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We investigate spatiotemporal vortex rings with phase dislocation both in space and time. It is demonstrated 
that these structures naturally appear as a periodical in time edge phase dislocation at the low-density region of a 
perturbed atomic Bose–Einstein condensate. The condition of formation, dynamics and stability of the 
spatiotemporal vortex rings are investigated for repulsive and attractive interatomic interactions. These 
theoretical findings open up a perspective for experimental observation of novel type of topological coherent 
structures in ultracold gases. 
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1. Introduction 

Formation of vortex rings is a universal phenomenon 
observed in classical and quantum fluids of different na-
ture. In quantum liquids the well known example is quan-
tized vortex rings in superfluid helium, discovery of which 
has greatly increased interest in vortex rings with very thin 
cores. Vortex rings play a crucial role in the decay of 
superflow and in quantum turbulence in helium liquids and 
atomic Bose–Einstein condensates (BECs) [1]. While rapid 
progress has been made in the theoretical studies [2–6] of 
quantized vortex rings, there has not been comparable pro-
gress in laboratory studies of vortex rings. Difficulties en-
sue not only with experimental detection of the vortex 
rings in the condensate bulk but also with their unstable 
evolution in trapped atomic BECs. As the result of this 
instability vortex rings in realistic inhomogeneous BECs 
either drift to an edge of the condensate, where they decay 
into elementary excitations, or shrink and annihilate within 
the condensate bulk. In work [7] we have suggested an 
experimentally feasible trapping configuration (optical 
tweezers) that can be used for creation, stabilization, and 
manipulation of a vortex ring in a controllable and nonde-
structive manner. Using rotating trap of similar geometry it 
is possible to stabilize even more complex topological 
structures known as Hopf solitons [8]. 

Further prospective ways for generation novel type of 
vortex rings in atomic BECs can be inspired by recent 
findings in physics of optical vortices. A remarkable ex-
ample of spontaneous vortex ring nucleation has been re-

vealed in self-saturating [9] and nonlocal [10] optical non-
linear media. Formation of the vortex rings at the periphery 
of the wave beam in optical media is a consequence of the 
nonlinear phase accumulation between the soliton peak and 
its tail. As was discovered in Ref. 9 phase singularities 
nucleate if this phase difference reaches the value of π 
during propagation along z  axis. Optical vortex rings (in 
contrast to vortex rings in BECs [11]) are static in time and 
appear when nonlinear phase of the self-trapped light beam 
breaks the wave front into a sequence of optical vortex 
loops around the perturbed fundamental soliton. The spa-
tial optical vortex is associated with region of space with 
field null line around which electromagnetic energy densi-
ty circulates. But in general, beam propagation is not de-
scribed only by its spatial features, and temporal evolution 
of the wave beam parameters should be taken into account 
as well. As known, dynamics of optical pulsed beams with 
spatiotemporal amplitude and phase modulation is gov-
erned by diffraction and dispersion effects. This provides a 
new insight on the spatiotemporally localized waves, 
called spatiotemporal vortices, drawing on analogy with 
spatial screw phase dislocations [12]. Spatiotemporal opti-
cal vortices have been theoretically predicted [12–14] and 
very recently experimentally observed [15] during self-
focusing collapse of wave beam in air. 

One of the goal of this work is to find the conditions for 
formation of spatiotemporal vortex rings and describe their 
general properties in atomic BEC. Our idea is based on the 
well known analogy [16] between two mathematical mod-
els: nonlinear Schrödinger equation describing propagation 
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in the z  direction of the wave beam in nonlinear optical 
media and Gross–Pitaevskii equation (GPE) describing 
evolution in time t  of BEC wave function. It would appear 
reasonable that a sequence of spatiotemporal vortex loops 
arises around the perturbed matter-wave soliton similar to 
a sequence of spatial vortex rings around perturbed optical 
soliton [9]. These matter wave spatiotemporal vortex rings 
should appear as a periodically forming circular edge 
phase dislocation at the periphery of the condensate cloud. 

