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The conditions of the existence and the main characteristics (frequencies, intensities, and attenuation parame-
ters) of discrete vibrational levels caused by structural defects of linear chains of inert gas atoms adsorbed on the 
surface of nanotubes aggregated in nanobundles, are calculated and analyzed. Discrete vibrational levels lying 
both above and below the band of the quasi-continuous spectrum of the chain are considered. Analytical expres-
sions obtained for the frequencies of these discrete levels make it possible to determine with high precision the 
defect parameters (difference in the interaction with the substrate and with the atoms of the chain) basing on op-
tical measurements. 
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1. Introduction 

In many cases, one-dimensional models give possibility 
to obtain analytical expressions for the physical quasi-
particle spectra and for the physical quantities determined 
by these spectra. In particular, the absence of singularities 
within the band of a quasi-continuous spectrum of one-
dimensional systems significantly simplifies the study of 
spectrum perturbations caused by defects. Therefore, for 
many years, the study of one-dimensional systems, as well 
as scalar models, has been used for the qualitative descrip-
tion of the phonon spectra and the vibrational properties of 
non-ideal crystal structures (see, for example, [1,2]). How-
ever, the inverse root singularities of the density of states at 
the edges of quasi-continuous phonon spectrum and condi-
tioned by them instability of such structures [3] make it 
difficult to apply the results obtained for one-dimensional 
structures to real (three-dimensional) objects and, which is 
more important, to synthesize real one-dimensional struc-
tures. At the same time, these are the singularities that de-
termine the non-threshold formation of discrete levels in 
the quasi-particle spectra caused by defects. The frequen-
cies of discrete levels are extremely sensitive to the param-
eters of defects and can serve as an important source of 
information about the parameters of defects. Due to these 
properties, these chains can find direct applications, for 
example, in quantum computing. 

The instability of one-dimensional structures (the diver-
gence of their rms atomic displacements) is conditioned by 

the inverse root singularity of the phonon densities of states 
at zero frequency. Placing a one-dimensional chain on any 
substrate eliminates the instability. A certain choice of a sub-
strate only shifts the low-frequency singularity at the edge of 
the spectrum of the adsorbed chain to some non-zero fre-
quency (see, for example, [4]) in line with a shift of an ab-
sorption edge of optical multilayers (see, for example, [5]). 

The unique opportunity to create extended atomic chains 
is to use nanotubes (the so-called nanobundles) as substrates. 
The chains of atoms can be formed inside the nanotubes, in 
the internal channels of nanobundles, and on the surface of 
nanobundles in the grooves between the nanotubes. In the 
grooves between the nanotubes, adsorbed atoms can form 
linear chains of length ~ 10 μm or more. In the case of low 
concentrations of saturating gases, the one-dimensional 
character of objects formed by inert gases in the bundles of 
closed nanotubes is confirmed by studies both of neutron 
diffraction [6–8] and of their heat capacity [9]. 

Note that not all quasi-particle spectra of one-
dimensional structures have inverse root singularities at the 
lower limit of the quasi-continuous spectrum, for example, 
acoustic plasmons in one-dimensional structures, formed 
by electrons on the surface of superfluid helium. Their 
spectra were obtained in [10,11]. 

Naturally, the adsorption of linear atomic chains on the 
surface of carbon nanobundles induces numerous defects in 
the structures of these chains. The presence of defects and 
the absence of a threshold for the formation of discrete vi-
brational levels give rise to localized states, both above and 
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below the band of the quasi-continuous spectrum of the 
chain. In [12], it was shown that even in the three-
dimensional case, the characteristics of localized states can 
be found with high accuracy based only on the values of the 
first two moments of the spectral density. For the basic char-
acteristics of localized states (their frequencies, intensities, 
and attenuation) simple analytical expressions can be ob-
tained. This makes it possible to obtain localized oscillations 
with given frequencies, changing the parameters of defects 
and of the chains themselves (for example, pressure). The 
inversion of these formulas allows one to find the parame-
ters of defects by experimentally measured frequencies of 
localized discrete levels. 

