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Motional quantum effects of tunneling methyl radical isolated in solid gases as they appear on experimental 
electron paramagnetic resonance (EPR) spectra are examined. Obtained analytical expressions of the tunneling 
frequency for methyl rotor/torsional-oscillator utilizing localized Hermite polynomials are compared to full nu-
merical computations and tested against experimental EPR lineshape simulations. In particular, the X-band of 
methyl radical was displaying partial anisotropy averaging even at lowest temperatures. EPR lineshape simula-
tions involving rotational dynamics were applied for the accurate determination of the potential barrier and the 
tunneling frequency. Tunneling frequency, as the splitting between the A and E torsional levels by the presence 
of a periodic C3 model potential with periodic boundary conditions, was computed and related to the EPR-
lineshape alteration. The corresponding C2 rotary tunneling about the in-plane axes of methyl was also studied 
while both the C2 and C3 rotations were compared with the rotation of deuteriated methyl radical. 

Keywords: solid gases, methyl rotary tunneling, analytical tunneling frequency, tunnel frequency vs. hindering 
barrier. 

1. Introduction

A vast number of processes in solid state are realized 
through potential-barrier hindering dynamics of hosted neu-
tral or charged particles/probes. For example, at low temper-
atures, the only way for a particle to overcome a potential 
barrier is by quantum tunneling which becomes crucially 
enhanced for light atoms and molecules. Among those, me-
thyl radical (CH3 and its isotope analogues) is considered as 
quantum rotator because of its small inertia. The radical may 
be stabilized in chemically inert matrices of which cryo-
crystals are of particular interest. Monoatomic examples of 
host matrices are Ne, Ar, Kr, Xe, while molecular-gas host 
matrices of general cryogenic interest are hydrogen H2, ni-
trogen N2, oxygen O2, carbon monoxide CO, carbon dioxide 
CO2, nitrous oxide N2O and methane CH4. The rotational 
behavior of methyl radical embedded in these matrices is 
very sensitive to the state and dynamics of the surrounding 
matrix molecules. Therefore, electron paramagnetic reso-
nance (EPR) which provides information on such phenom-

ena is a good tool to study the solid state behavior of such 
embedded radicals at very low temperature. 

The molecules of cryocrystals are held together by weak 
van der Waals forces and are among the simplest solids to 
test ab initio theoretical approaches. However, even in these 
solids, composed of most weakly bounded particles, the 
interactions contributing to the energy of the matrix particles 
may reach rather high values. For example, the central at-
traction energy of a matrix molecule in solid CO2 is of the 
order of 10787 cal/mole [1] which is equivalent to 5428.3 K. 
The rotational tunneling and librations of the matrix isolated 
CH3 radical are, thus, the major mechanisms of the radical 
reorientation at the cryogenic temperatures. The reorienta-
tional motion of CH3 in molecular cryocrystals was found to 
be complex in nature and included fast rotation around the 
molecular C3 axis, fast librations around the in-plane C2 
axis, and slow tunneling tumbling about C2 axis [2–4]. The 
observed temperature dependence of methyl radical motion 
in these previous studies clearly evidences specific changes 
occurring in the orientation dynamics of the matrix mole-
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cules. The results are in line with a very recent study [5] by 
Krainyukova and Kuchta who reported new insight on the 
molecular structure and dynamics of solid CO2. These au-
thors performed a high-energy electron diffraction study on 
solid carbon dioxide films in the temperature range 15–87 K 
and found hopping precession of molecules instead of sim-
ple small-angle librations that should not exceed 5–6 de-
grees. The relevant maximal angle deviations turned out to 
be as big as ~30 deg at the lowest temperatures (~15 K) 
and started to decrease with rise in temperature at ~45 K. 
This temperature point almost exactly coincides with the 
onset of the anisotropic C2 rotation we observed in our 
methyl radical EPR study in solid CO2 [4]. It is worth not-
ing that, earlier, the rank-4 orientational order parameter 
η4 was found to decrease rapidly in pure solid CO2 at tem-
peratures above 45 K [6]. This η4 parameter determines 
the correlative and rotational-unharmonic effects in the 
librational subsystem. In fact, EPR studies of CH3 stabi-
lized in solid Kr films discovered formation of a highly 
disordered matrix structure for samples condensed from 
the gas phase at 4.2 K [7] as well as 16 K [8]. The structure 
accumulated the majority of trapped radicals which sur-
vived annealing to 31 K [8]. The radicals in the disordered 
structure yielded very broad hyperfine (hf) lines compared 
to those at the centers in the symmetric substitutional sites 
of the regular Kr lattice. The broadening was found to orig-
inate from the distribution of the radical g-factor due to the 
matrix effect. An attempt of assessing the disorder parame-
ter was presented in Ref. 3. 

The present study is aimed at elucidating matrix effects 
in rotationally averaged methyl radical parameters and 
correlating tunneling rates to barriers of rotation for CH3 in 
van der Waals solids. The results are essential for convert-
ing the radical to a probe to determine low-temperature 
structures and dynamics processes occurring in cryocrystals. 

An estimation of the tunneling particle mobility is possi-
ble through the tunneling frequency [9] which can be used 
identically as the torsional splitting of the localized degen-
erate vibrators’ ground level. The torsional splitting is thus 
per definition a temperature independent quantity as it re-
quires an isolated quantum system. Experimentally, the tor-
sional splitting is observable at lowest temperature while 
the definition of the tunneling frequency νt is given differ-
ently by Stejskal and Gutowsky [10]: 

 /1 e .iE RT
t i

i
v

Q
−= ν∑  (1) 

The average energies iE of each originally two-fold de-
generate localized torsional level, i, (C2 potential was as-
sumed in that work), in the above Eq. (1) weights the cor-
responding torsional splitting νi. The partition function Q, 
comprising the sum of the Boltzmann exponentials, is the 
normalization factor. The Boltzmann statistics used to ob-
tain the populations of the torsional levels thus renders the 

above “tunneling frequency” νt as temperature-dependent 
function. 

There is, however, a fundamental drawback for the use-
fulness of the definition in Eq. (1) in quantum systems; in 
particular, for large potentials of the order of 1000 K and 
higher. The difference in the energies of the torsional lev-
els is too large to give any significant population to any oth-
er levels than the ground level. 

In many other systems of tunneling methyl radical, simi-
lar to our case, a simple estimation gives the observable ef-
fect from the higher torsional levels for temperatures high-
er than 250 K, while experimentally, the importance of the 
motional quantum effects become secondary for tempera-
ture higher than 50 K. In this estimation the torsional ener-
gies Eν = 3(BV3)1/2(ν + 1/2) were used, vide infra, for rota-
tional energy B ca 7 K and potential barriers V3 = 1000 K. 
Notice also that barriers over 1200 K studied by Stejskal 
and Gutowsky [10] were exceedingly larger than the one 
used in the latter estimation and the ones of interest in the 
present work. 

Following the above discussion, we simplify our calcu-
lations by not incorporating higher torsional levels than the 
ground level as also explained by Yamada et al. [11]. Fur-
ther details of this approximation are discussed in the sec-
tion about the theory of the tunneling-methyl radical. The 
general quantum mechanical problem of tunneling for hin-
dering potentials of C3 and C2 symmetries are also treated 
easily in the present work within a numerical formalism. 
The applied method is also applicable for potentials of ar-
bitrary complexity provided that its matrix elements in the 
simple Bloch-type basis set are available. 

The article is organized as follows: In Sec. 2, the exper-
imental matrix shift of the EPR parameters and the anisot-
ropy of methyl, CH3, radical isolated in four different ma-
trices consisting of spherical molecules are analyzed in 
relation to the radical tunneling frequencies at cryogenic 
temperatures. The role of librations in the averaging of the 
parameter anisotropies is also considered for slightly high-
er temperatures where quantum and classical motion coex-
ist. The results are utilized in Secs. 3 and 4 to theoretically 
address the rotational rates and the libration amplitudes of 
the trapped methyl radicals even in matrices consisting of 
linear molecules. In particular, the tunneling frequencies of 
methyl radical against periodic C3 or C2 hindering potentials 
are computed both analytically and numerically exploiting 
the experimental EPR results. The EPR results correspond, 
respectively, to parallel or perpendicular rotary tunneling 
motions of methyl radical in different solid gas matrices, 
concerning exclusively very low-temperature quantum con-
ditions. The main task is to show that a wealth of perceptible 
orientational motions is available for a 3D quantum rotator 
even at cryogenic temperatures by tunneling through barri-
ers. Finally, after a short concluding Sec. 5, an Appendix 
demonstrating the mathematical details of the computations 
is included. 