The paper is organized as follows. In Sec. 2, we describe 
model. We take into account both two-particle and three-
particle interactions which can be described by GPE with 
cubic-quintic nonlinearity. In Sec. 3 we study dynamics of 
radially perturbed two-dimensional BEC in a harmonic trap 
and investigate a possibility of spatiotemporal vortex ring 
nucleation. It turns out that these structures are not observa-
ble in trappped BEC due to sharp decay of the condensate 
density at the periphery of condensate. In Sec. 4 we demon-
strate that spatiotemporal vortex rings can be observed in a 
condensate with attractive two-particle and repulsive three-
particle interactions without external potential. 

2. Model 

Dynamical properties of ultracold dilute atomic BECs 
can be accurately described by the mean-field Gross–
Pitaevskii equation [17]:  

2
2 2 4

ext 2 3= ( ) | | | | ,
2

i V g g
t M

 ∂Ψ
− ∇ + − Ψ + Ψ Ψ  ∂  

r

  (1) 

where Ψ is the macroscopic wave function of the conden-
sate, ext ( )V r  is the external trapping potential,  is the 
Planck constant, M  is the atomic mass, 2g  describes the 
two-particle interaction between atoms in the condensate and 
has the form 2

2 = 4 /sg a M− π  where sa  is the s-wave scat-
tering length (positive for repulsive interatomic interaction 
and negative for attractive interaction). Parameter 3g  cor-
responds to the strength of three-particle repulsive interac-
tion [18–20]. Here we take into account only conservative 
part of three-particle interaction. Thus Eq. (1) conserves 
the norm of the condensate wave function Ψ that is 
equivalent to the number of atoms 

 2= | |N dΨ∫ r  (2) 

and energy 
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We consider a radially-symmetric time-independent har-
monic trapping potential  

 
2 2

2 2
ext ( , ) = ,

2 2
zM MV r z r z⊥ω ω

+  (4) 

where 2 2 2= ,r x y+  ⊥ω  is the trap frequency in the trans-
verse plane, zω  is the longitudinal trapping frequency. For 

z ⊥ω ω  the condensate has a disk-shaped form (the lon-
gitudinal oscillator length is small comparing to the trans-
verse size) and can be described by quasi two-dimensional 
(2D) wave function ( , )r tψ . We assume that the system is 
tightly confined in the z  direction  

 ( , , ) = ( , ) ( , ),r z t r t z tΨ ψ ϒ  (5) 

where 1/2 2 2( , ) = ( ) exp ( /2 /2 )z z zz t l i t z l−ϒ π − ω −  is the 
ground state wave function in the oscillatory potential 

2 2( ) = /2.z zV z M zω  Here = /( )z zl Mω  is an oscillatory 
length in the z  direction. After integrating out the longitu-
dinal coordinates in the Eq. (1), we obtain 2D GPE consid-
ered in the following sections.  

3. Dynamics of perturbed two-dimensional solitons in 
trapped BECs 

In the model describing ultracold dilute atomic 2D BEC 
in radial harmonic trap 2 2( ) = /2V r M r⊥ ⊥ω  three-particle 
interactions can be neglected 3( = 0)g  and stationary 
soliton solutions exist both for attractive ( 2 > 0g ) and re-
pulsive ( 2 < 0g ) two-particle interactions. In terms of har-
monic oscillator units [ ,t t ⊥→ ω  / ,r r l⊥→  ,l⊥Ψ → Ψ  

= 8 / ,s zg a lπ  where = / ( )l M⊥ ⊥ω ] 2D GPE can be 
written in dimensionless form  

 2 2 21 1 | | 0
2 2

i r g
t

∂ψ
+ ∇ ψ − ψ − ψ ψ =

∂
, (6) 

where ψ  is dimensionless wave-function and g  is the di-
mensionless 2D interaction constant, r  is the polar radius. 
Stationary soliton solution can be found as 

( , ) = e ( )i tr t r− µψ Ψ  by solving equation  
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where µ is a chemical potential. Stationary solution char-
acterized by constant density distribution so any vortices 
cannot appear during evolution. But additional radially-
symmetric perturbations in the initial condition can lead to 
the vortex formation. As perturbation we use  

 1( ) ,rr
a a

 Ψ → Ψ 
 

 (8) 

where a is a parameter of deformation. It’s possible to 
stretch or extend the disc-shaped condensate in the radial 
direction by using external field (we only use radially-
symmetric perturbations with > 1a ) and then release it at 
the moment of time = 0t . 