We note that from the results of [12], it follows that in 
the linear chains the interaction between defective atoms 
begins to manifest itself at concentrations of defects at 
least by an order of magnitude higher than in three-
dimensional structures. Sо, even at a defect concentration 
of more than 10%, the approximation of an isolated defect 
will work well. 

2. Discrete levels localized on an isolated point defect 

It is rather difficult to describe the quasi-particle spectra 
of systems with defects in the framework of the traditional 
representation of vibrations in the form of a superposition of 
plane waves, due to the translational symmetry of the crys-
tal, because of the violation of translational symmetry by the 
defect. To avoid the difficulties one can use other methods 
not basing on the translational symmetry. One of these meth-
ods is the method of Jacoby matrices (J-matrices) [13–15] 
[(see, also [11,16], where it is given in detail). 

The method is based on the partition of the entire dis-
placement space of displacements of crystal atoms into a 
sum of subspaces invariant with respect to the operator L̂  
describing lattice vibrations. The vectors of the space of 
displacements of atoms of a crystal are the displacements 
of atoms along the crystallographic directions. It is conven-
ient to choose the operator L̂  matrix in the form: 

( , )
( , )

( ) ( )
ik

ikL
m m
Φ ′

=′
′

r r
r r

r r
, where ( )m r  is the mass of an 

atom with radius vector r, and the matrix is ( , )ikΦ ′r r  the 
matrix of force constants, which describes the interaction 
between atoms with the radius vectors r and .′r  In the 
operator form, the equations of the atomic vibrations of the 
system under consideration can be written as: 

 ( )ˆ ˆ 0L I− ε ψ =


, (1) 

where 2ε ≡ ω  is the eigenvalue of the operator (the square 
of the frequency), and the wave function ( ) ( ) ( )mψ ≡r r u r



 
is the vector of space of atomic displacements H . The vec-
tors of this space, whose dimension is 3 N  ( N →∞  is the 
number of atoms in the crystal), will be denoted by the arrow 
above the symbol. The “ordinary” three-dimensional vectors 

will be highlighted in bold (for example, ( )u r is the vector of 
displacement of an atom with the radius vector r from the 
equilibrium position). 

If in the space of atomic displacements we choose some 
vector 0h H∈



 (call this vector generating), then the linear 
span of the set of vectors 0 0

ˆ{ }n
nL h ∞
=



 is a subspace of the 
space H  invariant with respect to the operator L̂ . By 
ortonormalization of the sequence 0 0

ˆ{ }n
nL h ∞
=



, we obtain 
the 0 0{ }nh ∞

=


 basis. In this basis, the operator generated by 
the operator L̂  in the corresponding invariant subspace is 
represented by the three-diagonal (Jacoby) matrix: 

 ( ), 1 1,ik i ik i i k i kL a b + += δ + δ + δ . (2) 

Matrix elements (2) have a remarkable property. If the 
band of the quasi-continuous spectrum of the operator L̂  is 
simply connected, then with growth of n they tend to some 
limiting values: 

 lim ,n
n

a a
→∞

=      lim n
n

b b
→∞

= , (3) 

and a  is the value of the middle of the band of the continu-
ous spectrum, and b  is a quarter of the width of this band. 

