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Discrete atomic vibrations localized on defects in linear
chains of atoms adsorbed by carbon nanobundles
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The conditions of the existence and the main characteristics (frequencies, intensities, and attenuation parame-
ters) of discrete vibrational levels caused by structural defects of linear chains of inert gas atoms adsorbed on the
surface of nanotubes aggregated in nanobundles, are calculated and analyzed. Discrete vibrational levels lying
both above and below the band of the quasi-continuous spectrum of the chain are considered. Analytical expres-
sions obtained for the frequencies of these discrete levels make it possible to determine with high precision the
defect parameters (difference in the interaction with the substrate and with the atoms of the chain) basing on op-

tical measurements.

Keywords: adsorbed atomic linear chains, phonon spectra, discrete localized states.

1. Introduction

In many cases, one-dimensional models give possibility
to obtain analytical expressions for the physical quasi-
particle spectra and for the physical quantities determined
by these spectra. In particular, the absence of singularities
within the band of a quasi-continuous spectrum of one-
dimensional systems significantly simplifies the study of
spectrum perturbations caused by defects. Therefore, for
many years, the study of one-dimensional systems, as well
as scalar models, has been used for the qualitative descrip-
tion of the phonon spectra and the vibrational properties of
non-ideal crystal structures (see, for example, [1,2]). How-
ever, the inverse root singularities of the density of states at
the edges of quasi-continuous phonon spectrum and condi-
tioned by them instability of such structures [3] make it
difficult to apply the results obtained for one-dimensional
structures to real (three-dimensional) objects and, which is
more important, to synthesize real one-dimensional struc-
tures. At the same time, these are the singularities that de-
termine the non-threshold formation of discrete levels in
the quasi-particle spectra caused by defects. The frequen-
cies of discrete levels are extremely sensitive to the param-
eters of defects and can serve as an important source of
information about the parameters of defects. Due to these
properties, these chains can find direct applications, for
example, in guantum computing.

The instability of one-dimensional structures (the diver-
gence of their rms atomic displacements) is conditioned by

the inverse root singularity of the phonon densities of states
at zero frequency. Placing a one-dimensional chain on any
substrate eliminates the instability. A certain choice of a sub-
strate only shifts the low-frequency singularity at the edge of
the spectrum of the adsorbed chain to some non-zero fre-
quency (see, for example, [4]) in line with a shift of an ab-
sorption edge of optical multilayers (see, for example, [5]).

The unique opportunity to create extended atomic chains
is to use nanotubes (the so-called nanobundles) as substrates.
The chains of atoms can be formed inside the nanotubes, in
the internal channels of nanobundles, and on the surface of
nanobundles in the grooves between the nanotubes. In the
grooves between the nanotubes, adsorbed atoms can form
linear chains of length ~10 um or more. In the case of low
concentrations of saturating gases, the one-dimensional
character of objects formed by inert gases in the bundles of
closed nanotubes is confirmed by studies both of neutron
diffraction [6-8] and of their heat capacity [9].

Note that not all quasi-particle spectra of one-
dimensional structures have inverse root singularities at the
lower limit of the quasi-continuous spectrum, for example,
acoustic plasmons in one-dimensional structures, formed
by electrons on the surface of superfluid helium. Their
spectra were obtained in [10,11].

Naturally, the adsorption of linear atomic chains on the
surface of carbon nanobundles induces numerous defects in
the structures of these chains. The presence of defects and
the absence of a threshold for the formation of discrete vi-
brational levels give rise to localized states, both above and
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below the band of the quasi-continuous spectrum of the
chain. In [12], it was shown that even in the three-
dimensional case, the characteristics of localized states can
be found with high accuracy based only on the values of the
first two moments of the spectral density. For the basic char-
acteristics of localized states (their frequencies, intensities,
and attenuation) simple analytical expressions can be ob-
tained. This makes it possible to obtain localized oscillations
with given frequencies, changing the parameters of defects
and of the chains themselves (for example, pressure). The
inversion of these formulas allows one to find the parame-
ters of defects by experimentally measured frequencies of
localized discrete levels.

We note that from the results of [12], it follows that in
the linear chains the interaction between defective atoms
begins to manifest itself at concentrations of defects at
least by an order of magnitude higher than in three-
dimensional structures. So, even at a defect concentration
of more than 10%, the approximation of an isolated defect
will work well.