We use the split-step (Fourier) method [21,22] to find 
numerically solutions of Eq. (6) for different N . We con-
sider BEC of = 175N  of 23Na atoms in the harmonic trap 
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with the following parameters: = 75⊥ω  Hz, = 750zω  Hz, 
= 0.018.g −  An example of the time evolution of the con-

densate is shown in Fig. 1(a). Slice = 0y  as a function of 
time is a spatiotemporal distribution of the condensate. An 
example of the spatiotemporal distribution of phase and 
density are shown in Fig. 1(b).  

Vortices in a complex wavefunction are characterized 
by a phase circulation about the vortex core, and also by a 
positive curvature of the probability density. In small den-
sity regions wavefunction has little physical significance, 
but phase fluctuates wildly [23]. We use the Wavelet 
denoising toolbox (Matlab) to clean the low-density region 
of numerical artifacts to consider phase structure. The vor-
tex detector couldn't find any vortex core after the 
denoising procedure. It could therefore be stated that there 
were no spatiotemporal vortices in the system. The same 
results for the systems with repulsive two-particle interac-
tion (see Figs. 2(a) and (b)). Various sets of system param-
eters has been checked but none of them didn’t allow us to 
detect the spatiotemporal vortex. 

It is clear that external trapping potential plays a key 
role in the character of the system dynamics at the conden-
sate low-density region. Thus, even strong perturbation 
( = 2, 3, 5)a  cannot lead to the vortex formation. However, 

an external potential is not necessarily required for self-
sustained condensates supported by nonlinear interactions 
in BEC. Various nonlinear effects can lead to formation of 
stable localized coherent structures as well. In the follow-
ing section we consider atomic cloud without external 
trapping potential where attractive two-particle interactions 
are balanced by repulsive three-particle interactions. 

4. Spatiotemporal vortex rings in a trapless BEC 

The stationary solutions of the GPE Eq. (1) without ex-
ternal potential are known to be unstable with respect to 
collapse for attractive interaction and has no localized sta-
tionary solutions for repulsive interactions. Account on two-
particle interactions and neglecting higher-order effects 
gives an adequate approximation for the dilute condensate 
trapped by external potential. However in the trapless con-
densate with attractive two-particle interactions higher-order 
effects, such as repulsive three-particle interactions, can play 
a crucial role since it can arrest a catastrophic collapse of the 
condensate. The model can be improved by adding a repul-
sive quintic nonlinear interaction term in Eq. (6). The di-
mensionless 2D GPE then acquires the form 

 2 2 4
2 3| | | | 0,ti D g g∂ Ψ + ∇ Ψ + Ψ Ψ − Ψ Ψ =  (9) 

Fig. 1. (Color online) Dynamics of perturbed soliton in BEC with attractive two-particle interaction for following parameters 
= 0.018,g −  = 175,N  = 1.2a . (a) Dynamics of the density (top row) and phase (bottom row) of the condensate. (b) Spatiotemporal 

distribution of the density (top row) and phase (bottom row) of the condensate.  

(a) (b) 

Fig. 2. (Color online) Dynamics of perturbed soliton in BEC with repulsive two-particle interaction for the following parameters 
= 0.018,g  5= 10 ,N  = 1.1.a  (a) Dynamics of the density (top row) and phase (bottom row) of the condensate. (b) Spatiotemporal 

distribution of the density (top row) and phase (bottom row) of the condensate. 

(a) (b) 
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where ,D  2g  and 3g  are dimensionless. The value of the 
three-body coupling constant 3g  should be small compar-
ing to the two-particle coupling constant 2g . Such model is 
well known as a model with cubic-quintic nonlinearity in 
nonlinear optics [24] and physics of ultracold atoms. 