Often matrix elements (2) tend to limit values very fast, 
and for linear chains only the first one or two elements differ 
from the values (3). Therefore, to solve our problem, we con-
sider the spectrum of the J-matrix ik ikL a= δ +

, 1 1,( )i k i kb + ++ δ + δ  first. If the operator L̂  is represented as 
a Jacobian matrix, then the element 00 ( )G ε  of the operator 

1ˆ ˆ ˆ( ) ( )G L I −ε ≡ − ε  (the so-called Green operator of Eq. (1)) 
is represented as a continued fraction. For the J-matrix, the 
fraction ( )

, 1 1,( )ik i k i kikL a b∞
+ += δ + δ + δ  has the form: 

 ( ) ( ) 1
00 00

ˆ ˆG L I
−

ε ≡ − ε =   

   ( ) ( ) ( )22 2 2b a Z a b a b−  = ε − + ε ε − − ε − +  , (4) 

where, the function ( )Z ε  determines the difference in the 
behavior of the Green function in the band of the quasi-
continuous spectrum and beyond it 

 ( ) ( ) ( )2 2Z a b i a bε ≡Θ −ε + − + Θ ε − + ×   

 ( ) ( )2 2a b a b×Θ −ε + + −Θ ε − − . (5) 

In (5), ( )xΘ  is the Heaviside theta function. 
Thus, D , that is the band of the quasi-continuous spec-

trum of the operator L̂ , is the interval 
2 , 2a b a bε ∈  − +   . The real and imaginary parts of the 

function (4) are presented in Fig. 1. 
If localized discrete levels arise outside the D  band un-

der the influence of some perturbation, then these levels 
are the roots of the Lifshitz equation (see, for example, 
[1]). This equation can be written as: 

 ( ) { }( )00 , sG Sε = ε Λ . (6) 
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The perturbation operator is denoted by Λ̂ . Recall that 
for ε ∉D , the function (4) is real. The function ( ,{ })sS ε Λ
is determined by the operator Λ̂  and depends on the set of 
parameters { }sΛ characterizing this operator. For the case, 
when the J-matrix of the perturbed operator ˆL̂ + Λ  differs 
from the matrix ( )

ikL ∞  only by the value of its first diagonal 
element 0a a= + Λ , the function ( ,{ })sS ε Λ  becomes the 
constant 1 const.S −≡Λ =  Note that it is the form peculiar 
for perturbation operators describing defects in an ad-
sorbed linear chain that correspond to a local change in the 
atomic bond with the substrate or an local change in one 
bond between the atoms of the chain [17,18]. In this case, 
from Fig. 1, it is seen that localized states with squares of 
frequency 2 | |g a bε < −  appear at perturbation values 

| |,bΛ < −  and localized states with squares of frequency 
2 | |l a bε > +  appear at | | .bΛ >  

The Green function of the perturbed operator 00 ( , )G ε Λ ≡

1
00

ˆˆ ˆ( )L I −≡ + Λ − ε  can be represented as 

 ( )
( )00 2

00

1,G
a b G

ε Λ =
ε − − Λ − ε

 , (7) 

where, the function G00 is determined by the relation (4). 
The function (7) is easy to transform to: 

  ( )
( ) ( )

( ) ( )
2 2

00 2 2

2 41,
2

a Z a b
G

a b

ε − − Λ + ε ε − −
ε Λ = −

Λ ε − − Λ +
 . (8) 

The pole of this function defines the square of the frequen-
cy of the discrete level 

 
2 2

d
ba Λ +

ε = +
Λ

, (9) 

at | |bΛ >  the value 2 | |d l a bε ≡ ε > + , 
at | |bΛ < −  the value 2 | |d g a bε ≡ ε < − . 

The residue of the function (8) at the pole (9) determines 
the intensity of a given level — the relative amplitude of 
oscillations of the atoms of the defect at frequency dε . 