2. Discrete levels localized on an isolated point defect

It is rather difficult to describe the quasi-particle spectra
of systems with defects in the framework of the traditional
representation of vibrations in the form of a superposition of
plane waves, due to the translational symmetry of the crys-
tal, because of the violation of translational symmetry by the
defect. To avoid the difficulties one can use other methods
not basing on the translational symmetry. One of these meth-
ods is the method of Jacoby matrices (J-matrices) [13-15]
[(see, also [11,16], where it is given in detail).

The method is based on the partition of the entire dis-
placement space of displacements of crystal atoms into a
sum of subspaces invariant with respect to the operator L
describing lattice vibrations. The vectors of the space of
displacements of atoms of a crystal are the displacements
of atoms along the crystallographic directions. It is conven-
ient to choose the operator L matrix in the form:

D (r,r")
Jmm(r)
atom with radius vector r, and the matrix is @ (r,r’) the
matrix of force constants, which describes the interaction
between atoms with the radius vectors r and r’. In the
operator form, the equations of the atomic vibrations of the
system under consideration can be written as:

(ﬁ—gf)\p=o, 1)

Ly (r,r) = , Where m(r) is the mass of an

where ¢ =w? is the eigenvalue of the operator (the square

of the frequency), and the wave function s (r) = \/m(r) u(r)

is the vector of space of atomic displacements H . The vec-
tors of this space, whose dimension is 3N (N — o« is the

number of atoms in the crystal), will be denoted by the arrow
above the symbol. The “ordinary” three-dimensional vectors
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will be highlighted in bold (for example, u(r) is the vector of
displacement of an atom with the radius vector r from the
equilibrium position).

If in the space of atomic displacements we choose some
vector ﬁo eH (call this vector generating), then the linear
span of the set of vectors {L"hy};, is a subspace of the
space H invariant with respect to the operator[. By
ortonormalization of the sequence {I:”ﬁo};"zo, we obtain
the {ho}ro basis. In this basis, the operator generated by
the operator L in the corresponding invariant subspace is
represented by the three-diagonal (Jacoby) matrix:

Lik =2 Sik +11 (8 1 + 811 ) - @

Matrix elements (2) have a remarkable property. If the
band of the quasi-continuous spectrum of the operator L is
simply connected, then with growth of n they tend to some
limiting values:

lima, =a,
nN—o0

lim b, =b, (3)
nN—oo
and a is the value of the middle of the band of the continu-
ous spectrum, and b is a quarter of the width of this band.
Often matrix elements (2) tend to limit values very fast,
and for linear chains only the first one or two elements differ
from the values (3). Therefore, to solve our problem, we con-
sider the spectrum of the J-matrix L =ady +
+b(8; k41 +8j41,) first. If the operator L is represented as
a Jacobian matrix, then the element Ggg(e) of the operator
é(a) = (I:—gIA)’1 (the so-called Green operator of Eq. (1))
is represented as a continued fraction. For the J-matrix, the
fraction L") =adj, +b (8,1 +8i,14) has the form:

Goo(e) =(C el ) - =

=202 s-a+2(s) fe-(a—2pl[e-(a+ 2] |, (@

where, the function Z(e) determines the difference in the
behavior of the Green function in the band of the quasi-
continuous spectrum and beyond it

Z(e)=0(-c+a—2Jb|)+i0(e—a+2|b|)x
x@(-g+a+2Jb))-6(e—a-2[o]). ®)

In (5), ©(x) is the Heaviside theta function.

Thus, D, that is the band of the quasi-continuous spec-
trum of the operator L, is the interval
¢ e[ a—2|b|,a+2|b|]. The real and imaginary parts of the
function (4) are presented in Fig. 1.