496 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 4 



Low-temperature tunneling of CH3 quantum rotor in van der Waals solids 

2. Hindered molecular rotation effect 
on the EPR parameters 

The EPR lineshape of CH3 trapped in van der Waals 
(vdW) solids at cryogenic temperatures demonstrates sig-
nificant variability. It changes from nearly symmetric for 
methyl radical in solid p-H2 [12], to asymmetric spectrum 
with split anisotropic lines and additional satellite transi-
tions of non-rotating methyls, in cold solids consisting of 
the linear CO2, N2O molecules. The above two sets of 
main and additional transitions are characterized by either 
isotropic or axial spin-Hamiltonian vs. rhombic spin-
Hamiltonian, respectively [13,14], depending on the actual 
dispersion forces between matrix and CH3 radicals [15]. 
The experimental anisotropy variation of the EPR spectra 
of methyl radical in the present work was related to in-
creasing rotational rate of the radical with temperature in-
crease. The variation of the radical-matrix interaction in-
fluences the matrix shifts of the EPR parameters and 
changes the radical dynamics governing the parameter av-
eraging. Moreover, it is not possible to determine the exact 
static anisotropy of the g and A tensors experimentally, 
since methyl tunnels (rotates) even at the lowest experi-
mental temperatures. 

Radical species isolated in a matrix cage are allowed to 
perform orientational and/or oscillatory motions. In case of a 
weak matrix coupling, the trapped molecules rotate almost 
freely in the host cage, yielding nearly isotropic EPR pa-
rameters with small matrix shifts. Free rotation quantum 
effects at 4.2 K were observed early by Foner et al. [16] in 
the EPR experiments of NH2 radical. These effects were 
further explained by McConnel [17] who also foresaw the 
liquid He 1:1:1:1 methyl quartet. Extending the same basic 
considerations, high-resolution EPR spectra with obvious 
Pauli excluded EPR transitions of methyl hydrogen isotopo-
mers were observed experimentally in cryogenic Ar matrix 
and interpreted accordingly [11]. Matrix effects of CH3 in 
solid gases of spherical particles, in particular, spectrum 
anisotropy, were studied semiquantitatively in [12], setting 
the following empirical coefficient, Arel, as its measure: 

 0 max 0 max
rel

0 min 0 min
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A A
A
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In Eq. (2), A0max and A0min are the amplitudes of the strong-
est and weakest hyperfine (hf) components of the EPR quar-
tet. It was shown that the anisotropy was governed mainly 
by short-range Pauli exclusion forces while the contribu-
tion of the van der Waals attraction was negligible. Varying 
amplitudes and widths of the different hf components indi-
cate residual magnetic anisotropy due to incomplete rota-
tional averaging of the spectral parameters. Below the liquid 
helium temperature methyl radicals are in the ground rota-
tion A-symmetry state yielding axially symmetric g and A 
hf tensors with parallel component coinciding with the 

highest C3 symmetry axis of the radical [13]. The spectrum 
averaging is achieved by additional fast rotation about the 
in-plane axes (perpendicular rotation). The rotation is char-
acterized by tunneling frequency estimated as the reciprocal 
of the rotation correlation time, τcorr, considered as meas-
ure of rotation hindrance. One of the aims of the present 
study is to verify the exclusive effect of the Pauli interaction 
on the spectrum anisotropy and obtain information about the 
CH3 rotation dynamics by measuring and correlating τcorr 
to the radical–matrix interaction. 

First, we address the case of methyl radical in solid Ar; 
at 4.2 K, the spectrum of solid Ar is composed of four hf 
lines with different amplitudes, A, and widths, ∆H [18]. 
The line intensities, estimated as the products A(∆H)2 are 
nearly equal yielding the well-known 1:1:1:1 low-tempera-
ture intensity ratio. The different widths and amplitudes of 
the four components are due to the residual anisotropy af-
ter partial rotational averaging. In Fig. 1(a), the reciprocal 
square roots of the hf amplitudes, 1/ A  are proportional 
to the line width [12] that may be approximated by the 
following quadratic in mF formula [19]: 

 21 .F FH a b m c m
A
∝ ∆ = + +  (3) 

Here, mF is the projection of the coupled nuclear spin rep-
resentation F = I1 + I2 + I3 of the three protons. 

The procedure of obtaining the CH3 EPR parameters 
and rotation correlation times was divided into two steps as 
follows: First, the experimental reciprocal square root am-
plitudes of the hf components in Figs. 1(a)–(d) were fitted 
by adjusting the coefficients a, b and c of Eq. (3) assuming 
fast-motion regime conditions. The Origin 6.1 routine was 
used to determine the polynomial coefficients minimizing 
the standard deviation (SD) of the best curve fit through 
the experimental data. 

The EPR parameters were obtained from the above fit-
ting procedure using reasonable estimates of the magnetic 
parameters as input in EPR spectral simulations by the 
EasySpin software. This procedure accounts for Lorentzian 
and/or Gaussian profiles allowing accurate comparison be-
tween simulated and experimental line widths. It is a direct 
method, compared to using the standard expressions for the 
coefficients a, b, and c of Eq. (3), see Ref. 12 and refer-
ences therein. 

2.1. Determination of methyl radical tunneling frequency 

The effect of motional averaging of the EPR parameters 
anisotropy of methyl radical isolated in matrices of spheri-
cally symmetrical particles is considered in this work. The 
perpendicular rotation of methyl in these matrices is not 
hindered compared to matrices of linear molecules where 
strong hindrance is the case [20]. 

For CH3 isolated in solid Ar, the approximate curve ob-
tained in a least-squares fit of the experimental data is plot-
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ted in Fig. 1(a). To obtain the correlation time of the rota-
tion, the simulation of the EPR spectrum with the 
EasySpin software [21] was performed in the fast-motion 
regime. The physical parameters of solid Ar and solid N2 
are close as anticipated by the full mutual solubility of the 
two components. Therefore, matrix shifts of the EPR pa-
rameters of methyl radicals trapped in Ar and N2 solids are 
expected to be close. Referring to the hf couplings, they are, 
indeed, nearly equal: −2.313(5) mT for CH3 in Ar com-
pared to −2.317(5) mT for CH3 in N2 matrix [13]. The 
isotropic g-factor, however, shows a noticeable difference, 
2.002322(56) and 2.00250(12) for CH3 in Ar and N2 solids, 
respectively. The g-factor matrix shift of methyl is due to 
admixture of the unpaired electron p-orbital of the radical 
with the frontier orbitals of the neighboring matrix particles. 
This effect is similar to the matrix isolated atomic hydrogen, 
whose g-factor matrix shift is obtained by admixture of its 
electron wave function with the p-orbitals of the nearest 
matrix particles after the required orthogonalization [22]. 

The principal quantum numbers of the orbitals of the 
outer (valence) Ar electrons are larger compared to the N2 
molecule and would lead to an increased g-factor shift. To 
verify this possibility, we performed test simulations keep-
ing the A-tensor anisotropy, ||A A A⊥∆ = − , equal to that of 
CH3 in solid N2, ∆A = 0.098 mT, and changing simultane-
ously the g-tensor anisotropy, ||g g g⊥∆ = − , the individual 
line width, ∆H, and the τcorr to obtain the best possible 
curve fitting. The isotropic parts of the A- and g-tensors 
were set equal to those of CH3 in solid Ar: 
Aiso = −2.313 mT, giso = 2.002322. The individual line 
width was isotropic and the lineshape was Lorentzian. The 
best fit was obtained with ∆g = −1.73·10–4, 
∆H = 0.0086 mT, τcorr = 24 ns. In Fig. 1(a), the results of 
the simulations fit well to the approximate curve. The 
peak-to-peak widths of the simulated hf components are 
0.0248, 0.0163, 0.0141, 0.0172 mT counting from low to 
high fields and match well with experimental widths [18] 
0.0229, 0.0183, 0.0136, 0.0204 mT. 

Fig. 1. (Color online) EasySpin simulations of the EPR spectra for matrix isolated CH3 at 4.2 K in solid gases: in Ar (a), Kr (b), Ne (c), 
and para-H2 (d). The reciprocal square root amplitudes of the hf components are plotted against the projection mF of the three coupled-
proton spin representation F. The blue dashed line calculated using Eq. (3) fits the experimental data presented in black asterisks. The 
experimental data were taken from our earlier study [12]. The EasySpin simulation results indicated by red open circles are obtained 
with EPR parameters listed in the text. 
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To make a complete consideration, we tried another ap-
proach by fixing ∆g = −3.7·10–4 equal to that of the g-
tensor anisotropy for CH3 in solid N2 [13] and changing 
the A-tensor anisotropy. Figure 2 summarizes the EasySpin 
obtained simulations. 

