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We investigate spatiotemporal vortex rings with phase dislocation both in space and time. It is demonstrated

that these structures naturally appear as a periodical in time edge phase dislocation at the low-density region of a

perturbed atomic Bose-Einstein condensate. The condition of formation, dynamics and stability of the

spatiotemporal vortex rings are investigated for repulsive and attractive interatomic interactions. These

theoretical findings open up a perspective for experimental observation of novel type of topological coherent

structures in ultracold gases.
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1. Introduction

Formation of vortex rings is a universal phenomenon
observed in classical and quantum fluids of different na-
ture. In quantum liquids the well known example is quan-
tized vortex rings in superfluid helium, discovery of which
has greatly increased interest in vortex rings with very thin
cores. Vortex rings play a crucial role in the decay of
superflow and in quantum turbulence in helium liquids and
atomic Bose—Einstein condensates (BECs) [1]. While rapid
progress has been made in the theoretical studies [2—6] of
quantized vortex rings, there has not been comparable pro-
gress in laboratory studies of vortex rings. Difficulties en-
sue not only with experimental detection of the vortex
rings in the condensate bulk but also with their unstable
evolution in trapped atomic BECs. As the result of this
instability vortex rings in realistic inhomogeneous BECs
either drift to an edge of the condensate, where they decay
into elementary excitations, or shrink and annihilate within
the condensate bulk. In work [7] we have suggested an
experimentally feasible trapping configuration (optical
tweezers) that can be used for creation, stabilization, and
manipulation of a vortex ring in a controllable and nonde-
structive manner. Using rotating trap of similar geometry it
is possible to stabilize even more complex topological
structures known as Hopf solitons [8].

Further prospective ways for generation novel type of
vortex rings in atomic BECs can be inspired by recent
findings in physics of optical vortices. A remarkable ex-
ample of spontaneous vortex ring nucleation has been re-

vealed in self-saturating [9] and nonlocal [10] optical non-
linear media. Formation of the vortex rings at the periphery
of the wave beam in optical media is a consequence of the
nonlinear phase accumulation between the soliton peak and
its tail. As was discovered in Ref. 9 phase singularities
nucleate if this phase difference reaches the value of ©
during propagation along z axis. Optical vortex rings (in
contrast to vortex rings in BECs [11]) are static in time and
appear when nonlinear phase of the self-trapped light beam
breaks the wave front into a sequence of optical vortex
loops around the perturbed fundamental soliton. The spa-
tial optical vortex is associated with region of space with
field null line around which electromagnetic energy densi-
ty circulates. But in general, beam propagation is not de-
scribed only by its spatial features, and temporal evolution
of the wave beam parameters should be taken into account
as well. As known, dynamics of optical pulsed beams with
spatiotemporal amplitude and phase modulation is gov-
erned by diffraction and dispersion effects. This provides a
new insight on the spatiotemporally localized waves,
called spatiotemporal vortices, drawing on analogy with
spatial screw phase dislocations [12]. Spatiotemporal opti-
cal vortices have been theoretically predicted [12—14] and
very recently experimentally observed [15] during self-
focusing collapse of wave beam in air.

One of the goal of this work is to find the conditions for
formation of spatiotemporal vortex rings and describe their
general properties in atomic BEC. Our idea is based on the
well known analogy [16] between two mathematical mod-
els: nonlinear Schrodinger equation describing propagation
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in the z direction of the wave beam in nonlinear optical
media and Gross—Pitaevskii equation (GPE) describing
evolution in time ¢ of BEC wave function. It would appear
reasonable that a sequence of spatiotemporal vortex loops
arises around the perturbed matter-wave soliton similar to
a sequence of spatial vortex rings around perturbed optical
soliton [9]. These matter wave spatiotemporal vortex rings
should appear as a periodically forming circular edge
phase dislocation at the periphery of the condensate cloud.