If localized discrete levels arise outside the © band un-
der the influence of some perturbation, then these levels
are the roots of the Lifshitz equation (see, for example,
[1]). This equation can be written as:

Goo (£)=S (&, {As})- (6)
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Fig. 1. The real (curve 1) and imaginary (curve 2) parts of the
Green function (4), and the solution of Eq. (6) for the case of a
first-rank perturbation operator.
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The perturbation operator is denoted by A . Recall that
for € ¢, the function (4) is real. The function S(e,{As})
is determined by the operator A and depends on the set of
parameters {A}characterizing this operator. For the case,
when the J-matrix of the perturbed operator C+A differs
from the matrix Lfk ) only by the value of its first diagonal
element ag =a+ A, the function S(g,{As}) becomes the
constant S =A"1=const. Note that it is the form peculiar
for perturbation operators describing defects in an ad-
sorbed linear chain that correspond to a local change in the
atomic bond with the substrate or an local change in one
bond between the atoms of the chain [17,18]. In this case,
from Fig. 1, it is seen that localized states with squares of
frequency ey <a-2|b| appear at perturbation values
A <—|b], and localized states with squares of frequency
g >a+2|b| appearat A>|b|.

The Green function of the perturbed operator Gog (g, A) =
=(L+ A- fs)aé can be represented as

- 1
G A )= , 7
00(8 A) S—a—A—bzGoo(S) ()

where, the function Gog is determined by the relation (4).
The function (7) is easy to transform to:

—a-2A+Z(g),[[(e-a)* —4b?

Goo (&,A)=~ A(g—a)—([\2+b2)

(®)

The pole of this function defines the square of the frequen-
cy of the discrete level
A% +b?

=a+ , 9
Sd A ()

at A>|b| thevalueey =¢; >a+2|b],

at A<—|b| thevalue ¢4 =e5 <a-2|b].
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The residue of the function (8) at the pole (9) determines
the intensity of a given level — the relative amplitude of
oscillations of the atoms of the defect at frequency \/a

LA -p? A2 -p?|

(8)| A |

Mo(sd:A)ir:eéz GOO(S):J A

(10)

The value (10) is nonzero only when the conditions for the
existence of discrete levels are fulfilled. For
=gg<a-2|b|, when Z(g)=1, this condition is
A<—|b|, and for ¢4 =¢, >a+2|b|, when Z(g) =-1, this
condition is A >|b|. In both cases, the intensity of the dis-
crete level is equal to:

€q =

A2 —p?
A2

Mo (eq.A)= (11)

The damping of the amplitude of oscillations at the given
level is characterized by a decrease of the values

up(eq,A)=re’s Gnn (¢) when n increase. Using the rela-
£=¢gq

tions obtained in [12], it can be shown that the quantities
L, (eq,A) form an infinite decreasing geometric progres-

2n
sion pp(eq,A)=pg(eq,.A) [%} , the sum of which is

equal to the unit, that is, one quasi-particle splits off from a
continuous spectrum band to a discrete level.

3. Discrete localized vibrations in adsorbed linear chains

Recently, adsorption of inert gas atoms onto bundles of
carbon nanotubes has often been used to obtain stable macro-
scopically long quasi-one-dimensional objects [4,6-8,19-22].
In the case of a low concentration of adsorbed gases, their
atoms are located in the grooves between the nanotubes on
the surface of the nanobundle (and in the case of He inside
nanobundles and even nanotubes). In the grooves between
the nanotubes, adsorbed atoms can form linear chains
with a length of ~10 um. The Iength corresponds to the
number of atoms in the chain ~ 10° 10 and thus the
boundary effects can be neglected. The one-dimensional
nature of these objects is confirmed by both neutron dif-
fraction studies [6—8] and experiments on measurements
of heat capacity [9,19-22].

Neutron diffraction studies of “He atoms adsorbed in
the grooves on the surface of nanobundles showed the pe-
riodicity of the arrangement of atoms in the chain [6], and
theoretical calculations [23] showed the presence of a peri-
odic potential along the grooves on the surface of nano-
bundles. The depth of this potential varies from the values
insignificantly greater than zero to 40 K and depends on
the relative orientation and displacement of the nanotubes
forming the groove. All this makes it possible to describe
the vibrational characteristics of the chains adsorbed in the
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grooves between the nanotubes within the framework of
the harmonic dynamics of the crystal lattice.