The upper spectrum is simulated using the EPR pa-
rameters listed above and fits well with the CH3/Ar exper-
imental data shown in Fig. 1(a). The next four simulated 
spectra show changes in the EPR lineshape with fixed ∆g 
and gradual increase of ∆A. The simulations begin to re-
semble (however, poorly) the experimental results when a 
large value of the hf-tensor anisotropy, ∆A, is involved, not 
meeting the physics of the system. Indeed, the radical reor-
ientation about the in-plane axes is considered as a combi-
nation of very fast small-angle librations with the frequen-
cy of the order of 1012 Hz and much slower full rotation 
with frequencies less than 109 Hz [20,24,25]. The aniso-

tropies ∆g and ∆A, used in the spectral simulations, result 
from the rigid radical parameters, partially averaged by radi-
cal librations. Previously, the averaged anisotropies were 
shown to gradually decrease with decreasing eccentricity of 
the matrix molecules in the order, CO2, N2O, CO, N2 [20]. 
Accordingly, ∆A for Ar matrix should be equal or somewhat 
smaller than N2 matrix. 

The case of Kr matrix is of particular interest. Indeed, 
the amplitude sequence of the EPR spectrum of CH3 in 
solid Kr matrix is a mirror image of the CH3 spectrum in 
practically all the other solid gas matrices, Ne, Ar, N2, CO, 
N2O, CO2 [13,18,19]. This “mirror” effect originates from 
the opposite sign of g-tensor anisotropy in Kr compared to 
Ar matrix [13,18], modifying the linear, cross relaxation 
term of Eq. (3). Another feature of the CH3–Kr system is 
the largest matrix shift of the g-tensor compared to CH3 in 
other matrices [13], including solid gases, zeolites, vycor 
glass, beryl, methane hydrate, and feldspar. On the contra-
ry, the CH3–Kr hf coupling does not seem to demonstrate 
such striking matrix shift characteristics: the hf coupling 
anisotropy has the same sign as the CH3–Ar system [13] 
and the hf coupling matrix shift is of moderate value [20]. 
The EPR transitions recorded in the CH3–Kr experiments 
are somewhat broader [19] compared to those of the CH3–
Ar system. The extra broadening is due to that natural Kr 
contains 11.5 % of the magnetically active 83Kr isotope 
that contributes to the superhyperfine broadening admixing 
in addition Gaussian profile to the EPR lineshape. On the 
basis of the hf component amplitude ratio [12] and the ex-
perimental line widths [19], an excellent EasySpin simula-
tion is presented in Fig. 1(b). The line widths of the simu-
lated spectrum, 0.0275, 0.0234, 0.0247, 0.0313 mT, 
counting from the low- to the high-field component, match 
extremely well with the experimental data [19]: 0.0301, 
0.0218, 0.0241, 0.0334 mT. The EPR parameters used in 
the simulations for CH3 in Ar, Kr, Ne, and para-H2 are 
listed in Table 1. The isotropic A- and g-tensor components 
were set equal to those of CH3 in solid gases from the pre-
vious study [13]. It was found that both the hf anisotropy, 
∆A = A|| − A⊥, and the g-tensor anisotropy, ∆g = g|| − g⊥, 
should be modified for best agreement of the simulations 
with the experiment. 

As a result, the following values were obtained: 
∆A = 0.138 mT, ∆g = 1.13·10–4, τcorr = 17 ns. The opposite 
sign of ∆g compared to CH3 in Ar stems from the greater 
matrix shift of the g⊥ component compared to the g|| compo-
nent reported earlier [13]. Comparing giso in the two noble 
gas matrices, it is concluded that Kr matrix affects the g-
factor far more efficiently than Ar matrix. It is also worth to 
pay attention at the hyperfine tensor anisotropy yielded by 
the simulation. The value 0.138 mT lies between the aniso-
tropies for CH3 in N2O and CO2 matrices, being among 
the largest hf anisotropies for matrix isolated CH3 in solid 
gases. The radical libration angles in the substitutional posi-
tion of the regular solid Kr lattice are expected to be larger 

Fig. 2. EPR lineshape of CH3 in solid Ar simulated using differ-
ent values of the g- and A-tensor anisotropies. The microwave 
resonance frequency was fres = 9.4003 GHz. The isotropic com-
ponents of the tensors were set equal to those obtained experi-
mentally: giso = 2.002322, Aiso = −2.313 mT. (a) ∆A ≡ A|| − A⊥ = 
= 0.098 mT, equal to the value measured for CH3 in solid N2, 
∆g ≡ g|| − g⊥ = −1.73·10–4, τcorr = 24 ns; (b)–(e) ∆g = −3.7·10–4, 
equal to the value measured for CH3 in solid N2, and τcorr = 20 ns 
for all four simulations, whereas the A-tensor anisotropy ΔA in-
creases gradually as 0.3, 0.5, 1.0, 1.2 mT, respectively. Figure 1 
evidences that the simulation (a) is very close to the experimen-
tally measured amplitude ratios of the hf components of the spec-
trum recorded in the CH3–Ar experiments. 
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than in Ar and N2 matrices because of the larger lattice con-
stant of 6.13 Å in Kr, compared to 5.31 and 5.65 Å in Ar 
and N2, respectively. Large-angle librations should, how-
ever, tend to decrease the hf anisotropy [20]. An explana-
tion for this inconsistency could be the local rearrangement 
of the strained crystal lattice of quench-condensed Kr. The 
rearrangement of the cubic lattice to axially symmetric hex-
agonal affects the axial anisotropy of the EPR parameters. 
This process was suggested previously when considering 
axially symmetrical EPR of H-atoms trapped in quench-
condensed Kr [26] and saturation peculiarities of CH3 rad-
icals in the same matrix [3]. 

Figure 1(c) shows the EPR lineshape simulation data of 
CH3 trapped in solid Ne. The best lineshape fit was ob-
tained with g- and hf A-tensor anisotropies close to the 
ones used in the Ar matrix simulation as shown in Fig. 1(a) 
and Table 1. 

As a result, the correlation time τcorr = 28.5 ns is some-
what greater compared to Ar matrix. Solid Ne is a tighter 
matrix compared to the solid Ar as seen from the lattice pa-
rameters of 4.46 Å for Ne and 5.31 Å for Ar. As discussed 
above, a tighter matrix enables smaller radical libration an-
gles, and less averaged anisotropies, yielding larger ∆A. The 
difference between the CH3 radical hf A-tensor anisotropies 
in Ne and Ar would be more pronounced if it were not for 
the semi-quantum nature of solid Ne, characterized by fair-
ly large zero-point displacement amplitude of the Ne ma-
trix atoms. 

A very small difference in the relative amplitudes of the 
CH3 hf components was recorded for methyl radical trapped 
in solid para-H2 [12]. In this case, even a small error in ex-
perimental amplitudes may result in rather large uncertainty 
in 1/ A  as a function of the projection of the total nuclear 
spin. This is evident from Fig. 1(d) where the experimental 
points deviate more from the theoretical fitting curve com-
pared to the noble gas curves in Figs. 1(a)−(c). The devia-
tion taken in the percentage of the overall spread of the hf-
line amplitudes is addressed here. 

The EPR transitions recorded in the H2–CH3 experi-
ment [12] were rather broad, with a peak-to-peak width of 
the third, mF = −1/2, component 0.022 mT compared to 
approximately 0.01 mT expected for radicals isolated in 
magnetically silent matrices. Indeed, the width of the third 

EPR hf component in solid Ar that has not magnetic iso-
topes is 0.014 mT. The small, extra broadening in para-H2 
is probably due to admixture of a small amount of ortho-H2 
molecules generated during the para-hydrogen radiofre-
quency discharge before sample condensation. The profiles 
of the simulated transitions were obtained as mixtures of 
Gaussian and Lorentzian components, applying 0.0045 mT 
Lorentzian width taken from the CH3–Kr experiment. On 
the basis of this value, the experimental width of the 
Gaussian contribution to the lineshape was calculated as 
0.0196 mT. The closeness between the amplitudes of the hf 
components for CH3 in the para-H2 lineshape made it diffi-
cult to select spectral parameters for best fitting. On the basis 
of results for the noble gas matrices, the estimated hf tensor 
anisotropy, ∆A, were of the order of 0.1 mT compared to 
0.098 mT in Ar, 0.138 mT in Kr, and 0.108 mT in Ne. 