( ) ( ) ( )
2 2 2 2

0 00
=

1, re s .
2d

d
b bG Z

ε ε

 Λ − Λ −
µ ε Λ = ε = − ε′  

Λ Λ Λ  

   

  (10) 

The value (10) is nonzero only when the conditions for the 
existence of discrete levels are fulfilled. For dε ≡

2 | |,g a b≡ ε < −  when ( ) 1Z ε = , this condition is 
| |,bΛ < −  and for 2 | |,d l a bε ≡ ε > +  when ( ) 1,Z ε = −  this 

condition is | | .bΛ >  In both cases, the intensity of the dis-
crete level is equal to:  

 ( )
2 2

0 2,d
bΛ −

µ ε Λ =
Λ

. (11) 

The damping of the amplitude of oscillations at the given 
level is characterized by a decrease of the values 

=
( , ) re s ( )

d
n d nnG

ε ε
′µ ε Λ = ε  when n increase. Using the rela-

tions obtained in [12], it can be shown that the quantities 
( , )n dµ ε Λ  form an infinite decreasing geometric progres-

sion 
2

0( , ) ( , ) ,
n

n d d
b µ ε Λ =µ ε Λ   Λ

 the sum of which is 

equal to the unit, that is, one quasi-particle splits off from a 
continuous spectrum band to a discrete level. 

3. Discrete localized vibrations in adsorbed linear chains 

Recently, adsorption of inert gas atoms onto bundles of 
carbon nanotubes has often been used to obtain stable macro-
scopically long quasi-one-dimensional objects [4,6–8,19–22]. 
In the case of a low concentration of adsorbed gases, their 
atoms are located in the grooves between the nanotubes on 
the surface of the nanobundle (and in the case of 4He, inside 
nanobundles and even nanotubes). In the grooves between 
the nanotubes, adsorbed atoms can form linear chains 
with a length of ~ 10 μm. The length corresponds to the 
number of atoms in the chain ~ 103–104, and thus the 
boundary effects can be neglected. The one-dimensional 
nature of these objects is confirmed by both neutron dif-
fraction studies [6–8] and experiments on measurements 
of heat capacity [9,19–22]. 

Neutron diffraction studies of 4He atoms adsorbed in 
the grooves on the surface of nanobundles showed the pe-
riodicity of the arrangement of atoms in the chain [6], and 
theoretical calculations [23] showed the presence of a peri-
odic potential along the grooves on the surface of nano-
bundles. The depth of this potential varies from the values 
insignificantly greater than zero to 40 K and depends on 
the relative orientation and displacement of the nanotubes 
forming the groove. All this makes it possible to describe 
the vibrational characteristics of the chains adsorbed in the 

Fig. 1. The real (curve 1) and imaginary (curve 2) parts of the 
Green function (4), and the solution of Eq. (6) for the case of a 
first-rank perturbation operator. 

894 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 7 



Discrete atomic vibrations localized on defects in linear chains of atoms adsorbed by carbon nanobundles 

grooves between the nanotubes within the framework of 
the harmonic dynamics of the crystal lattice. 

In [4], it was shown that, starting from a certain frequen-
cy, the vibrations of the atoms of the chain in the groove 
between the nanotubes are either quasi-localized or have a 
one-dimensional character. The previously mentioned initial 
frequency is determined by the contribution of the interac-
tion of the atoms of the chain with the atoms of the nanotube 
to the self-interaction matrix of the chain. Also in [4] it was 
shown that a chain of atoms adsorbed in a groove between 
nanotubes with a sufficiently high degree of accuracy can be 
considered as a chain in an external field that determines the 
initial frequency of its quasi-continuous spectrum. The 
width of this spectrum is determined by the interaction of 
atoms in the chain with each other, which in turn depends on 
the distance r between them. In this approximation, the 
problem of the vibrational spectrum of the adsorbed chain 
without defects is reduced to two parameters: the minimum 
and maximum frequencies of its quasi-continuous spectrum 
[4]. This approximation can be successfully applied to the 
chains of inert gas atoms adsorbed on a carbon substrate due 
to the large difference between the Debye temperatures of 
inert gases and carbon structures. 

