Наблюдение локального максимума в стационарном турбулентном спектре капиллярных волн на поверхности жидкого водорода

И.А. Ремизов, М.Р. Мусаева, А.В. Орлов, А.А. Левченко, Л.П. Межов-Деглин

Институт физики твердого тела РАН, г. Черноголовка, 142432, Московская обл., Россия E-mail: remizov@issp.ac.ru

Статья поступила в редакцию 26 июля 2018 г., опубликована онлайн 25 февраля 2019 г.

Приведены результаты экспериментальных исследований волновой турбулентности в системе капиллярных волн, формирующихся на поверхности жидкого водорода при температуре 15 К в цилиндрической ячейке при монохроматической радиально-симметричной накачке. Впервые обнаружено формирование локального максимума с понижением амплитуды накачки в высокочастотной области инерционного интервала стационарного турбулентного спектра на краю прямого каскада. Возникновение локального максимума может быть связано с существенным проявлением вязкого затухания в высокочастотной области спектра.

Ключевые слова: жидкий водород, стационарный турбулентный спектр, капиллярные волны.

Введение

Исследования турбулентных явлений в системе капиллярных волн является интересной задачей нелинейной физики. Закон дисперсии для капиллярных волн на свободной поверхности глубокой жидкости определяется энергией поверхностного натяжения:

$$\omega^2 = \frac{\sigma}{\rho} k^3, \tag{1}$$

где ω — круговая частота волны, k — волновой вектор, σ — коэффициент поверхностного натяжения, ρ плотность жидкости. Спектр собственных колебаний капиллярных волн — распадный, и основным механизмом взаимодействия волн являются трехволновые процессы с сохранением волнового вектора и частоты:

$$\mathbf{k}_1 = \mathbf{k}_2 \pm \mathbf{k}_3, \ \omega_1 = \omega_2 \pm \omega_3. \tag{2}$$

Для нелинейных капиллярных волн теорией слабой волновой турбулентности предсказана возможность формирования прямого турбулентного волнового каскада Колмогорова–Захарова со степенным распределением парной корреляционной функции отклонений поверхности от положения равновесия по частоте в инерционном интервале при широкополосной накачке $I_{\omega} \propto \omega^{-17/6}$ [1]. В случае монохроматической накачки теория предсказывает следующую зависимость в инерционном интервале: $I_{\omega} \propto \omega^{-21/6}$ [2]. В этих рабо-

тах предполагалось отсутствие диссипации энергии в области накачки и в инерционном интервале, а также наличие непрерывного *k*-пространства.

Однако в лабораторных экспериментах, которые проводят в сосудах конечных размеров, дело обстоит иначе: из-за наличия затухания во всей области турбулентного распределения и ограниченности размеров экспериментальной ячейки может наблюдаться заметное отклонение спектра от данной теории, что было учтено при дальнейших теоретических рассмотрениях [3].

В настоящей работе представлены результаты экспериментального исследования турбулентных явлений в системе капиллярных волн на поверхности жидкого водорода в цилиндрической ячейке при монохроматической радиально-симметричной накачке. Обнаружено возникновение локального максимума в высокочастотной области инерционного интервала стационарного турбулентного спектра на краю прямого волнового каскада.

Методика эксперимента

Методика эксперимента аналогична использованной ранее [4,5]. Эксперименты проводились на заряженной поверхности жидкого водорода при температуре 15 К в цилиндрической ячейке диаметром 60 мм и глубиной 4 мм. Волны на поверхности возбуждались внешним электрическим полем, которое создавалось при помощи кольцевого электрода, расположенного на высоте 1 мм над поверхностью жидкости. К электроду

Рис. 1. Схема регистрации колебаний заряженной поверхности жидкого водорода: лазер (1), возбуждающий электрод (2), генератор (3), фокусирующая линза (4), фотодиод (5), блок регистрации, включающий усилитель, АЦП и компьютер (6), источник зарядов (7).

прикладывалось постоянное напряжение $U_{dc} \approx +800$ В относительно земли. Под действием этого постоянного напряжения отрицательно заряженные водородные кластеры, которые наряду с положительно заряженными водородными кластерами («заряженными снежными шариками») формировались в тонком слое жидкости, прилегающем к поверхности источника зарядов [6], локализовались в тонком заряженном слое под поверхностью жидкого водорода. Для возбуждения колебаний на заряженной поверхности жидкости дополнительно к постоянному напряжению U_{dc} к кольцевому электроду прикладывали переменное напряжение $U_{ac}(t) = U_p \cos(\omega t)$ амплитудой $U_p \sim 100$ В, которое задавали внешним генератором.