The paper is organized as follows. In Sec. 2, we describe
model. We take into account both two-particle and three-
particle interactions which can be described by GPE with
cubic-quintic nonlinearity. In Sec. 3 we study dynamics of
radially perturbed two-dimensional BEC in a harmonic trap
and investigate a possibility of spatiotemporal vortex ring
nucleation. It turns out that these structures are not observa-
ble in trappped BEC due to sharp decay of the condensate
density at the periphery of condensate. In Sec. 4 we demon-
strate that spatiotemporal vortex rings can be observed in a
condensate with attractive two-particle and repulsive three-
particle interactions without external potential.

2. Model

Dynamical properties of ultracold dilute atomic BECs
can be accurately described by the mean-field Gross—
Pitaevskii equation [17]:
ot - hzvz 4 ¥ v, (1
Ll v ext M- V[ +g Y[ Y, (D
where WV is the macroscopic wave function of the conden-
sate, V., (r) is the external trapping potential, % is the
Planck constant, M is the atomic mass, g, describes the
two-particle interaction between atoms in the condensate and
has the form g, = —47th2as /M where a, is the s-wave scat-
tering length (positive for repulsive interatomic interaction
and negative for attractive interaction). Parameter g5 cor-
responds to the strength of three-particle repulsive interac-
tion [18-20]. Here we take into account only conservative
part of three-particle interaction. Thus Eq. (1) conserves
the norm of the condensate wave function ¥ that is
equivalent to the number of atoms
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where 72 = x? + yz, o, is the trap frequency in the trans-
verse plane, o, is the longitudinal trapping frequency. For
®, > o, the condensate has a disk-shaped form (the lon-
gitudinal oscillator length is small comparing to the trans-
verse size) and can be described by quasi two-dimensional
(2D) wave function y(r,t). We assume that the system is
tightly confined in the z direction

W(r,z,t)=y(r,t)Y(z,1), 4)

where Y(z,t)= (nlz)71/2 exp (—im,t/2 ~z2 /2122) is the
ground state wave function in the oscillatory potential
V. (z)= Mo)gz2 /2. Here I, =\/h/(Mw®,) is an oscillatory
length in the z direction. After integrating out the longitu-
dinal coordinates in the Eq. (1), we obtain 2D GPE consid-
ered in the following sections.

3. Dynamics of perturbed two-dimensional solitons in
trapped BECs

In the model describing ultracold dilute atomic 2D BEC
in radial harmonic trap V, (r)=M mirz /2 three-particle
interactions can be neglected (g3 =0) and stationary
soliton solutions exist both for attractive (g, > 0) and re-
pulsive (g, <0) two-particle interactions. In terms of har-

monic oscillator units [t >tw,, r—>r/l, ¥Y—>I, ¥,

g=«/§as /1,, where [| =\/hi/(M®,)] 2D GPE can be

written in dimensionless form

oy 1op 15 2
i—+=Vy——r-y-— =0, 6
o Vv yrvglvlity (6)
where y is dimensionless wave-function and g is the di-
mensionless 2D interaction constant, r is the polar radius.
Stationary  soliton  solution can be found as
y(r,1)=e ™¥(r) by solving equation

2
py = _Lpat 1d +lr2+g|‘l-’|2 v,
20 @2 rdr) 2

where p is a chemical potential. Stationary solution char-
acterized by constant density distribution so any vortices
cannot appear during evolution. But additional radially-
symmetric perturbations in the initial condition can lead to
the vortex formation. As perturbation we use

Y(r) - l\y(i} (8)
a a

where a is a parameter of deformation. It’s possible to
stretch or extend the disc-shaped condensate in the radial
direction by using external field (we only use radially-
symmetric perturbations with a > 1) and then release it at
the moment of time 7 = 0.