In [4], it was shown that, starting from a certain frequen-
cy, the vibrations of the atoms of the chain in the groove
between the nanotubes are either quasi-localized or have a
one-dimensional character. The previously mentioned initial
frequency is determined by the contribution of the interac-
tion of the atoms of the chain with the atoms of the nanotube
to the self-interaction matrix of the chain. Also in [4] it was
shown that a chain of atoms adsorbed in a groove between
nanotubes with a sufficiently high degree of accuracy can be
considered as a chain in an external field that determines the
initial frequency of its quasi-continuous spectrum. The
width of this spectrum is determined by the interaction of
atoms in the chain with each other, which in turn depends on
the distance r between them. In this approximation, the
problem of the vibrational spectrum of the adsorbed chain
without defects is reduced to two parameters: the minimum
and maximum frequencies of its quasi-continuous spectrum
[4]. This approximation can be successfully applied to the
chains of inert gas atoms adsorbed on a carbon substrate due
to the large difference between the Debye temperatures of
inert gases and carbon structures.

Because of the interaction of the atoms of the adsorbed
chain with the atoms of carbon nanotubes, the distance
between the atoms of the chain does not coincide with the
equilibrium distance ry corresponding to the minimum of
the potential of interatomic interaction of the adsorbed
atoms. In the case r <ry (see, for example, [7]) the non-
central interaction parameter, which determines the width of
the spectrum of transverse vibrations, is negative. It leads to
a shift of the minimum frequency of the quasi-continuous
spectrum to the region of low frequencies [17,18]. A com-
pressed chain can be formed by inert gas atoms (r <rg)
due to the fact that the period of the field created by nano-
tubes in the grooves is less than the equilibrium distance
for all inert gases except helium [23]. The negative value
of the non-central interaction parameter is inherent in
many solidified gases and metals [7,21-23].

The operator describing interatomic interactions in the
coordinate representation can be written in the form:

(Slo + 20‘)E’r,r’ _a(ar,r’+a +8r,r’fa)
m

Lic(r,r') = Bixdik +

€:0+2B)0r r —B(Or rrya +0p
+( 0 ) r,r ( rr'+a ™ Yrr a)(SiyJFSiz)sikv
(12)

where a is the interatomic distance in the chain, m is the
mass of the atom, the parameters o and  describe, re-
spectively, the central and non-central interaction between
the atoms. For a pair-wise isotropic interaction between
atoms, these parameters are expressed in terms of the po-
tential of this interaction ¢(r) as follows:
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o%o(r) 10¢(r)
a(r)= a";z LB =TT

The dispersion relations arising from (1) in this case
have the form:
4o . o ka
k)= w? (k) = gg +—sin® —,
g1 (k) = of (k) =eq m 5
4p

. a
o (k) = m%(k) =€y +E5|n27.

(13)

Here k is the quasi-wave vector, the subscripts | and <
denote the longitudinally and transversely polarized vibra-
tional modes, respectively. Note that the symmetry condi-
tion of the tensor of elastic modules should be applied to
the whole system (including not only the chain, but also
the substrate), since it is the interaction of the chain with
the substrate that ensures its stability. Therefore, the trans-
verse vibrations of the atoms of the chain (13) are not flex-
ural with the dispersion e, (k)~k4 in the long-wavelength
region (see, for example, [1]).

The defects of nanotubes, as well as the incommen-
surability of the periods of the adsorbed chain and the field
in the groove between the nanotubes, can lead to a local
change in the interaction of the atoms of the chain with the
nanotubes. In the case of a local change in the interaction,
the distance between pairs of atoms of the chain can also
change, which, in turn, can lead to the appearance of local-
ized states with frequencies both below the minimum fre-
quency of the quasi-continuous spectrum of the chain and
above its maximum frequency.

For solving the problem of the vibrational characteris-
tics of the chain with such a defect using the Jacoby matrix
method, the space of displacements of the chain atoms H
should be represented for each direction i as a direct sum
of subspaces orthogonal to each other:

H= Z(Hi(_) ® Hi(+)) . The subspaces Hi(’) are the sub-
i

spaces of in-phase displacements of atoms, and the sub-

spaces Hi(” are the subspaces of anti-phase displace-

ments. For each of the directions of atomic displacements,
these subspaces are linear spans of the set of vectors

{I:”ﬁé’)}‘r’f:o and {I:”ﬁé”}}’f:o, respectively (further the

index i will be omitted, except when the direction of dis-

placement is significant). The generating vectors
~() 1 |-a/2t ~(+) _ 1(-a/2|1

h( - and hy /' =— correspond
0 " 2| a2 1> 0 " 2| a2 |1 P

to the in-phase and anti-phase displacements of two neigh-

boring atoms (the origin of coordinates is chosen at the
center of symmetry of the defect).