As it was verified in the present study, the hf tensor ani-
sotropy ∆A was not that sensitive to the matrix particles 
surrounding the radical species as was the g-tensor anisot-
ropy. The nearest coordination distance of methyl to the 
matrix particles in solid H2 and Ar was nearly the same: 
3.76 Å. The hf anisotropy ∆A in solid H2 is expected to be 
somewhat smaller than in Ar due to the quantum nature of 
solid hydrogen while on the contrary, the axial hcp (hex-
agonal close packed) crystal structure of H2 favors in-
creased ∆A. 

The best fit, Fig. 1(d), was obtained with ∆g = −0.6·10–4 
and τcorr = 2.3 ns. The g-tensor anisotropy turned out to be 
the smallest among the matrices analyzed. This is because 
of more efficient averaging of the anisotropy by the signif-
icantly increased libration motion of the radical in the H2 
quantum crystal. The correlation time is far too shorter 
than for other matrices, since the trapped radical is much 
freer to rotate. 

2.2. Motional averaging mechanisms of EPR anisotropy 

Methyl radical reorientational motions about the C3- and 
C2-symmetry axes average partially the spin-Hamiltonian 
anisotropy depending mostly on the strength of the matrix-
impurity Pauli repulsion [12]. The residual anisotropy may 
be observed in different amplitudes and widths of any of 
the hyperfine components, symmetric with respect to the 
base line, or as anisotropic splitting. The former type of the 

Table 1. EPR parameters for CH3 in solid gases used in the spectral simulations in Fig. 1. Isotropic hf coupling and g-tensor parame-
ters are taken from Ref. 13. Notice the trend of decreasing rotational correlation time with increasing atomic radius of the host 

Matrix Aiso, mT giso ∆A, mT ∆g ∆H, mT τcorr, ns 

Ne –2.333 2.002526 0.108 –1.844·10–4 0.0084(L) 28.5 

Ar –2.313 2.002322 0.098 –1.73·10–4 0.0086(L) 24 

Kr –2.300 2.001655 0.138 1.13·10–4 
0.0045(L) 
0.0156(G) 

17 

H2 –2.324 2.002516 0.1 –0.6·10–4 
0.0045(L) 
0.0196(G) 

2.3 
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anisotropy is common of CH3 in molecular hydrogen H2 
and solid noble gases Ne, Ar, Kr [12,27], while the later 
was observed in solid gases consisting of the linear CO, 
N2O, CO2 molecules [13,14,20]. The rotational averaging 
is effective even at liquid helium temperatures due exclu-
sively to tunneling. The present study is aimed at correlat-
ing tunneling rates to barriers of rotation for CH3 in 
van der Waals solids, applying theoretical approaches de-
scribing the experimentally observed residual EPR anisot-
ropy of trapped radicals. 

Lack of direct experimental evidence of anisotropy even 
at liquid He temperatures is the case for the alpha-protons of 
free methyl, as only the high resolution 1:1:1:1 ground rota-
tional EPR quartet is visible [11]. Pure quantum mechanical 
inertia rotation treatment required that methyl rotor stops at 
this temperature with only the above-mentioned spin-
rotation state possible [11]. Therefore, all changes of the 
temperature-dependent hf line splitting were considered to 
be due to dynamics. Theoretical values of static magnetic 
parameters of methyl in vacuum coming from first princi-
ple quantum chemistry computations can be of importance 
for this purpose [13]. A great help for the disentanglement 
of the parameters was offered by the simulation of the 
high-temperature limit spectra that do not exhibit compli-
cations due to motional quantum effects. 

The effect of molecular reorientation on the EPR 
lineshape is commonly involved in quantitative methods of 
molecular mobility data extraction. In low viscosity liq-
uids, angular velocities of time scales less than 10−10 s are 
required to fully average the magnetic parameters of the 
probe, e.g., the nitroxide. Libration motion is also efficient 
averaging mechanism at the EPR time scale. The term libra-
tion is commonly used for harmonic angular oscillations of 
molecules in crystals with frequencies of 1011 to 1012 s–1 
and amplitudes of approximately 2–3 deg. A similar type of 
motion in glasses has been evidenced by high-frequency 
EPR, magnetization transfer, and spin-echo experiments 
[23,25]. However, low-temperature torsional oscillations 
greater than 8 deg were detected in the present work for 
tunneling methyl isolated in solid CO2, vide infra. This 
motion seems to correlate with unusually wide “hopping 
precession” angles of the linear CO2 molecules discovered 
recently by Krainyukova and Kuchta [5] in frozen samples 
of pure CO2. 

Due to libration, the anisotropies of methyl spectra were 
partially averaged as shown earlier [20], gradually decreas-
ing with decreasing eccentricity of the matrix molecules in 
the order: CO2, N2O, CO, N2. Our analysis showed that the 
greatest uncertainty in obtaining rotational correlation times 
was associated with the approximation of the obtained poly-
nomial coefficients in Eq. (3). It turned out that the relative 
errors were least for a, while b and c showed somewhat 
larger error than a. As a result, the EasySpin simulations 
yielded cautious estimate of τcorr error of about 4 ns relative 
to the shifts in b and c coefficients. 

Figure 3 shows the rotational correlation time plotted 
against the squared Pauli repulsion energy 2

pE . The figure 
establishes a linear correlation between rotation hindering 
and repulsion of the trapped CH3 radical by the matrix 
particles. It is suggested in the present study, that the aver-
aged spectrum anisotropy is not only a function of τcorr and 
the radical–matrix interaction but depends also on the lat-
tice symmetry of the matrix. The influence of the matrix 
symmetry on the anisotropy of the radical EPR parameters 
is readily seen from the experimental and theoretical stud-
ies of trapped H atoms. 

Free atomic hydrogen is characterized by spherically 
symmetrical electron wave function and isotropic hf con-
stants. When trapped in solids, H atom reveals wave func-
tion of reduced symmetry adapting to the electrostatic po-
tential of the cage formed by the matrix first couple of 
coordination spheres. As a consequence, excluding cubic 
lattice, the hf interaction develops appreciable anisotropy 
[28–31]. The excellent linear fit in Figure 3 may be acci-
dental. Further experimental work with Kr matrices with 
unstrained crystal lattice, condensed, e.g., at temperatures 
well above 4.2 K, is required for the verification of the 
linearity. 

3. Rotary tunneling vs. hindering barrier 
of methyl radical 

Even strongly hindered methyl groups can perform ro-
tary motion at very low temperature in the sense that quan-
tum mechanics allows penetration of the torsional barrier. 
A periodic C3 potential with periodic boundary conditions 
will be further considered hindering coherent leakage of 
methyl to the adjacent minima with “distance” 120 deg. 
The rate of this rotary motion of methyl can be faster than 
the proton hfi (hyperfine interaction) measured in MHz. 
The situation can be the reverse for systems with high bar-

Fig. 3. Correlation time of the perpendicular rotation of CH3 
radical in various matrices plotted against the squared Pauli re-
pulsion energy 2

pE , where 0 27.212ε =  eV, is the Hartree atomic 
unit of energy. 
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riers. The deuteron rotor, e.g., is normally much slower, 
vide infra, due to the “dramatic” increase of the inertia by 
factor two. 

The point here is that one has to use a quantum descrip-
tion of the motion in order to reproduce the experimental 
effects on the EPR lineshape, at least for the lowest tem-
peratures close to 5 K. We can use, e.g., approximate har-
monic oscillator states localized at the minima of the po-
tential energy wells for the description of this motion, see 
Appendix. Certainly, Hermite polynomials, or any other 
simple choice like Gaussians [32], cannot be accurate 
eigenfunctions of a Hamiltonian with an actually periodic 
potential but they can be used as (zeroth order) basis func-
tions for the approximate solution of the problem. 

Briefly, the approximate localized functions of the 
smallest C3 group are giving initially an equal number of 
degenerate basis-functions ( ) ( )( ) ( )k k

v v kΨ ϕ ≡ Ψ ϕ−ϑ  with 
location k = 0, ±1, seen in the correlation diagram, Fig. 4. 
The angles k kpϑ =  are given in terms of the period of the 
potential energy p = 2π/3. The index ν = 0, 1, 2, … of the 
above functions stands for the vibration level. 