We use the split-step (Fourier) method [21,22] to find
numerically solutions of Eq. (6) for different N. We con-
sider BEC of N =175 of 2*Na atoms in the harmonic trap
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Fig. 1. (Color online) Dynamics of perturbed soliton in BEC with attractive two-particle interaction for following parameters

g=-0.018, N=175,

a=1.2. (a) Dynamics of the density (top row) and phase (bottom row) of the condensate. (b) Spatiotemporal

distribution of the density (top row) and phase (bottom row) of the condensate.

with the following parameters: o, =75 Hz, o, =750 Hz,
g =-0.018. An example of the time evolution of the con-
densate is shown in Fig. 1(a). Slice y =0 as a function of
time is a spatiotemporal distribution of the condensate. An
example of the spatiotemporal distribution of phase and
density are shown in Fig. 1(b).

Vortices in a complex wavefunction are characterized
by a phase circulation about the vortex core, and also by a
positive curvature of the probability density. In small den-
sity regions wavefunction has little physical significance,
but phase fluctuates wildly [23]. We use the Wavelet
denoising toolbox (Matlab) to clean the low-density region
of numerical artifacts to consider phase structure. The vor-
tex detector couldn't find any vortex core after the
denoising procedure. It could therefore be stated that there
were no spatiotemporal vortices in the system. The same
results for the systems with repulsive two-particle interac-
tion (see Figs. 2(a) and (b)). Various sets of system param-
eters has been checked but none of them didn’t allow us to
detect the spatiotemporal vortex.

It is clear that external trapping potential plays a key
role in the character of the system dynamics at the conden-
sate low-density region. Thus, even strong perturbation
(a=2,3,5) cannot lead to the vortex formation. However,

t=10.0012

t=0.0132

t=10.0252 t=0.0372

an external potential is not necessarily required for self-
sustained condensates supported by nonlinear interactions
in BEC. Various nonlinear effects can lead to formation of
stable localized coherent structures as well. In the follow-
ing section we consider atomic cloud without external
trapping potential where attractive two-particle interactions
are balanced by repulsive three-particle interactions.

4. Spatiotemporal vortex rings in a trapless BEC

The stationary solutions of the GPE Eq. (1) without ex-
ternal potential are known to be unstable with respect to
collapse for attractive interaction and has no localized sta-
tionary solutions for repulsive interactions. Account on two-
particle interactions and neglecting higher-order effects
gives an adequate approximation for the dilute condensate
trapped by external potential. However in the trapless con-
densate with attractive two-particle interactions higher-order
effects, such as repulsive three-particle interactions, can play
a crucial role since it can arrest a catastrophic collapse of the
condensate. The model can be improved by adding a repul-
sive quintic nonlinear interaction term in Eq. (6). The di-
mensionless 2D GPE then acquires the form

0¥ +DVW+g, ¥ ¥—gs W [*W=0, (9
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Fig. 2. (Color online) Dynamics of perturbed soliton in BEC with repulsive two-particle interaction for the following parameters

g=0.018, N=10°,

a=1.1. (a) Dynamics of the density (top row) and phase (bottom row) of the condensate. (b) Spatiotemporal

distribution of the density (top row) and phase (bottom row) of the condensate.
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where D, g, and gz are dimensionless. The value of the
three-body coupling constant g5 should be small compar-
ing to the two-particle coupling constant g,. Such model is
well known as a model with cubic-quintic nonlinearity in
nonlinear optics [24] and physics of ultracold atoms.

We have the freedom of choice of ®, so for simplicity

we choose ®, =1 Hz. In the Eq. (9) with two-particle at-

tractive and three-particle repulsive interaction both con-
stants g, and g5 are positive. Consider a change of coordi-

nates  y(r,f) > ¥(p,1), where Y(p)=w(r)\g3/g,

p= r\/gg /(Dg3), 1= tg22 /(ngs), were p is a dimensionless

chemical potential. Therefore Eq. (9) can be rewritten in
form

Y +VW+ VP Y- Y [P =o. (10)

It is also convenient to define a rescaled chemical potential
A =ngs/ g% . The real number of atoms (physical) can be
found by Nppy =N /(4\/Eas ), where N is the norm of
the new condensate wave function W(p, ). To find a station-
ary state of Eq. (10), we write \¥(p,7) = y(p) exp (—iAt) :