The matrix elements of the Jacoby matrices of the oper-
ators L&) and £, induced by the operator L in each of
the corresponding subspaces, differ from (3) only by the
values of the first diagonal elements a
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aé_) :a—b+806,

(+

) (14)
ay ' =a+b+egd+2bn,

where gq =a—2b is the value of the square of the fre-
quency at k=0, that is, the activation frequency for an
ideal atom, &q(1+9) is the activation frequency for the
defective atom; the parameter n characterizes the change
caused by the defect in the corresponding force constant
(o for the longitudinal displacements and  for the trans-
verse ones, further to be distinguished as m; and n,).
That is, for the operators describing the perturbation in-
duced by the defect, we obtain

A = ot ey, AD) = pegs,

(15)
AP =eqdra(te2n), AL = eqs+p(1+2n).

T
In (15), for longitudinal displacements the matrix element
b =, and for transverse ones b = . We emphasize again
that the parameter o is always positive, and the parameter 3
can take negative values [7,17,24,25]. Then for any direction
we can write:

AD) = piegs; A —ggs+b(i+2n).  (16)

The conditions of occurrence of discrete levels with fre-
guencies above the quasi-continuous spectrum band are:
in the subspaces Hi(_

€90 >2b, for b>0;

(7)
6 >0, forb<0;
in the subspaces H ("
g0 0+ 2bm >0, for b>0;
0 il (18)

€9 8—2[bjn>2|b|, for b<O0.

The conditions of occurrence of discrete levels with fre-
guencies below the quasi-continuous spectrum band are:
in the subspaces Hi(_)

8 <0, for b>0;
(19)
g8 <—2|p|, for b<0;
in the subspaces H "
gg0+2bn<—2b; for b>0;
(20)
g98-2[bjn<0; forb<0;

(the index i can be omitted).

From (9) and (16), for the values sé_)and séJ')of the local-
ized discrete levels in the invariant subspaces H Oland
H ), we obtain:

22
_ €p 0
8((1 )280 +—O )
806—b
) 1)
(+) [806+2b(1+n):|
Sd :80"1‘
g0 8+b(1+2m)
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Whether this level is formed above or below the band of a
quasi-continuous spectrum is determined by the relations
(17), (20). Having solved the system (21) with respect to
the parameters of the defect &, and n we obtain the ex-
pressions for these quantities via experimentally measured
frequencies of the localized discrete levels:

() . (0 1

§=et| 0 px |00 L‘C’O 0 _2p
2 2
1 8g+)—80 (+) 80 (85; —80 \
n=—- - -2b
2b 2

(22)
(the “+” sign in front of the radical corresponds to the dis-
crete localized level lying above the band of the quasi-
continuous spectrum, and the sign “~"corresponds to the
discrete localized level lying below the band). Atomic dis-
placement vectors related to the subspaces Hi(’) and
Hi(+> are transformed according to different irreducible
representations of the symmetry group of the chain, which
consists of one element that is inversion: even (subspace)
and odd (subspace).

Atomic displacement vectors related to subspaces Hi(f)
and Hi(” are transformed according to different ireducible
representations of the symmetry group of the chain, odd
and even, respectively. Therefore, the localized discrete
levels in the subspaces Hi(+) are Raman active, and in the
subspaces H; ’, are infrared active.

4, Conclusion

Thus, we have shown that defects such as local changes
in the distances between atoms in the linear chains adsorbed
on the surface of carbon nanobundles often form localized
states in the phonon spectrum of the chains with frequencies
both above and below the quasi-continuous band. Such
states arise in a wide range of defect parameters (changes in
the interaction with the substrate and changes in the interac-
tion between the atoms of the defect). Measuring the fre-
quencies of such localized states, for example, in experi-
ments on Raman (see, for example, [26]), or infrared (see,
for example, [5]) light scattering, makes it possible to de-
termine these defect parameters using the simple analytical
expressions obtained in this work.