Because of the interaction of the atoms of the adsorbed 
chain with the atoms of carbon nanotubes, the distance 
between the atoms of the chain does not coincide with the 
equilibrium distance 0r  corresponding to the minimum of 
the potential of interatomic interaction of the adsorbed 
atoms. In the case 0r r<  (see, for example, [7]) the non-
central interaction parameter, which determines the width of 
the spectrum of transverse vibrations, is negative. It leads to 
a shift of the minimum frequency of the quasi-continuous 
spectrum to the region of low frequencies [17,18]. A com-
pressed chain can be formed by inert gas atoms 0( )r r<  
due to the fact that the period of the field created by nano-
tubes in the grooves is less than the equilibrium distance 
for all inert gases except helium [23]. The negative value 
of the non-central interaction parameter is inherent in 
many solidified gases and metals [7,21–23]. 

The operator describing interatomic interactions in the 
coordinate representation can be written in the form: 

  ( )
( ) ( )0 , , ,2

, l a a
ik ix ikL

m
+ −′ ′ ′ε + α δ − α δ + δ

= δ δ +′
r r r rr r r r   

 
( ) ( ) ( )0 , , ,2

,a a
iy iz ikm

τ + −′ ′ ′ε + β δ −β δ + δ
+ δ + δ δ

r r r r r r   

  (12) 

where a  is the interatomic distance in the chain, m  is the 
mass of the atom, the parameters α  and β  describe, re-
spectively, the central and non-central interaction between 
the atoms. For a pair-wise isotropic interaction between 
atoms, these parameters are expressed in terms of the po-
tential of this interaction ( )rϕ  as follows: 

( ) ( ) ( ) ( )2

2
1;

r r
r r

r rr

∂ ϕ ∂ϕ
α = β =

∂∂
. 

The dispersion relations arising from (1) in this case 
have the form: 

 
( ) ( )

( ) ( )

2 2
0

2 2
0

4 sin ,
2

4 sin .
2

l l l
kak k

m
kak k

mτ τ τ

α
ε ≡ ω = ε +

β
ε ≡ ω = ε +

 (13) 

Here k  is the quasi-wave vector, the subscripts l  and τ  
denote the longitudinally and transversely polarized vibra-
tional modes, respectively. Note that the symmetry condi-
tion of the tensor of elastic modules should be applied to 
the whole system (including not only the chain, but also 
the substrate), since it is the interaction of the chain with 
the substrate that ensures its stability. Therefore, the trans-
verse vibrations of the atoms of the chain (13) are not flex-
ural with the dispersion 4( ) ~k kτε  in the long-wavelength 
region (see, for example, [1]). 

The defects of nanotubes, as well as the incommen-
surability of the periods of the adsorbed chain and the field 
in the groove between the nanotubes, can lead to a local 
change in the interaction of the atoms of the chain with the 
nanotubes. In the case of a local change in the interaction, 
the distance between pairs of atoms of the chain can also 
change, which, in turn, can lead to the appearance of local-
ized states with frequencies both below the minimum fre-
quency of the quasi-continuous spectrum of the chain and 
above its maximum frequency. 

For solving the problem of the vibrational characteris-
tics of the chain with such a defect using the Jacoby matrix 
method, the space of displacements of the chain atoms H  
should be represented for each direction i  as a direct sum 
of subspaces orthogonal to each other: 

( ) ( )( )i i
i

H H H− += ⊕∑ . The subspaces ( )
iH −  are the sub-

spaces of in-phase displacements of atoms, and the sub-

spaces ( )
iH +  are the subspaces of anti-phase displace-

ments. For each of the directions of atomic displacements, 
these subspaces are linear spans of the set of vectors 

( )
00

ˆ{ }n
nL h − ∞
=



 and ( )
00

ˆ{ } ,n
nL h + ∞
=



 respectively (further the 
index i will be omitted, except when the direction of dis-
placement is significant). The generating vectors 

( )
0

2 11
2 12

a
h

a
− −
=



 and ( )
0

2 11
2 12

a
h

a
+ −

=
−



 correspond 

to the in-phase and anti-phase displacements of two neigh-
boring atoms (the origin of coordinates is chosen at the 
center of symmetry of the defect). 