Схема регистрации волнового движения на поверхности жидкого водорода представлена на рис. 1. О колебаниях поверхности жидкости судили по отражению лазерного луча, направленного под малым углом α ~ 0,1 рад к поверхности цилиндрической ячейки. Отраженный луч с помощью линзы фокусировался на поверхность фотодиода. Выходной сигнал фотоприемника, пропорциональный мощности отраженного луча P(t), записывался в память компьютера с помощью 24-разрядного аналого-цифрового преобразователя с частотой опроса 102,4 кГц в течение 1-1,5 мин. Далее изучались вариации со временем полной мощности P(t). Полученные зависимости P(t) обрабатывались алгоритмом на основе быстрого фурье-преобразования (FFT). В результате обработки рассчитывали распределение квадрата амплитуд гармоник волн по частоте P_{ω}^{2} , которое, как показано в [4], для широкого луча пропорционально парной корреляционной функции отклонений поверхности от равновесия, $P_{\omega}^2 \propto I_{\omega}$.

Результаты измерений

На рис. 2 представлено распределение P_{ω}^2 по частоте на поверхности жидкого водорода, наблюдаемое при интенсивной монохроматической накачке на час-

Рис. 2. Распределение P_{ω}^2 при накачке на частоте $f_p = 26$ Гц и амплитуде $U_p = 189$ В. Прямая линия, пропорциональная функции $\omega^{-2,7\pm0,2}$, соответствует прямому волновому турбулентному каскаду.

тоте $f_p = 26,0$ Гц, близкой к одной из резонансных мод радиальных колебаний поверхности жидкости в цилиндрическом резонаторе, при амплитуде переменной составляющей напряжения $U_p = 189$ В. Пик, отмеченный стрелкой, соответствует волне, возникающей в результате возбуждения внешней гармонической силой на частоте накачки f_p . Высокочастотные гармоники на частотах кратных f_p возникают вследствие процессов трехволнового взаимодействия нелинейных капиллярных волн. В интервале от 200 Гц до 5 кГц от-

Рис. 3. Распределение P_{ω}^2 при накачке на частоте $f_p = 26$ Гц и амплитуде $U_p = 161$ В. Прямая линия, пропорциональная функции $\omega^{-2,7 \pm 0,2}$, соответствует прямому волновому турбулентному каскаду. Овалом выделена область локального максимума.

Рис. 4. Распределение P_{ω}^2 при накачке на частоте $f_p = 26$ Гц и амплитуде $U_p = 147$ В. Прямая линия, пропорциональная функции $\omega^{-2.7 \pm 0.2}$, соответствует прямому волновому тур-булентному каскаду. Овалом выделена область локального максимума.

четливо наблюдается степенное распределение P_{00}^2 по частоте, что указывает на формирование прямого турбулентного каскада в системе капиллярных волн [1–3].

При уменьшении амплитуды накачки до $U_p = 161$ В турбулентный спектр претерпевает существенные изменения (рис. 3). В инерционном интервале так же, как и при более интенсивной накачке, в широком интервале частот наблюдается степенное распределение P_{ω}^2 , зависимость от частоты в котором практически не изменилась, однако в высокочастотной области спектра на краю инерционного интервала появляется локальный максимум.

При дальнейшем уменьшении амплитуды накачки до $U_p = 147$ В форма локального максимума на распределении P_{ω}^2 приобретает более четкие очертания (рис. 4). В инерционном же интервале зависимость от частоты осталась практически неизменной.

Обсуждение

Эволюцию турбулентных спектров при понижении амплитуды накачки, аналогично показанной на рис. 2–4, мы наблюдали на частотах накачки от 10 Гц до 26 Гц. Стоит отметить, что формирование локального максимума в стационарном турбулентном спектре капиллярных волн на поверхности жидкого водорода в цилиндрической ячейке обнаружено впервые.

Ранее появление локального максимума на краю инерционного интервала каскада капиллярных волн наблюдали в экспериментах по изучению турбулентности на поверхности сверхтекучего Не II [7]. Механизм формирования локального максимума в работе [7] удалось объяснить проявлением дискретности спектра

собственных колебаний капиллярных волн на поверхности сверхтекучей жидкости в экспериментальной ячейке (вязкость He II при температурах 1,5–2 К на порядки ниже вязкости жидкого водорода).

Недавно сообщалось о наблюдении похожего явления — о формировании динамического локального максимума на краю инерционного интервала турбулентного спектра на поверхности жидкого водорода в системе капиллярных волн. В этих исследованиях, опубликованных в работе [8], локальный максимум возникал в моменты перестройки турбулентного спектра вследствие развития параметрической неустойчивости и формирования волны с частотой равной половине частоты накачки. Процесс формирования максимума объясняется механизмом, описанным в работе [3]. Однако в работе [8] дополнительное затухание было связано с нелинейным транспортом энергии в комбинационные гармоники (частота которых определяется суммой частоты фарадеевской волны и гармоники волны, возбуждаемой на частоте накачки) в процессе возрастания их амплитуд со временем.