The eigenvalues of these functions are given by 

 
12 ( ),
2vE B v= β +  33

2
V
B

β = , (4) 

where B is the rotational constant and the variable

3(3 / 2) /V Bβ =  is expressed in terms of the just men-

tioned constant Β and the barrier V3, as seen in Appen-

dix A. The 3-fold degeneracy of the above-localized vibra-
tor eigenfunctions can be lifted by a periodic potential if 
the barrier between adjacent wells is not infinitely high. 
The problem can be solved by both degenerate perturba-
tion or by the variational method [33]. The variational 
principle is formally more appropriate because the basis 
functions of the localized torsional oscillators cannot be 
orthogonal as they overlap. As it will be shown later, the 
overlap, however, is small for all practical purposes. 

E.g., the overlap of the lowest (ground) torsional level 
with quantum number ν = 0 is given by 

 
2

( ) ( 1) 3
0 0 0( ) ( ) exp .

6
k k V

S
B

±  π ≡ ψ ϕ ψ ϕ = − 
  

 (5) 

This equation is plotted in Fig. 5 and indicates that the 
overlap is not really significant in the present case. 

In spite of that, the solution of the tunneling frequency 
vs. potential problem obtained by this way will not be as 
accurate as a numerical solution model starting from free 
rotor in presence of a periodic potential. In practice, it was 
not easy to make the solutions of the perturbative kind ac-
curate enough, see Fig. 6(a). However, the motivation of 
seeking such a solution, in addition to relatively easily ob-
tainable numerical ones, is rather the transparency and the 
usefulness in the physical interpretation of several effects. 
Symmetry considerations play a very important role here. 

Further, one should remember that the analytical expres-
sions in the present work are approximate. The assumptions 
are: i) consideration of parabolic zero order potential; ii) 
neglect of the mixing with higher vibrational levels. 

The parabolic potential was obtained by Taylor–
Maclaurin series expansion of the periodic C3 potential 

 [ ]3( ) 1 cos3
2

V
V ϕ = − ϕ . (6) 

Finally, the mechanism of the tunneling rotation of the 
radical can be described as a quantum effect by the time-

Fig. 4. Correlation diagram showing roughly the connection be-
tween the three different types of rotary/torsional motions. Notice 
that the three vertical axes cannot be put in a universal scale since 
the transition frequencies is a multivariate quantity. The ground 
rotation level has been lifted by the zero-point vibration energy 
E0 = 3(BV3)1/2/2. The first order correction of the torsional level 
amounts to C0, see Appendix. The tunneling frequency of the 
ground vibrational level is designated by 3J0. Going from the left 
to the right, the second diagram corresponds approximately to the 
librating radical, while the third diagram to the right is for the 
radical performing rotation around the C3 axis by tunneling 
through the barrier with frequency 3J0. In the end of this section, 
the description of this motion physics is provided. 

Fig. 5. The overlap S0 of the adjacent vibrator eigenfunctions for 
the ground torsional level of methyl according to Eq. (5). Notice 
that the value of this integral is very small already for potential 
bariers V3 > 100 K and becomes virtually insignificant after 
250 K. Those potentials are in compatible order of magnitude for 
methyl rotor systems studied in the present work (1.000 K = 
= 2.0837·104 MHz). 
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dependent Schrödinger equation. The diagonalizing trans-
formation of the localized vibrator eigenfunctions leading to 
the torsional oscillator eigenfunctions can be inverted and 
the former set can also be used in the time dependence of the 
system. In that case, if the initial state of the system is in one 
of the potential wells, it will be found in any of the two adja-
cent wells at a time equal to the inverse energy difference of 
the E–A states, signifying the quantum tunneling of the sys-
tem over the potential barrier. 

3.1. Computation of the tunneling frequency 

One of the aims of this work is to derive analytical ex-
pressions for the tunneling frequency 3J0 vs. the potential 
barrier V3. Hence, a combination of the perturbation and the 
variational methods were tested. The value of the overlap 

integral ( ) ( )1|    k k
vS ±

ν ν= Ψ Ψ  of any two adjacent localized 

torsional oscillator eigenfunctions was originally omitted in 
the computation of the perturbation treatment because it is 
very small for the case here V3 >> B. This is at least veri-

fied for the lowest vibrational levels as shown in Fig. 5, 
which is a plot of the overlap vs. barrier shown in Eq. (5). 

The inclusion of the overlap in a more accurate analytical 
expression for the torsional splitting of the ground level ac-
cording to the variational theory has also been investigated. 
When this effect was included it did not help practically, 
because on the contrary, for low-potential barrier where the 
overlap is important the analytical expression obtained by 
perturbation gave better agreement with the numerical result. 
For high-potential barrier where the disagreement worsens 
for the perturbation method, the overlap is very small, and 
the variation method yielded the identical result as the per-
turbation. 

Also, ENDOR has been used to determine tunneling fre-
quency. The theoretical treatment of the shift of ENDOR 
transitions due to tunneling is usually obtained by using the 
second order perturbation theory of an effective spin-
Hamiltonian [34,35]. The potential barrier is then deduced 
by numerical simulations involving a series of barriers and 
computing the energy difference between the two lowest 
levels [34]. Hence, we tried to obtain the most natural ana-
lytic expression of the tunneling frequency vs. the potential 
barrier described further in the text. 

Figure 6 shows the tunneling frequency of the parallel ro-
tation of both protonated and deuteriated methyl radicals vs. 
potential barrier. The numerical method is based on diagona-
lizing the pure rotational Hamiltonian including a hindering 
periodic C3 potential in the basis set of a two-dimensional 
free rotor. Similarly, the analysis of the tunneling rotation 
about the in-plane axes is based on a C2 symmetry potential 
with periodic boundary conditions. 

The analytical computation of the C3 case is based on the 
degenerate perturbation treatment of localized torsional 
Hermite polynomial oscillator eigenfunctions. Both the bar-
riers of the protonated and the deuteriated methyl radicals 
were computed and compared. One good reason for study-
ing also the deuteriated CD3 values is that often the EPR 
spectra of deuteriated methyl are misinterpreted in literature. 
Look for the experimental EPR data along with the corre-
sponding accurate theoretical predictions shown in Ref. 11. 

In Fig. 6, the method used in the computations, either 
numerical, or deriving analytic expressions using the pertur-
bation theory on assumed localized oscillators is indicated. 
The Hermite polynomials are eigenfunctions of these oscil-
lators inside each potential well of the two- or three-fold 
symmetry axis of rotation. The diagonalization of the fol-
lowing matrix for the rotational Hamiltonian in presence of 
the C3 potential V(φ) in Eq. (6) will result in the corrected, 
albeit approximate, energies for the torsional oscillator 
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Fig. 6. (a) CH3 and CD3 tunneling frequencies about the C3 axis 
for different values of the barrier V3 keeping the value of the 
kinetic constants B = 6.752 and 3.376 K for protonated and 
deuteriated methyl, respectively (1 K = 20.837 GHz). The upper 
limit of the tunneling frequency for V3 = 0 is formally equal to the 
rotational constant B. (b) Plot of the numerically obtained tunneling 
frequency vs. potential barrier of methyl and deuteriated methyl 
about any in-plane C2 axes of the radical. The computational meth-
od was parallel to the approach for the C3 case. The details of the 
method are described in Appendix C. 
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The diagonal matrix elements Dν in the isolated oscillator 
basis set contain the regular quantum vibrator energy Eν 
and the first order correction Cν due to the potential V(φ), 
see Appendix. The off-diagonals matrix elements Jν be-
tween adjacent oscillators are also shown there. Notice that 
their nature, the number, and the presence even at the outer 
off-diagonals positions of matrix Mν in Eq. (7), incorporate 
the physical meaning of periodic boundary conditions, 
necessary for the present case. 

Diagonalizing the above matrix, the eigenvalues EA = 
= Dν + 2Jν and ΕΕ± = Dν − Jν of the system, corresponding 
to the totally symmetric A, and the doubly degenerate E-
symmetric torsional level, respectively, were obtained. The 
second order tunneling frequency fν,tun amounts to the dif-
ference 

 ( ), = ,  2 3 v E A v v v v vf E E D J D J J= ± − − − + = −  (8) 

which is shown in the next equation explicitly in terms of 
the barrier V3 and the rotational frequency B 

 
2

(2) (2) 3 3
0,tun 0

3
3 exp –

2 6
V V

f J
B

  π
= − = ×      

  

 
2
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B B
V V

   π × − − +          
 (9) 

This expression for the tunneling splitting of the ground 
level is usually designated by 3J0 [30]. In the present work, 
the tunneling frequency is obtained by including the contri-
bution of the full second-order effects concerning the peri-
odic potential, as shown in Appendix. 