Note that the results of this work were obtained for an
isolated defect, but for the linear chains this approxi-
mation, is applicable for concentrations of these defects
above 10%, unlike three-dimensional structures, where this
approximation ceases to be applicable even at much small-
er (~2%) concentrations defect [27,28]). Naturally, in the
adsorbed chains, several similar defects may emerge,
which will form several localized discrete levels. The fre-
guencies of each of these levels can be measured (in par-
ticular, by optical methods), and the parameters of each
defect can determined from their frequencies.
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JlokanizoBaHi Ha gedekTax ANCKPETHI KonMBanbHi
PiBHI B NiHIMHMX NaHLOXKax aTtoMmis, agcopboBaHumXx
BYyrneueBnM HaHobaHa oM

C.B. ®eopocbes, I.0. Nocnogapbos, O.B. Manxenin,
B.A. CipeHko, €.C. CupkiH

Po3paxoBaHO Ta MPOAHATI30BaHO YMOBH iCHyBaHHS Ta OCHOBHI
XapaKTePUCTHKHU (4aCTOTH, IHTCHCHBHOCTI Ta MapamMeTpy 3racaHHs)
JMCKPETHHX KOJMBAJIPHUX PIBHIB, sIKi 0OyMOBIEeHI medexramu
CTPYKTYpPH JHIMHHX JIaHIFOXKKIB aTOMIB iHEPTHHUX Ta3iB, ajcop-
00BaHMX Ha TOBEPXHIO 3B’A3aHMX B HAHOOAHII HaHOTPYOOK. Po3-
ISIHYTO JUCKPETHI KOJMBAJIBHI PIiBHI, IO JISKATh SK BHILE, TaK i
HIDKYE CMYT'H KBa3iOe3IepepBHOIO CIEKTPY JiaHIEoxKKa. OnepkaHi
JUIS 9aCTOT LIMX AUCKPETHUX PiBHIB aHAIITUYHI BUPa3H JO3BOJIIIOTH
HaJifHO 3HAXOJWUTH MapaMeTpH AeeKTy (BIAMIHHICTH HOTO B3ae-
Mol 3 MiJKJIa/IKOI0 Ta aTOMaMH JIAHIFOXKKa) 33 Pe3yJIbTaTaMH OIl-
THYHHX BUMIPIOBaHb.

KirouoBi croBa: amcopOoBaHi aTOMHI JTiHIMHI JTaHIIOKKH, (O-
HOHHI CIIEKTPH, TUCKPETHI JIOKATi30BaHI CTaHH.

JlokanusoBaHHble Ha AedekTax AUCKPEeTHbIe
KonebGaTerbHble YPOBHU B NIMHENHbIX LieNoYKax
aToMOB, aAcopOMpoBaHHbIX YriepoaHbIM
HaHobGaHAanoMm

C.B. ®eopocbes, U.A. Nocnogapes, E.B. Manxenun,
B.A. CnpeHko, E.C. CbipkuH

PaccunTansl 1 npoaHaIM3UPOBAHBI YCIOBHS CYIIECTBOBAHUS U
OCHOBHBIE XapaKTEPUCTUKU (YaCTOTHI, MHTEHCHBHOCTM U Tapa-
METPBI 3aTyXaHUs) TUCKPETHBIX KOJIeOaTeNbHBIX yPOBHEH, KOTOPBIE
00ycIOBNIEHBI e(eKTaMH CTPYKTYpbl JIMHEHHBIX IEMOYEK aTOMOB
HMHEPTHBIX Ta30B, aICOPONPOBAHHBIX HA IIOBEPXHOCTH CBS3AHHEIX B
HaHOOaHIUT HaHOTPYOOK. PaccMoTpeHBI OuCKpeTHble KoneOaresb-
HBIE YPOBHH, JIeXKAINe KaK BBINIC, TAK M HIDKE IOJIOCHI KBa3H-
HETPEPBIBHOTO CIIEKTPa LenovKy. [TomyueHHbIe A1 YacTOT JaHHBIX
JMCKPETHBIX YPOBHEH aHAIMTHYECKHE BBIPAXKEHUS IO3BOJLTIOT
HaJeXKHO ONPEACNATh MapaMeTpsl Aedekra (OTIMYHE ero B3auMo-
JEHCTBUSI C TOIOKKON M aTOMaMH IETIOYKH) II0 pe3yibTaTaM OIl-
TUYECKUX U3MEPEHHUH.

Kirouessie cnosa: aIICOp6I/Ip0BaHHI>Ie aTOMHBIC JIMHEWHBIC TICTI0Y-
KH, (I)OHOHHLIG CIIEKTPBI, AUCKPETHBIC JIOKAJIM30BAHHBIE COCTOSTHUSA.
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