В наших экспериментах турбулентное распределение P_{0}^2 является стационарным, а спектр собственных колебаний квазинепрерывным в отличие от [7] и [8]. Действительно, в данных экспериментах в той области, где наблюдается формирование локального максимума, спектр собственных колебаний капиллярных волн на поверхности жидкого водорода в цилиндрической ячейке с диаметром 60 мм является квазинепрерывным, поскольку на данных частотах суммарные уширения резонансных пиков больше расстояний между ними [7]. Полученные результаты могут быть объяснены в рамках модели, предложенной в работе [3], где теоретически было исследовано и подтверждено численным моделированием влияние диссипации на структуру стационарного спектра волновой турбулентности. Было показано, что учет конечной скорости диссипации энергии в высокочастотной области инерционного интервала и в области диссипации может вызвать существенное отклонение спектра от колмогоровского, предсказанного ранее в теории слабой волновой турбулентности [1]. В частности, учет диссипации может приводить к накоплению волновой энергии и появлению перегибов на кривых P_{ω}^2 вблизи высокочастотного края инерционного интервала. Это связано с подавлением амплитуд волн в диссипативной области вследствие нелинейного нарастания затухания колебаний с повышением частоты. Для количественного сравнения результатов наших измерений с предсказаниями теории, развитой в работе [3], потребовалось бы более детальное рассмотрение модели и компьютерное моделирование процессов передачи энергии в высокочастотной области турбулентного спектра капиллярных волн с учетом роли вязкого затухания волн в объеме и диссипации за счет трения жидкости о дно и

стенки сосуда. Отсутствие максимума на кривых P_{00}^2 при высоких амплитудах накачки качественно можно объяснить тем, что с повышением уровня накачки, амплитуды гармоник волн в турбулентном спектре оказываются достаточными, чтобы обеспечить эффективное взаимодействие с гармониками в диссипативной области спектра для передачи энергии из области частот вблизи локального максимума в высокочастотную область, где основную роль играет вязкое затухание.

Заключение

Приведены результаты первых наблюдений максимумов на кривых P_{00}^2 в стационарном турбулентном распределении капиллярных волн на поверхности жидкого водорода вблизи высокочастотного края прямого турбулентного каскада. Предположено, что причина формирования стационарного максимума связана с подавлением амплитуд волн в диссипативной области вследствие сильной зависимости времени вязкого затухания волны от частоты, что приводит к затруднению передачи энергии в диссипативную область («узкое горло»).

Авторы благодарны А.В. Лохову за помощь в подготовке и проведении экспериментов, В.В. Лебедеву и И.В. Колоколову за полезные дискуссии. Методика эксперимента развита в рамках Государственного задания ИФТТ РАН, научные исследования выполнены при поддержке гранта РНФ # 17-12-01525.

- V. Zakharov, V. L'vov, and G. Falkovich, *Kolmogorov* Spectra of Turbulence, Springer, Berlin (1992), Vol. 1.
- 2. G.E. Fal'kovich and A.B. Shafarenko, JETP 94, 1393 (1988).
- 3. I. Ryzhenkova and G. Fal'kovich, JETP 98, 1085 (1990).
- М.Ю. Бражников, А.А. Левченко, Л.П. Межов-Деглин, И.А. Ремизов, Письма в ЖЭТФ 100, 754 (2014).
- 5. М.Ю. Бражников, А.А. Левченко, Л.П. Межов-Деглин, *ПТЭ* **45**, 31 (2002).
- A.A. Levchenko and L.P. Mezhov-Deglin, J. Low Temp. Phys. 89, 457 (1992).
- L.V. Abdurakhimov, M.Yu. Brazhnikov, I.A. Remizov, and A.A. Levchenko, *JETP Lett.* 91, 291 (2010).
- I.A. Remizov, M.Yu. Brazhnikov, A.A. Levchenko, *Fiz. Nizk. Temp.* **42**, 1363 (2016) [*Low Temp. Phys.* **42**, 1067 (2016)].

Спостереження локального максимуму в стаціонарному турбулентному спектрі капілярних хвиль на поверхні рідкого водню

I.А. Ремізов, М.Р. Мусаєва, А.В. Орлов, А.А. Левченко, Л.П. Межов-Деглін

Наведено результати експериментальних досліджень хвильової турбулентності в системі капілярних хвиль, які формуються на поверхні рідкого водню при температурі 15 К у циліндричній комірці при монохроматичному радіальносиметричному накачуванні. Вперше виявлено формування локального максимуму з пониженням амплітуди накачування в високочастотній області інерційного інтервалу стаціонарного турбулентного спектра на краю прямого каскаду. Виникнення локального максимуму може бути пов'язано з істотним проявом в'язкого затухання в високочастотній області спектру.

Ключові слова: рідкий водень, стаціонарний турбулентний спектр, капілярні хвилі.

Observation of a local maximum in the stationary turbulent spectrum of capillary waves on the surface of liquid hydrogen

I.A. Remizov, M.R. Musaeva, A.V. Orlov, A.A. Levchenko, and L.P. Mezhov-Deglin

The results of experimental studies of wave turbulence in a system of capillary waves formed on the surface of liquid hydrogen at a temperature of 15 K in a cylindrical cell with monochromatic radially-symmetric pumping are presented. For the first time, the formation of a local maximum was observed with a decrease in the pump amplitude in the high-frequency region of the inertial range of the stationary turbulent spectrum, at the edge of the direct cascade. The occurrence of a local maximum can be associated with a significant manifestation of viscous attenuation in the high-frequency region of the spectrum.

Keywords: liquid hydrogen, stationary turbulent spectrum, capillary waves.