The matrix elements of the Jacoby matrices of the oper-
ators ( )L̂ −  and ( )L̂ + , induced by the operator L̂  in each of 
the corresponding subspaces, differ from (3) only by the 
values of the first diagonal elements 0a  
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( )

( )
00

00

,

2 ,

a a b

a a b b

−

+

= − + ε δ

= + + ε δ + η
 (14) 

where 0 2a bε ≡ −  is the value of the square of the fre-
quency at 0k = , that is, the activation frequency for an 
ideal atom, 0 (1 )ε + δ  is the activation frequency for the 
defective atom; the parameter η  characterizes the change 
caused by the defect in the corresponding force constant 
(α  for the longitudinal displacements and β  for the trans-
verse ones, further to be distinguished as lη  and ).τη  
That is, for the operators describing the perturbation in-
duced by the defect, we obtain 

   
( ) ( )

( ) ( ) ( ) ( )
0 0

0 0

, ,

1 2 , 1 2 .

ll

l ll

− −
τ τ

+ +
τ

Λ = −α + ε δ Λ = −β + ε δ

Λ = ε δ + α + η Λ = ε δ +β + η
 (15) 

In (15), for longitudinal displacements the matrix element 
b = α , and for transverse ones b = β . We emphasize again 
that the parameter α  is always positive, and the parameter β  
can take negative values [7,17,24,25]. Then for any direction 
we can write: 

 ( ) ( ) ( )0 0; 1 2 .b b− +Λ = − + ε δ Λ = ε δ + + η  (16) 

The conditions of occurrence of discrete levels with fre-
quencies above the quasi-continuous spectrum band are: 
in the subspaces ( )

iH −  

 0 2 , for 0;
0, for 0;

b b
b

ε δ > >

δ > <
 (17) 

in the subspaces ( )
iH +  

 0

0

2 0, for 0;
2 2 , for 0.
b b
b b b

ε δ + η > >

ε δ − η > <
 (18) 

The conditions of occurrence of discrete levels with fre-
quencies below the quasi-continuous spectrum band are: 
in the subspaces ( )

iH −  

 
0

0, for 0;
2 , for 0;

b
b b

δ < >

ε δ < − <
 (19) 

in the subspaces ( )
iH +  

 0

0

2 2 ; for 0;
2 0; for 0;
b b b
b b

ε δ + η < − >

ε δ − η < <
 (20) 

(the index i  can be omitted). 
From (9) and (16), for the values ( )

d
−ε and ( )

d
+ε of the local-

ized discrete levels in the invariant subspaces ( )H − and 
( )H + , we obtain: 

 
( )
( )

2 2
( ) 0

0
0

2
0( )

0
0

,

2 1
.

1 2

d

d

b

b
b

−

+

ε δ
ε = ε +

ε δ −

ε δ + + η  ε = ε +
ε δ + + η

 (21) 

Whether this level is formed above or below the band of a 
quasi-continuous spectrum is determined by the relations 
(17), (20). Having solved the system (21) with respect to 
the parameters of the defect δ , and η  we obtain the ex-
pressions for these quantities via experimentally measured 
frequencies of the localized discrete levels: 

( ) ( ) ( )

( ) ( ) ( )

0 0 01 0 0 0
0

0 0 00 0 0
0

2 ,
2 2 2

1 2 ,
2 2 2 2

b b

b b
b

− − −
−

+ + +

  ε − ε ε − ε ε − ε  δ = ε ⋅ − ± ⋅ −     
  ε − ε ε − ε ε − ε  η = ⋅ − ± ⋅ − − ε δ     

 

  (22) 
(the “+” sign in front of the radical corresponds to the dis-
crete localized level lying above the band of the quasi-
continuous spectrum, and the sign “–”corresponds to the 
discrete localized level lying below the band). Atomic dis-
placement vectors related to the subspaces ( )

iH −  and 
( )
iH +  are transformed according to different irreducible 

representations of the symmetry group of the chain, which 
consists of one element that is inversion: even (subspace) 
and odd (subspace). 