There are several treatments in the literature with varying 
terminology where the symbol J0, or similar, has been used 

identically as the ( ) ( 1)( ) ( ) ( )k k
v vV ±ψ ϕ ϕ ψ ϕ  matrix ele-

ment and/or as an empirical constant for the tunneling fre-
quency in a pure spin-Hamiltonian. To distinguish with the 
present full second-order degenerate-perturbation treatment, 
we will use the symbol J0 for the off-diagonal matrix ele-

ment ( ) ( 1)( ) ( ) ( )k k
v vH ±′ψ ϕ ϕ ψ ϕ  for the perturbation part 

of the rotational Hamiltonian HR = H0 + H′, seen in the Ap-
pendix, [36]. 

According to another interpretation, the tunneling fre-
quency is the energy difference of the two lowest levels of 
the above-hindered rotation Hamiltonian. The relevant nu-
merical computations were performed in the more conven-
ient basis set of the normalized, Bloch type, exponentials 
{exp( ) / 2 : Z , [ , ]}.i n n ±− ϕ π ∈ ϕ∈ −π π  They were used to 
span the Hamiltonian matrix in the two-dimensional rota-
tional space of a full cycle for a rotor influenced by the sim-
plified hindering potential seen in Eq. (6). The matrix repre-
sentation of this Hamiltonian was physically blocked by 
symmetry in three different sub-matrices, an A-symmetry 
block accompanied by an Ea and an Eb symmetry blocks. 
The computational details of the matrix elements and the 

computations of the tunneling frequency vs. barrier V3 are 
shown in Appendix B and visualized in Fig. 6. 

This way of working corresponds to separating the three-
dimensional (3D) quantum rotator considered by the Popov 
and coworkers [24] into either a C3 or a C2 methyl-axis 
rotation under different hindering conditions. They studied 
in detail how different orientations of the radical rotation 
axis with respect to a cubic matrix cage determine the 
strength and symmetry of the hindering barrier. In practice, 
matrix isolated methyls are embedded in well-defined host 
cavities restricting the direction of rotary motion not allow-
ing free 3D motion. The restriction of the angular momen-
tum projection with respect to a laboratory-defined frame 
reduces significantly the rotational degeneracy even in cases 
where the rotation appears practically free [17,20]. The nu-
merical method of the present work can easily be extended 
to involve even more sophisticated potentials, exploiting the 
work of Popov and coworkers [24], provided that the matrix 
elements of the relevant potential can be computed in the 
given exponential basis set. 

The explicit analytical expressions of the present work 
are not valid for very small V3 < 50 K because of the 
method of approximation. However, for very low barriers 
of the order of 20–25 K and lower, it is expected that the 
“tunneling” frequency will be close to the rotational con-
stant B as “free” rotation is approached and formal equality 
to B will be valid even at liquid He temperatures. 

In spite the qualitative agreement of the above expression 
in Eq. (9) with the numerical computation, the two series of 
values of the tunneling frequency follow each other rather 
well in the whole interval of the quotient V3/B. The trend 
of the numerical computations for the two different rotors, 
proton, and deuteron, are also followed in the whole inter-
val of the independent variable V3/B, see Fig. 6. 

However, the analytical values underestimate the numer-
ical tunneling frequency more and more for larger values of 
the quotient V3/B. One should expect the best agreement for 
large values of V3 relative to B where the overlap is the least. 
In reality, this statement holds for the absolute values of the 
two different computational results, while progressively 
along with increasing V3, the analytical value of the tunnel-
ing frequency worsens in percent units. 

A formally more appropriate method than perturbation 
should be the variational method, irrespective of the kind 
of the used trial functions Ψ. The reason is that the basis 
functions that were used for the perturbation treatment 
were not orthonormal, because the eigenfunctions of the 
well oscillators used are partially overlapping for the po-
tential barriers of interest. According to the variational 
method, minimization of the integral quotient 

*       /  *     ,RH d dΨ Ψ ϕ Ψ Ψ ϕ∫ ∫  should be performed. Howev-

er, consideration of the missing overlap ( 1)) (* ,k k d±Ψ Ψ ϕ∫  

of the localized Hermite-polynomial basis used in the 
computations of the perturbation did not improve the re-
sult. At least, according to the variational method, only an 
upper estimate of the energy can be achieved. 
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As seen also in the plot of Fig. 5, the values of the over-
lap integral are negligible for the barriers of interest. A test 
of a more careful consideration according to the above lines 
did not improve the result, thus justifying the present inves-
tigation. It remains then to give an explanation and a sugges-
tion for improving the analytical result. 

4. Parallel and perpendicular methyl radical 
tunneling frequencies 

The periodic C2 and C3 hindering potentials used in the 
computations of the present work is an approximation that 
simply indicates tunneling rotation about the in-plane axes 
or the higher symmetry axis of methyl radical, respectively. 
The obtained results on the tunneling-frequency vs. rota-
tion-barrier are similar but the magnitude of the barrier and 
the periodicity of the potential determined the final details. 
An improved approach for more realistic potentials was 
presented by Popov, Kiljunen et al. [8,24], quantifying 
appropriate structural/geometrical parameters of the sys-
tem, potentially useful for numerical simulations. Using 
the group theory, they incorporated the particular cubic 
cage geometry and the Oh symmetry of the host in combi-
nation to the intrinsic C3 methyl symmetry into the final 
form of the hindering potential, where in addition radial 
conditions were involved. 

Figure 7 and Table 2 show results based on the analyti-
cal C2 treatment. The correlation times obtained from the 
EPR simulation of CH3 in matrices of the spherical parti-
cles Ar, Kr, Ne and p-H2, presented in Fig. 1(a)–(d), were 
used to derive the potential barriers. Figure 7 also shows an 
approximate exponential graphical fitting of the numerical-
ly obtained potential barriers from the tunnelling frequen-
cies. Diagonalization of the hindered rotation Hamiltonian 
was used in both the above C2 rotation case as well as for 
the following C3 case. 

Table 2. The obtained correlation times considered as invert 
tunneling frequencies of the CH3 rotor isolated in four solid gases 
in the first section of this work along with numerically computed 
potential barriers V3 

System τcorr, ns ftun, MHz V3, K 

Linear host CO, N2O, CO2–CH3 710 1.4 1012 

Ne–CH3 28.5 35.1 690.5 

Ar–CH3 24 41.7 673.3 

Kr–CH3 17 58.8 638.9 

Spherical host para-H2, Ne, Ar, Kr ~10 ~100 585.8 

pH2–CH3 2.3 435 438.8 

Figure 8 shows the computed barriers corresponding to 
observed tunneling frequencies obtained from the experi-
mental spectra simulations for linear and spherical host mol-
ecules discussed in the present study and also in Refs. 2, 4, 
where estimations of possible C3 symmetry barrier values 
are found for a comparison. The matter of the fact is that 
the frequency of 1.4 MHz is found for rotation about the 

in-plane C2 axes and concerns methyl radicals in matrices of 
linear molecules: CO, N2O, CO2. In this case, a barrier of 
1012 K was obtained as shown in Table 2. However also a 
C3 tunneling of this type of systems gives the same order 
of magnitude barriers, ca. 946.2 K, as obtained from the 
graphical representation of Fig. 8. On the other hand, tun-
neling frequencies ca. 0.1 GHz are obtained for matrices of 

Fig. 7. (Color online) Computed tunneling frequency vs. potential 
in K for C2 rotation (blue dash −), in the range of six different, 
experimentally determined, tunneling frequencies. The values in 
Table 2 were obtained by fitting the experimental tunneling fre-
quencies the range 250 K < V3 < 850 K to the exponential func-
tion ftun = 28715 exp(−0.01V2) MHz. The agreement with the 
numerically obtained values for C2 symmetry tunneling with the 
straight line featuring the logarithm of the latter exponential rela-
tion was remarkable. 

Fig. 8. Graphical representation of the numerically computed 
barriers vs. tunneling frequency for rotational frequency parame-
ter of planar methyl B = 6.752 K. Left for tunnel frequency 
0.1 GHz = 100 MHz barrier V3 = 534.9 K, middle for frequency 
20 MHz barrier V3 = 678 K, and right, for frequency 1.4 MHz 
barrier V3 = 946.2 K. 
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spherically symmetrical particles: para-H2, Ne, Ar, Kr. 
Here, the corresponding barrier for C3 tunneling is approx-
imately 534.9 K as seen in the graphical representation of 
Fig. 8, which is in good agreement with 585.8 K for the C2 
tunneling shown in Table 2. 

