольший коэффициент анизотропии.

На рис. 2 показана температурная зависимость коэффициента анизотропии сопротивления $Nd_{2-x}Ce_xCuO_4$ для x = 0,15. Видно, что коэффициент анизотропии сопротивления растет с понижением температуры и достигает максимального значения для оптимально легированного образца $\rho_c/\rho_{ab} = 125$. Это значение на порядок меньше наблюдавшегося в объемных монокристаллах, что, повидимому, объясняется некоторой разориентацией плоскости подложки и оси *с* кристаллов $(0,2^{\circ}-0,6^{\circ})$.

Таким образом, установлено, что механизм проводимости коренным образом различается в *ab*-плоскости и *c*-направлении: проводимость является металлической $(d\rho_{ab}/dT > 0)$ в *ab*-плоскости и неметаллической $(d\rho_c/dT < 0)$ в *c*-направлении в стехиометрически отожженном ($\delta = 0$) Nd_{2-x}Ce_xCuO_{4+ δ} [5]. В модели естественной сверхрешетки [6] неметаллическое поведение $\rho_c(T)$ мы связываем с некогерентным туннелированием носителей заряда в *c*-направлении.

Для образцов с концентрацией легирующей примеси x = 0,17 зависимости $\rho_{ab}(T)$ и $\rho_c(T)$ имеют металлический ход (рис. 3). В перелегированных образцах с x = 0,17 вид зависимостей сопротивления можно связать с включением переноса заряда между плоскостями CuO₂, т.е. переходом от двумерной к трехмерной проводимости по мере увеличения легирующей примеси. Таким образом перелегированный Nd_{2-x}Ce_xCuO₄ становится анизотропным трехмерным металлом.

Low Temperature Physics/Фізика низьких температур, 2019, т. 45, № 2

Рис. 3. Температурные зависимости удельного сопротивления $\rho_{ab}(T)$ и $\rho_c(T)$ Nd_{1,83}Ce_{0,17}CuO₄/SrTiO₃.

Температурная зависимость удельного сопротивления $\rho_{ab}(T)$ перелегированного образца (x = 0,17) подчиняется квадратичному закону $\rho_{ab}(T) \sim T^2$ в диапазоне температур 60 К < T < 270 К. При температуре $T_c = 15$ К наблюдается переход в сверхпроводящее состояние. Перед сверхпроводящим переходом пленка Nd_{1,83}Ce_{0,17}CuO₄/SrTiO₃ имеет $\rho_{ab}(T) = 11$ мкОм·см, $T_c = 15$ К, $\Delta T < 1$ К, а отношение $\rho_{ab}(300$ К)/ $\rho_{ab}(T_c) \cong 5,5$.

Температурная зависимость удельного сопротивления $\rho_c(T)$ перелегированного образца (x = 0,17) в диапазоне температур 60 К < T < 270 К показывает комбинацию металлического (T > 180 К) и полупроводникового хода. В интервале температур 20 К < T < 70 К удельное сопротивление имеет степенной характер с показателем степени $\alpha = -0,5$: $\rho_c(T) \sim T^{-0,5}$. При температуре T = 20 К начинается резкое падение сопротивления с последующим переходом в сверхпроводящее состояние.

На рис. 4 показана температурная зависимость коэффициента анизотропии сопротивления $Nd_{2-x}Ce_xCuO_4$ для x = 0,17. Видно, что коэффициент анизотропии растет

Рис. 4. Температурная зависимость коэффициента анизотропии сопротивления $Nd_{2-x}Ce_xCuO_4 \rho_c/\rho_{ab}$ для x = 0,17.

с понижением температуры и достигает максимального значения $\rho_c / \rho_{ab} = 65$.

Измерение критического тока на монокристаллических пленках $Nd_{2-x}Ce_xCuO_{4+\delta}/SrTiO_3$ производилось при температуре жидкого гелия T = 4,2 К.

Через образец пропускался транспортный ток и измерялось возникающее напряжение. В зависимости от величины тока образец либо переходил из сверхпроводящего состояния в нормальное, либо оставался в сверхпроводящем состоянии. При переходе в нормальное состояние на зондовых контактах образца появлялось напряжение отклика, которое фиксировалось запоминающим осциллографом (рис. 5). Построив зависимость напряжения на зондовых контактах от величины тока и аппроксимировав полученную прямую до пересечения с осью абсцисс, нами была определена величина критического тока. Плотность критического тока получена делением критического тока на наименьшее поперечное сечение образца.

(б)

Рис 5. Вид отклика, получаемого на зондовых контактах: сверхпроводящее состояние (а), нормальное состояние (б).