Atomic displacement vectors related to subspaces ( )
iH −  

and ( )
iH +  are transformed according to different ireducible 

representations of the symmetry group of the chain, odd 
and even, respectively. Therefore, the localized discrete 
levels in the subspaces ( )

iH +  are Raman active, and in the 
subspaces ( )

iH − , are infrared active. 

4. Conclusion 

Thus, we have shown that defects such as local changes 
in the distances between atoms in the linear chains adsorbed 
on the surface of carbon nanobundles often form localized 
states in the phonon spectrum of the chains with frequencies 
both above and below the quasi-continuous band. Such 
states arise in a wide range of defect parameters (changes in 
the interaction with the substrate and changes in the interac-
tion between the atoms of the defect). Measuring the fre-
quencies of such localized states, for example, in experi-
ments on Raman (see, for example, [26]), or infrared (see, 
for example, [5]) light scattering, makes it possible to de-
termine these defect parameters using the simple analytical 
expressions obtained in this work. 

Note that the results of this work were obtained for an 
isolated defect, but for the linear chains this approxi-
mation, is applicable for concentrations of these defects 
above 10%, unlike three-dimensional structures, where this 
approximation ceases to be applicable even at much small-
er (~ 2%) concentrations defect [27,28]). Naturally, in the 
adsorbed chains, several similar defects may emerge, 
which will form several localized discrete levels. The fre-
quencies of each of these levels can be measured (in par-
ticular, by optical methods), and the parameters of each 
defect can determined from their frequencies. 
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Локалізовані на дефектах дискретні коливальні 
рівні в лінійних ланцюжках атомів, адсорбованих 

вуглецевим нанобандлом 

С.Б. Феодосьєв, І.О. Господарьов, О.В. Манжелій, 
В.А. Сіренко, Є.С. Сиркін 

Розраховано та проаналізовано умови існування та основні 
характеристики (частоти, інтенсивності та параметри згасання) 
дискретних коливальних рівнів, які обумовлені дефектами 
структури лінійних ланцюжків атомів інертних газів, адсор-
бованих на поверхню зв’язаних в нанобандл нанотрубок. Роз-
глянуто дискретні коливальні рівні, що лежать як вище, так і 
нижче смуги квазібезперервного спектру ланцюжка. Одержані 
для частот цих дискретних рівнів аналітичні вирази дозволяють 
надійно знаходити параметри дефекту (відмінність його взає-
модії з підкладкою та атомами ланцюжка) за результатами оп-
тичних вимірювань. 

Ключові слова: адсорбовані атомні лінійні ланцюжки, фо-
нонні спектри, дискретні локалізовані стани. 

Локализованные на дефектах дискретные 
колебательные уровни в линейных цепочках 

атомов, адсорбированных углеродным 
нанобандлом 

С.Б. Феодосьев, И.А. Господарев, Е.В. Манжелий, 
В.А. Сиренко, Е.С. Сыркин 

Рассчитаны и проанализированы условия существования и 
основные характеристики (частоты, интенсивности и пара-
метры затухания) дискретных колебательных уровней, которые 
обусловлены дефектами структуры линейных цепочек атомов 
инертных газов, адсорбированных на поверхность связанных в 
нанобандл нанотрубок. Рассмотрены дискретные колебатель-
ные уровни, лежащие как выше, так и ниже полосы квази-
непрерывного спектра цепочки. Полученные для частот данных 
дискретных уровней аналитические выражения позволяют 
надежно определять параметры дефекта (отличие его взаимо-
действия с подложкой и атомами цепочки) по результатам оп-
тических измерений. 

Ключевые слова: адсорбированные атомные линейные цепоч-
ки, фононные спектры, дискретные локализованные состояния. 
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