The EPR spectra of both CH3 and CD3 adsorbed on the 
silica gel surface at 77 K were studied by Gardner and Ca-
sey [37]. The dependence of the line width on the nuclear 
spin quantum number was interpreted in terms of the tum-
bling of the radicals on the surface and the values of the 
experimental correlation times/tumbling frequencies were 
determined as a function of the hyperfine A- and g-tensors 
anisotropy. Gardner and Casey obtained tumbling frequen-
cies, 2.0·107 and 1.3·107 s–1 for CH3 and CD3, respective-
ly. Although rapid, these tumbling frequencies still indicate 
a considerable hindrance to methyl rotation by the silica gel 
surface, as free rotational frequencies are usually by three 
orders of magnitude (103) faster. The hindering potential 
barriers determined by the presently developed barri-
er/tunneling relations indicate in particular barriers of ca. 
678 K for the protonated and 326.8 K for the deuteriated 
methyl radical. 

It seems that the eccentricity of the matrix molecules 
contributes to both the form and the height of the barrier 
and should be utilized in the determination of the potential 
barrier characteristics. It is certainly correlated to the libra-
tion motion or the hoppling precession of linear molecules 
in the sense put forward by Krainyukova and Kuchta [5], 
which does not occur in case of matrices of spherically 
symmetrical particles. During the libration or hopping pre-
cession, a matrix molecule sweeps a cone which thus is not 
available to the methyl radicals. Evidently, the larger the 
molecule eccentricity, the larger is the cone volume, i.e., the 
barrier width and height. Although this picture is not directly 
suitable to apply in a mathematical model for the potential 
energy, it may be considered as a direction to follow in un-
derstanding the role of the eccentricity. 

Namely, the occurrence of such a complicated EPR 
spectrum of the CH3 radical in solid N2O and CO2 matri-
ces, in contrast to solid rare gases and in N2 and CO matrix 
isolation, depends on the relation between the structure of 
the hosted radical and the lattice molecules [4]. An appro-
priate quantity reflecting our qualitative considerations is 
the host molecule eccentricity ε taken simply as the ratio of 
the maximum of the internuclear distance d to the lattice 
parameter a. The results are summarized in Table 3 together 
with the relevant parameters supporting the above presump-
tion. Indeed, no weak orthorhombic satellites were observed 
at temperatures above 8 K in CO and N2 matrices [2,14,20] 
which have relatively small eccentricity, neither such spectra 
were reported for matrices of spherical symmetrical host 
particles. On the other hand, the matrices with larger eccen-
tricity, such as N2O and CO2, show well discerned weak-
line multiplet. 

 

Table 3. Estimation of the molecule eccentricity for various 
cryocrystals at 20 K. The parameters d and a are available from 
Ref. 1 

Matrix Internuclear distance 
d, Å 

Lattice parameter 
a, Å 

Eccentricity 
ε = d/a 

N2 1.098 5.658 0.193 

CO 1.128 5.652 0.200 

N2O 2.312 5.641 0.410 

CO2 2.320 5.554 0.418 

5. Conclusion 

We first obtained rotation correlation times (tunneling 
frequencies) of the CH3 radical in matrices of spherically 
symmetrical host particles held at liquid helium tempera-
tures. The tunneling rates are correlated to the radical–
matrix coupling leading to rotation hindering, mainly gov-
erned by the Pauli exclusion forces between trapped radical 
and matrix molecules. 

Matrix shifts of spectrum anisotropies in trapped radi-
cals testified that matrix effects are more important on ∆g 
than on ∆A. Quench-condensed Kr crystallizes most prob-
ably into axially symmetric hcp local structure, surround-
ing the trapped CH3 radical. 

The theoretical treatment of this study explains how the 
fast orientational motion of methyl at low temperatures av-
erages to different degrees the anisotropy of certain magnet-
ic parameters due to rapid rotary tunneling about its C3 and 
C2 symmetry axes allowing estimation of the potential barri-
ers to the rotation. 

A clearly higher barrier of methyl rotation for the radi-
cal isolated in matrices of linear vs. spherical matrix mole-
cules was obtained by evaluating the barrier of experimen-
tally obtained tunneling frequencies. In particular, the 
linear CO, CO2, N2O molecular matrices seem to hinder 
tunneling methyl more efficiently than matrices of spheri-
cal molecular particles such as Ar, Kr, Ne and p-H2. The 
barriers that the above linear molecular matrices oppose 
are slightly over 1000 K for both C2 and C3 rotational tun-
neling, which is almost double the barriers opposed to me-
thyl tunneling by the above-mentioned spherical ones. 

Appendix A. Torsional oscillator equations 

The zero order eigenfunctions of the torsional oscillator 
for a three-fold periodic potential, with period p = 2π/3, 
and periodic boundary conditions, can be approximated by 
the following localized harmonic oscillator eigenfunctions: 

 
2 /2( ) ( ) ( ) e .kxk

v v v kN H x −Ψ ϕ =  (A.1) 

Τhe Hermite polynomials Hν have the scaled angular coor-
dinate argument xk, given by 

 ( )k kx = β ϕ−ϑ  (A.2) 
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with a specification for the kth well position by the angle 
k kpϑ =  numbering the potential energy minima at the wells 

by k = 0, ±1, where p = 2π/3 is the period. The k-indepen-
dent normalization factors Nν of the above eigenfunctions 
are given in the following equation: 

 
1/2

.
2 !

v vN
v

 β
=   π 

 (A.3) 

The constant β is the square of the angle-scaling factor of 
the argument xk given by 

 33
2

V
B

β = , (A.4) 

where V3 is the potential barrier and 

 ( )2/ 2  / 2B h I= π  (A.5) 

is the rotation constant. This parameter represents the rota-
tional frequency of planar methyl and has approximately 
the value 6.752 K for the protonated and half that value, 
3.376 K, for deuteriated methyl radical species. The de-
nominator of Eq. (A.5) gives the parallel component of the 
methyl rotor moment of inertia I, corresponding to rotation 
about the highest symmetry C3 axis of a planar methyl. 

The rotational constants according to Prager and 
Heidemann [38] are B(CH3) = B(CH4) = 0.655 meV = 
= 7.601 K (1 eV = 1.1605·104 K), a value corresponding to 
the nonplanar –CH3 fragment, that agrees with the one 
adopted in our previous work [11]. Popov et al. [24] and 
Kiljunen et al. [8] consider instead as rotational constant 
the double B value, equal to the inverse moment of inertia. 

The above relations are based in the Taylor expansion 
of the potential V(ϕ) (6) about its three minima. The result-
ing approximate harmonic potential V′(φ) = 9V3φ2/4 is 
seen in the following differential operator, used as the un-
perturbed part of the torsional Hamiltonian at each well: 

 2 2 2
0 3

1/ (9 / 2) .
2

H B V= − ∂ ∂ϕ + ϕ  (A.6) 

The following energies were obtained for the localized 
torsional levels: 
 2 ( 1/ 2).vE B v= β +  (A.7) 

Notice that this is a harmonic oscillator Hamiltonian that 
approximates the periodic potential energy by a parabola 
about each minimum. However, because the periodicity is 
not present in the approximate V′(φ), an additional task is to 
imply it at a later stage. 

The perturbation applied to the above zero order Hamil-
tonian was 
 2

3( ) 9 / 4.H V V′ = ϕ − ϕ  (A.8) 

The potential energy V(ϕ) is given in the above Eq. (6). 
The result obtained after the summation of the terms in 
Eqs. (A.6) and (A.8) is the identical total rotational Hamil-
tonian HR: 

 2 2/ ( )RH B V= − ∂ ∂ϕ + ϕ  (A.9) 

that comprises the full periodic potential. 

Appendix B. Derivation of matrix elements 

The following matrix elements were used in the treat-
ment mentioned in the above Appendix A concerning the 
ground harmonic vibrational level. They are the diagonal 
(B.1) and the position overlap (B.2) of the square of the 
angular relocation variable φ. 

The expression for the variance of the angle φ of the 
level ν for the localized vibrator given by 

 ( ) 2 ( )

3

(2 1)( ) ( ) .
3

k k
v v

v B
V

+
ψ ϕ ϕ ψ ϕ =  (B.1) 

Next, the off-diagonal matrix elements of the square of the 
angular relocation variable φ is given 

 ( ) ( 1)2
0 0( ) ( )k k±ψ ϕ ϕ ψ ϕ =  

 
2 2

3 3

3
exp 1 .