На рис. 6 представлены вольт-амперные характеристики оптимально отожженных пленок $Nd_{2-x}Ce_xCuO_{4+\delta}/SrTiO_3$ с x = 0,15 ($T_c = 23$ K) с различной ориентацией *с*-оси относительно подложки.

Для Nd_{1,85}Ce_{0,15}CuO₄ с ориентацией (001) величина критического тока составила $I_c \cong 0,1$ А, плотность критического тока — $j_c^{ab} \cong 10^5$ А/см². В пленке Nd_{1,85}Ce_{0,15}CuO₄/SrTiO₃ с ориентацией (110) величина критического тока — $I_c \cong 10^{-4}$ А, а плотность критического тока данного образца — $j_c^c \cong 40$ А/см². Таким образом, анизотропия плотности критического тока составила $j_c^{ab}/j_c^c \cong 3 \cdot 10^3$.

При наличии в сверхпроводнике транспортного тока, на вихри действует сила Лоренца. Если бы сверхпроводник был однороден и бездефектен, то при любой, сколь угодно малой силе Лоренца, вихри бы начали свое движение в направлении этой силы. В сверхпроводнике второго рода существуют разные виды микроскопических дефектов, на которых могут закрепляться вихри. Отличительной чертой высокотемпературных сверхпроводников, и в особенности $Nd_{2-x}Ce_xCuO_{4+\delta}$, является слоистая структура этих соединений. Проводящие CuO₂-слои разделяются непроводящими буферными Nd(Ce)O-слоями, и вихри могут задерживаться в этих слоях. Следовательно, требуется конечный ток для отрыва вихрей от дефектов.

В нашем эксперименте ток распространялся одинаково — вдоль пленки. Сами же пленки были ориентированы по-разному: CuO₂-слои при ориентации (001) расположены параллельно плоскости подложки, а при ориентации (110) — перпендикулярно. Вихри, образующиеся при протекании тока на поверхности пленки, в первом случае должны преодолеть буферные слои, которые являются барьерами при их движении. Поэтому плотность критического тока, необходимая для срыва и

Рис. 6. Вольт-амперные характеристики монокристаллических пленок $Nd_{1,85}Ce_{0,15}CuO_4/SrTiO_3$ с различной ориентацией *с*-оси: (a) — (110), (б) — (001).

Рис. 7. Вольт-амперная характеристика Nd_{1,83}Ce_{0,17}CuO₄/SrTiO₃, ориентация (001).

распространения вихрей в объеме образца, существенно (на три порядка) больше плотности критического тока для пленок с ориентацией (110). В этом случае вихри движутся по проводящим CuO₂-слоям, где центров пиннинга значительно меньше.

На рис. 7 представлена вольт-амперная характеристика $Nd_{2-x}Ce_xCuO_4/SrTiO_3$, x = 0,17 (плоскость ab лежит в плоскости пленки). Для пленки Nd₁₈₃Ce₀₁₇CuO₄/SrTiO₃ с ориентацией (001) была проведена оценка критического тока и получен следующий результат: $I_c \cong 0.52 \cdot 10^{-4}$ А. Так как сечение образца: $S = a \cdot d = 3 \cdot 10^{-6} \text{ см}^2$, то плотность критического тока составила: $j_c^{ab} \cong 17,3 \text{ А/см}^2$. Плотность критического тока для пленки Nd2-rCerCuO4/SrTiO3 с содержанием церия x = 0,17 в *с*-направлении, повидимому, существенно меньше, чем j_c^{ab} , и чувствительность приборов не позволяет зарегистрировать данную величину.

Заключение

Были проведены измерения проводимости в интервале температур 1,5–300 К и плотности критического тока при температуре T = 4,2 К на монокристаллических пленках Nd_{2-x}Ce_xCuO_{4+δ} / SrTiO₃ (x = 0,15; x = 0,17).

Исследовались закономерности поведения температурных зависимостей электросопротивления в проводящих плоскостях ab и вдоль направления c монокристаллических пленок $Nd_{2-x}Ce_xCuO_4/SrTiO_3$ с различными концентрациями легирующих примесей. Наблюдалось металлическое поведение сопротивления в плоскости CuO_2 и неметаллический ход сопротивления между плоскостями CuO_2 .