We have the freedom of choice of zω  so for simplicity 
we choose = 1zω  Hz. In the Eq. (9) with two-particle at-
tractive and three-particle repulsive interaction both con-
stants 2g  and 3g  are positive. Consider a change of coordi-

nates ( , ) ( , )r tψ →Ψ ρ τ , where 3 2( ) = ( ) / ,r g gΨ ρ ψ  

2
2 3= /( ),r g Dgρ  2

2 3= /( ),tg gτ µ  were µ is a dimensionless 
chemical potential. Therefore Eq. (9) can be rewritten in 
form  

 2 2 4| | | | 0.i τ∂ Ψ +∇ Ψ+ Ψ Ψ− Ψ Ψ =  (10) 

It is also convenient to define a rescaled chemical potential 
2

3 2= /g gλ µ . The real number of atoms (physical) can be 
found by phys = /(4 2 ),z sN l N aπ  where N  is the norm of 
the new condensate wave function ( , )Ψ ρ τ . To find a station-
ary state of Eq. (10), we write ( , ) = ( )exp ( ) :t i tΨ ρ ψ ρ − λ  

 
2

2 4
2

1= | | | | .d d
dd

  
λΨ − + − Ψ + Ψ Ψ   ρ ρρ   

 (11) 

We use the Thomas algorithm [22] to find stationary solu-
tion of Eq. (11). This algorithm allows us to find stable 
soliton solutions in the range of λ from –0.152 to 0. The 
range can be extended using another method, for example, 
“shooting” method [24]. Dynamical simulations of the 
perturbed stationary state demonstrate the spatiotempo-
ral vortex ring (STVR) formation for strong perturba-
tions ( > 1.5a ). And it is noteworthy that we have not ob-
served STVR in the systems with small perturbations. 

The spatiotemporal vortex for small | |λ  is shown in 
Fig. 3. By analogy with the previous section Fig. 3(a) rep-
resents a slice = 0y  as a function of time. At the equal 
time intervals two easily distinguishable points with phase 
winding appear. The one with a clock-wise winding and 
the other one with anticlock-wise winding which corre-
spond to the vortex and antivortex, respectively. Combin-
ing this with data for other slices ( 0y ≠ ) we build (2+1)D 
graph of all winding points in Fig. 3(b). It’s remarkable 
that the radius of STVR is a periodic function of time when 
the Hamiltonian of this system isn’t periodical. Therefore 
we can assume that continuous time-translation symmetry 
for this system is broken. STVR spontaneously appears in 
BECs so they can be related to the time crystals. 

Time crystals are time-periodic self-organized struc-
tures that were recently described in [25,26]. Those works 
raised a challenging issues of the existence of systems with 
spontaneously broken time-translation symmetry. In other 
words, how could a many-body system be self-organized 
in time to start a spontaneous periodic motion? It was an-
ticipated that it is possible to prepare a many-body system 
in a state with an infinitesimally weak perturbation that 
will reveal periodic motion [26,27]. It was expected that 
time crystals can appear even in the lowest energy states, 
but it was shown recently that this idea cannot be realized 
[28,29]. However it was demonstrated experimentally that 
the discrete time translation symmetry can be spontaneous-
ly broken accompanied by discrete or Floquet time crystals 
nucleation [30–32]. 

The spatiotemporal vortices for bigger | |λ  (the bottom 
edge of the stable soliton solutions range) are shown in Fig. 4. 
STVR have more complex form for these parameters and they 
are not localized in time anymore (see Fig. 4(b)). 

STVR form can be changed by increasing the perturba-
tion parameter. For example, in Fig. 5 shown a stabiliza-
tion of the vortex form to ring-like shape after increasing 

Fig. 3. (Color online) Dynamics of perturbed soliton in BEC with attractive two-particle interactions and three-particle repulsive inter-
action for the following parameters: = 0.05,λ −  = 15,N  = 1.5a . (a) Spatiotemporal distribution in slice = 0y  of the density (top row) 
and phase (bottom row) of the condensate. (b) Spatiotemporal ring vortices. 

(a) (b) 
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the perturbation parameter by one third. It is worth to em-
phasise that in the low-density region more complex sys-
tems can occur (small rings, vortex threads, etc.) but it’s 
very unlikely that they can be detected experimentally. 

The ring’s radius as a function of the numbers of parti-
cles in the condensate is shown in the inset in Fig. 6 for the 
same deformation parameter = 1.5a . The frequency of the 
STVR occurrences is increasing with increasing of the 
number of particles in the system (see Fig. 6). 

One can see, that the least deformed rings is the one with 
the smallest radius (see Fig. 5). The largest rings in the system 
are subject to significant fluctuations and, in some systems, 
have greatly deformed, up to the loss of their initial form and 
become transformed into other structures.  