6 33
V VB
B BV

   π π
= − +         

 (B.2) 

The above two matrix elements were further computed for 
the full hindering potential V(φ): 

 ( ) ( ) 3
0 0 0

3

3( ) ( ) ( ) 1 exp .
2 2

k k V BC V
V

  
= ψ ϕ ϕ ψ ϕ = − −      

  

  (B.3) 
This term is the first-order potential energy correction to the 
energy E0 in Eq. (Α.7) of the ground vibrator eigenfunction, 
obtained as a particular case of the following general ν level 
vibrator correction: 

( ) ( )( ) ( ) ( )k k
v v vC V= ψ ϕ ϕ ψ ϕ = 

 
2

3

3 0

3 ( 1) 31 exp .
2 2 ! 2

lv l

l

vV B
lV l=

     − = − −         β      
∑  (B.4) 

On the other hand, except for the ground level, the general 
expressions of the higher level off-diagonal matrix elements 
of the potential are particularly difficult to obtain. For the 
ground level we have 

 ( ) ( 1)
0 0 0( ) ( ) ( )k kJ V ±= ψ ϕ ϕ ψ ϕ =   

 
2

3 3

3

3exp 1 exp .
2 6 2

V V B
B V

    π
= − + −            

 (B.5) 

The diagonal matrix elements for a general vibrational 
level ν were first computed by paper and pencil and were 
reduced for the ground level by putting ν = 0. The matrix 
elements were then verified by comparing to expressions 
obtained with “mathematica”. 
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Appendix C. Numerical treatment 

The matrix elements of the quantum rotation Hamilto-
nian under the influence of a hindering potential, 

2 2/ ( ),RH B V= − ∂ ∂ϕ + ϕ  in the Bloch type, imaginary 
exponential basis set { exp( ): Z , [ , ]},N i n n ±− ϕ ∈ ϕ∈ −π π  
are given by combining the orthogonality relation 

 ( )*
e e 2i m i n

m,n m,nd m n
π

− ϕ − ϕ

−π

ϕ = π δ ⇒ = δ∫  (C.1) 

with normalization factor N = 1/ 2π  and the following 
matrix elements. 

The matrix elements of the differential operator in the 
rotation energy part of HR is given by 

( )
2*2 2 2 2

,2/ e e .i m i n
m nm n N d n

π
− ϕ − ϕ

−π

∂
∂ ∂ϕ = ϕ = − δ

∂ϕ∫  

  (C.2) 

The following are the off-diagonal, C3 symmetry-dependent 
matrix elements 

 ( )*2cos3 e cos3 ei m i nm n N d
π

− ϕ − ϕ

−π

ϕ = ϕ ϕ =∫   

 ( ), 3 , 3
1 .
2 m n m n− += δ + δ  (C.3) 

The only difference for the C2 case is the modified form of 
the above integral as follows: 

 ( )*2cos 2 e cos 2 ei m i nm n N d
π

− ϕ − ϕ

−π

ϕ = ϕ ϕ =∫   

 ( ), 2 , 2
1 .
2 m n m n− += δ + δ  (C.4) 

Some additional symmetry related details are discussed in 
the end of this section. 

In the above given exponential basis set, the Hamiltoni-
an matrix HR in Eq. (A.9) with the simple C3 potential 
V(φ) in Eq. (6) is found to be block diagonal. In fact, three 
separate banded tridiagonal matrices, one of A and two of 
E symmetry, were obtained. By increasing the dimension 
of the matrix to at least 60 × 60 overall, an acceptable con-
vergence of the eigenvalues was obtained. The tunneling 
frequency of the ground torsional level is the difference 
between the average EE = (Ea + Eb)/2 of the minimum 
degenerate eigenvalues of the E block minus the minimum 
non-degenerate eigenvalue EA of the A block. The compu-
tation of the tunneling frequency was repeated as a func-
tion of the potential barrier V3 and the C3 rotational con-
stant B = 6.752 K. For the deuteriated methyl, half of this 
value for the rotational constant was used. 

On the contrary, the in plane C2 rotation of methyl re-
quires double these values as rotational constants. This is 
because the perpendicular moment of inertia of a symmet-
ric top disk is half the parallel value. 

Further, the potential energy function in Eq. (13) is dif-
ferent in the simpler C2 tunneling case compared to C3. 
The Hamiltonian matrix in the C2 case is blocked in two 
banded tridiagonal matrices, instead of three, one corre-
sponding to the totally symmetric A and the other to the 
anti-symmetric B irreducible representations of the Abelian 
and cyclic C2 group. 

Notice that the above numerical method is flexible in 
another way, allowing the possibility of involving almost 
arbitrarily realistic potentials. However, in some of these 
more complex systems the simplifying block structure of 
the Hamiltonian matrix as for the above simple C3 and C2 
potentials may not be possible. 

Another advantage of the above numerical treatment is 
that the higher than the ground level tunneling frequencies 
can also easily be obtained, because all the higher level 
eigenvalues of the above Hamiltonian are available by the 
identical diagonalizing procedure. 

The Hamiltonian matrix is in fact of infinite dimensions 
as n → ∞ in the basis set {| }: .n n Z> ∈  Therefore, in the 
computations the matrix dimensions had to be increased 
until convergence of the eigenvalues was obtained. Except 
for the matrix dimension dependent convergence proce-
dure, for high potential barriers the tunneling frequency is 
finally computed as the difference of two very small num-
bers leading in an all greater numerical uncertainty. Both 
the above error sources were most serious for deuteron 
computations as observed in the erroneous flattening of the 
numerical tunneling data of deuteron at the high V3 range 
of Fig. 6(a). 
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Низькотемпературне тунелювання CH3 квантового 
ротора в ван-дер-ваальсових твердих тілах 

Nikolas P. Benetis, Ilia A. Zelenetckii,  
and Yurij A. Dmitriev 

На основі виміряних експериментальних спектрів ЕПР 
представлено аналіз квантових ефектів, пов’язаних з тунелю-
ванням метильних радикалів, захоплених в твердих газах. 
Отримано аналітичні вирази для частоти тунелювання метиль-
ного радикала навколо осей симетрії з використанням поліно-
мів Ерміта. Ці результати порівнюються з чисельним розраху-
нком і з даними, отриманими моделюванням експерименталь-
них спектрів ЕПР. Встановлено, зокрема, що спектри ЕПР X-
діапазону демонструють лише залишкову анізотропію, що 
означає усереднення анізотропії навіть при найнижчих темпе-
ратурах в експерименті. Моделювання спектрів ЕПР з ураху-
ванням динаміки обертального руху використано для корект-
ного отримання величин потенційних бар’єрів та частот 
тунелювання. Частоти тунелювання, які визначаються як ве-
личини розщеплення між A та E обертальними рівнями при 
наявності модельного C3 потенціалу та періодичних граничних 
умов, розраховано та співвіднесено зі зміною форми спектра 
ЕПР. Також вивчено тунелювання радикала навколо осей C2, 
що лежать в площині симетрії радикала. Представлено порів-
няння C2 та C3 обертань для протонованих й дейтерованих 
метильних радикалів. 

Ключові слова: тверді гази, метильне обертальне тунелюван-
ня, аналітична частота тунелювання, частота тунелювання в 
залежності від перешкоджаючих бар’єрів. 

Низкотемпературное туннелирование CH3 
квантового ротора в ван-дер-ваальсовых твердых 

телах 

Nikolas P. Benetis, Ilia A. Zelenetckii,  
and Yurij A. Dmitriev 

На основе измеренных экспериментальных спектров ЭПР 
представлен анализ квантовых эффектов, связанных с тунне-
лированием метильных радикалов, захваченных в твердых 
газах. Получены аналитические выражения для частоты тун-
нелирования метильного радикала вокруг осей симметрии с 
использованием полиномов Эрмита. Эти результаты сравни-
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ваются с численным расчетом и с данными, полученными 
моделированием экспериментальных спектров ЭПР. Уста-
новлено, в частности, что спектры ЭПР X-диапазона демон-
стрируют лишь остаточную анизотропию, что означает ус-
реднение анизотропии даже при самых низких температурах 
в эксперименте. Моделирование спектров ЭПР с учетом ди-
намики вращательного движения использовано для коррект-
ного получения величин потенциальных барьеров и частот 
туннелирования. Частоты туннелирования, определяемые как 
величины расщепления между A и E вращательными уров-
нями при наличии модельного C3 потенциала и периодиче-

ских граничных условий, были рассчитаны и соотнесены с 
изменением формы спектра ЭПР. Также изучено туннелиро-
вание радикала вокруг осей C2, лежащих в плоскости сим-
метрии радикала. Представлено сравнение C2 и C3 вращений 
для протонированных и дейтерированных метильных ради-
калов. 

Ключевые слова: твердые газы, метильное вращательное 
туннелирование, аналитическая частота туннелирования, 
частота туннелирования в зависимости от препятствующих 
барьеров. 
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