2
" :[_[d_JrliJ_py 2 +|‘I’|4}‘I’. (11)

We use the Thomas algorithm [22] to find stationary solu-
tion of Eq. (11). This algorithm allows us to find stable
soliton solutions in the range of A from —0.152 to 0. The
range can be extended using another method, for example,
“shooting” method [24]. Dynamical simulations of the
perturbed stationary state demonstrate the spatiotempo-
ral vortex ring (STVR) formation for strong perturba-
tions (a >1.5). And it is noteworthy that we have not ob-
served STVR in the systems with small perturbations.
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The spatiotemporal vortex for small |A| is shown in
Fig. 3. By analogy with the previous section Fig. 3(a) rep-
resents a slice y =0 as a function of time. At the equal
time intervals two easily distinguishable points with phase
winding appear. The one with a clock-wise winding and
the other one with anticlock-wise winding which corre-
spond to the vortex and antivortex, respectively. Combin-
ing this with data for other slices (y # 0) we build (2+1)D
graph of all winding points in Fig. 3(b). It’s remarkable
that the radius of STVR is a periodic function of time when
the Hamiltonian of this system isn’t periodical. Therefore
we can assume that continuous time-translation symmetry
for this system is broken. STVR spontaneously appears in
BEC:s so they can be related to the time crystals.

Time crystals are time-periodic self-organized struc-
tures that were recently described in [25,26]. Those works
raised a challenging issues of the existence of systems with
spontaneously broken time-translation symmetry. In other
words, how could a many-body system be self-organized
in time to start a spontaneous periodic motion? It was an-
ticipated that it is possible to prepare a many-body system
in a state with an infinitesimally weak perturbation that
will reveal periodic motion [26,27]. It was expected that
time crystals can appear even in the lowest energy states,
but it was shown recently that this idea cannot be realized
[28,29]. However it was demonstrated experimentally that
the discrete time translation symmetry can be spontaneous-
ly broken accompanied by discrete or Floquet time crystals
nucleation [30-32].

The spatiotemporal vortices for bigger || (the bottom
edge of the stable soliton solutions range) are shown in Fig. 4.
STVR have more complex form for these parameters and they
are not localized in time anymore (see Fig. 4(b)).

STVR form can be changed by increasing the perturba-
tion parameter. For example, in Fig. 5 shown a stabiliza-
tion of the vortex form to ring-like shape after increasing
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Fig. 3. (Color online) Dynamics of perturbed soliton in BEC with attractive two-particle interactions and three-particle repulsive inter-

action for the following parameters: A =—-0.05, N =15, a =1.5. (a) Spatiotemporal distribution in slice y =0 of the density (top row)
and phase (bottom row) of the condensate. (b) Spatiotemporal ring vortices.
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Fig. 4. (Color online) Dynamics of perturbed soliton in BEC with attractive two-particle interactions and three-particle repulsive interac-

tion for the following parameters: A =-0.152, N =95 and a=1.5. (a) Spatiotemporal distribution in slice y =0 of the density (top

row) and phase (bottom row) of the condensate. (b) Spatiotemporal ring vortices.

the perturbation parameter by one third. It is worth to em-
phasise that in the low-density region more complex sys-
tems can occur (small rings, vortex threads, etc.) but it’s
very unlikely that they can be detected experimentally.

The ring’s radius as a function of the numbers of parti-
cles in the condensate is shown in the inset in Fig. 6 for the
same deformation parameter a« =1.5. The frequency of the
STVR occurrences is increasing with increasing of the
number of particles in the system (see Fig. 6).

One can see, that the least deformed rings is the one with
the smallest radius (see Fig. 5). The largest rings in the system
are subject to significant fluctuations and, in some systems,
have greatly deformed, up to the loss of their initial form and
become transformed into other structures.