5. Conclusions 

It was found the conditions for formation of spatiotem-
poral vortex rings in ultracold atomic gases. These vortex 
structures exhibit phase dislocation both in space and time. 
A sequence of spatiotemporal vortex rings appears as a 

periodical in time edge phase dislocation at the low-density 
region of a perturbed atomic Bose–Einstein condensate. 

The dynamics of perturbed stationary soliton solutions 
of the Gross–Pitaevskii equation for two-dimensional con-
densate in the external trapping potential is investigated 
using numerical simulations. Both attractive and repulsive 
interparticle interactions are studied. It turns out that no 
spatiotemporal vortex rings can be detected when the trap-
ping potential strongly suppress the condensate density at 
the periphery of the atomic cloud. 

It is revealed that the spatiotemporal vortex rings can be 
trustworthy observed in the system without the external 
trapping potential supported by competing attractive two-
particle and repulsive three-particle interactions. The se-
quence of spatiotemporal vortex rings for systems with 
different initial perturbations and number of particles are 
studied. It is found that the temporal period of the sequence 
of spatiotemporal vortex rings is mostly determined by 
number of particles, while the ring radius depends both on 
amplitude of the deformation and on the number of particles. 

Fig. 4. (Color online) Dynamics of perturbed soliton in BEC with attractive two-particle interactions and three-particle repulsive interac-
tion for the following parameters: = 0.152,λ −  = 95N  and = 1.5.a  (a) Spatiotemporal distribution in slice = 0y  of the density (top 
row) and phase (bottom row) of the condensate. (b) Spatiotemporal ring vortices. 

(a) (b) 

Fig. 5. (Color online) Spatiotemporal vortex rings for a systems with = 0.125,λ −  = 36.9N  and for (a) = 1.5a ; (b) = 2.a   
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We hope that developed in this work theoretical findings 
open up the perspective for experimental observation of novel 
type of topological coherent structures in ultracold gases. 
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Просторово-часові вихорові кільця в атомарних 
бозе-ейнштейнівських конденсатах 

О.Г. Челпанова, Є.І. Курятніков, С. Вільчинський, 
О.І. Якименко 

Досліджено просторово-часові вихорові кільця з фазовою 
дислокацією у просторі та часі. Показано, що ці структури 
природно виникають як періодичні у часі фазові дислокації в 
області низької густини збуреного атомарного конденсату 
Бозе–Ейнштейна. Досліджено умови формування, динаміку і 
стабільність просторово-часових вихорових кілець для 
відштовхуючих і притягуючих міжатомних взаємодій. Ці 
теоретичні висновки відкривають перспективу для експери-
ментального спостереження нового типу топологічних коге-
рентних структур в ультрахолодних газах.  

Ключові слова: БЕК, ультрахолодні гази, вихори, вихорові 
кільця. 

Fig. 6. (Color online) The period of appearance of rings as a 
function of the number of particles for = 1.5.a  Inset shows the 
radius of vortex rings as a function of the number of particles in 
the system at = 1.5a . The black line corresponds to an effective 
radius of the soliton, blue dashed line with “o” corresponds to the 
minimum radius of the rings in each simulation. The red dotted 
line with “+” corresponds to the maximum radius values. 
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Spatiotemporal vortex rings in atomic Bose–Einstein condensates 

Пространственно-временные вихревые кольца в 
атомарных бозе-эйнштейновских конденсатах 

О.Г. Челпанова, Е.И. Курятников, С. Вильчинский, 
А.И. Якименко 

Исследованы пространственно-временные вихревые 
кольца с дислокацией фазы в пространстве и во времени. 
Показано, что эти структуры естественным образом возни-
кают в виде периодических по времени фазовых дислокаций 
в области низкой плотности возмущенного атомарного бозе-

эйнштейновского конденсата. Исследованы условия образо-
вания, динамики и устойчивости пространственно-времен-
ных вихревых колец для отталкивающих и притягивающих 
межатомных взаимодействий. Наши результаты открывают 
перспективу для экспериментального наблюдения нового 
типа топологических когерентных структур в ультрахолод-
ных газах.  

Ключевые слова: БЭК, ультрахолодные газы, вихри, вихре-
вые кольца.
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