Таким образом, в стехиометрически отожженных пленках с оптимальным содержанием церия при T = 4,2 К анизотропия плотности критического тока составила $j_c^{ab}/j_c^c \cong 3 \cdot 10^3$. Сильная анизотропия плотности критического тока может быть рассмотрена в

рамках модели естественной сверхрешетки с чередующимися проводящими CuO₂-слоями и непроводящими буферными Nd(Ce)O-слоями. Высокая плотность критического тока вдоль проводящих CuO₂-плоскостей, повидимому, связана с пиннингом вихрей на буферных слоях.

В перелегированных образцах с x = 0,17 вид зависимостей сопротивления можно связать с включением переноса заряда между плоскостями CuO₂, то есть переходом от двумерной к трехмерной проводимости по мере увеличения легирующей примеси. Таким образом перелегированный Nd_{2-x}Ce_xCuO₄ становится анизотропным трехмерным металлом.

Работа выполнена в рамках государственного задания по теме «Электрон» № АААА-А18-118020190098-5 и проекту №18-10-2-6 Программы УрО РАН при поддержке РФФИ (грант № 18-02-00192).

- Y. Tokura, H. Takagi, and S. Uchida, *Nature* 337, 345 (1989).
- N.P. Armitage, P. Fournier, and R.L. Greene, *Rev. Mod. Phys.* 82, 2421 (2010).
- A.I. Ponomarev, G.I. Harus, T.B. Charikova, A.N. Ignatenkov, L.D. Sabirzjanova, N.G. Shelushinina, and A.O. Tashlykov, *Modern Phys. Lett. B* 17, 701 (2003).
- A.A. Ivanov, S.G. Galkin, A.V. Kuznetsov, and A.P. Menushenkov, *Physica C* 180, 69 (1991).
- T.B. Charikova, A.N. Ignatenkov, A.I. Ponomarev, A.O. Tashlykov, A.V. Khrustov, N.G. Shelushinina, and A.A. Ivanov, *Physica B* 359-361, 445 (2005).
- Т.Б. Чарикова, А.И. Пономарев, Г.И. Харус, Н.Г. Шелушинина, А.О. Ташлыков, А.В. Ткач, А.И. Иванов, ЖЭТФ 132, 712 (2007).

Анізотропія густини критичного струму в шаруватому електронно-легованому надпровіднику Nd_{2-x}Ce_xCuO_{4+δ}

А.С. Клепікова, М.Р. Попов, А.А. Іванов, М.В. Медведєв, Т.Б. Чарікова

Представлено результати дослідження провідності та густини критичного струму монокристалічних плівок із віссю *c*, яка перпендикулярна або паралельна площині підкладки, з концентрацією церію x = 0,15 та x = 0,17. Виявлено, що у стехіометрично відпалених плівках з оптимальним вмістом церію (x = 0,15) величина анізотропії опору максимальна, а анізотропія густини критичного струму склала $j_c^{ab}/j_c^c \cong 3 \cdot 10^3$ при T = 4,2 К. Сильну анізотропію густини критичного струму розглянуто в рамках моделі природної надгратки з провідними CuO₂-шарами, які чергуються, та непровідними буферними Nd(Ce)O-шарами. Показано, що висока густина критичного струму

Low Temperature Physics/Фізика низьких температур, 2019, т. 45, № 2

уздовж провідних CuO₂-площин пов'язана з пінінгом вихорів на буферних шарах, а сильна анізотропія густини критичного струму є наслідком анізотропного руху вихрової гратки у шаруватому надпровіднику.

Ключові слова: електронно-легований надпровідник, критична густина струму, анізотропія транспортних властивостей.

Anisotropy of the critical current density in the layered electron-doped superconductor Nd_{2-x}Ce_xCuO_{4+δ}

A.S. Klepikova, M.R. Popov, A.A. Ivanov, M.V. Medvedev, and T.B. Charikova

The results of studies of the conductivity and critical current density of single-crystal films $Nd_{2-x}Ce_xCuO_{4+\delta}/SrTiO_3$ with an

axis *c* perpendicular or parallel to the substrate plane with a cerium concentration of x = 0.15 and x = 0.17 are presented. It was found that in the stoichiometrically annealed films with the optimum cerium content (x = 0.15) the resistance anisotropy is maximal and the anisotropy of the critical current density is $j_c^{ab}/j_c^c \equiv 3 \cdot 10^3$ at T = 4.2 K. The strong anisotropy of the critical current density is considered within the framework of the natural superlattices with alternating conducting CuO₂ layers and nonconducting Nd(Ce)O-buffer layers. It was found that the high density of the critical current density is related to the pinning of vortices on the buffer layers and a strong anisotropy of the critical current density is a manifestation of the anisotropy of the vortex lattice in a layered superconductor.

Keywords: electron-doped superconductor, critical current density, anisotropy of transport properties.