5. Conclusions

It was found the conditions for formation of spatiotem-
poral vortex rings in ultracold atomic gases. These vortex
structures exhibit phase dislocation both in space and time.
A sequence of spatiotemporal vortex rings appears as a
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periodical in time edge phase dislocation at the low-density
region of a perturbed atomic Bose—Einstein condensate.

The dynamics of perturbed stationary soliton solutions
of the Gross—Pitaevskii equation for two-dimensional con-
densate in the external trapping potential is investigated
using numerical simulations. Both attractive and repulsive
interparticle interactions are studied. It turns out that no
spatiotemporal vortex rings can be detected when the trap-
ping potential strongly suppress the condensate density at
the periphery of the atomic cloud.

It is revealed that the spatiotemporal vortex rings can be
trustworthy observed in the system without the external
trapping potential supported by competing attractive two-
particle and repulsive three-particle interactions. The se-
quence of spatiotemporal vortex rings for systems with
different initial perturbations and number of particles are
studied. It is found that the temporal period of the sequence
of spatiotemporal vortex rings is mostly determined by
number of particles, while the ring radius depends both on
amplitude of the deformation and on the number of particles.
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Fig. 5. (Color online) Spatiotemporal vortex rings for a systems with A =—0.125, N =36.9 and for (a) a =1.5; (b) a = 2.
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Fig. 6. (Color online) The period of appearance of rings as a
function of the number of particles for a =1.5. Inset shows the
radius of vortex rings as a function of the number of particles in
the system at @ =1.5. The black line corresponds to an effective
radius of the soliton, blue dashed line with “0” corresponds to the
minimum radius of the rings in each simulation. The red dotted
line with “+” corresponds to the maximum radius values.

We hope that developed in this work theoretical findings
open up the perspective for experimental observation of novel
type of topological coherent structures in ultracold gases.
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[MpocTopoBO-4acoBi BUXOPOBI KiNbLisi B aTOMapHUX
003e-eNHLTENHIBCbKMX KOHAEHcaTax

O.l'. YennaHoga, €.1. KypsaTHikos, C. BinbunHcbkui,
O.1. AknmeHko

JlocTipkeHO TIPOCTOPOBO-YacOBi BUXOPOBI KUIBIA 3 (ha30BOIO
JHCIOKaIieo y mpocropi ta yaci. [TokasaHo, mo i CTPyKTypH
MIPUPOJTHO BUHHUKAIOTH SIK TIEPIOJMYHI y 9aci (a3oBi quciIokarii B
obsacti HU3BKOI T'yCTHHH 30ypeHOr0 aTOMapHOrO KOHICHCATY
Bosze-Eitnmrreiina. JlociipkeHo yMoBH GopMyBaHHS, THHAMIKY i
CTalbiIbHICTh IPOCTOPOBO-YACOBHX BHXOPOBMX KileUb JUIs
BIJIITOBXYIOUNX 1 NPHUTATYIOUNX MDXATOMHUX B3aemoniit. ILli
TEOPETHYHI BUCHOBKH BiJIKPUBAIOTh MEPCIEKTUBY JUI CKCHEPH-
MEHTAJIBHOTO CIIOCTEPEKEHHSI HOBOTO THITY TOIIOJIOTIYHUX KOTe-
PEHTHHX CTPYKTYp B YJIbTPaXOJIOAHHX ra3ax.

Kirouosi cnosa: BEK, ynbTpaxononmHi ra3u, BHXOpH, BHXOpPOBI
KIJIBIIA.
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Spatiotemporal vortex rings in atomic Bose—Einstein condensates

lMpocTpaHCTBEHHO-BPEMEHHBIE BUXPEBLIE KOMbLA B
aToMapHbIX 603e-3NHLLITENHOBCKNX KOHAEHCaTaX

O.l. YennaHoga, E.N. KypaTtHukos, C. BunbunHckni,
AWN. AknmeHko

HccnenoBanbl  MPOCTPAHCTBEHHO-BPEMEHHBIE  BUXPEBBIE

KOJIBIIa C JAUCIIOKAalueH (a3pl B MPOCTPAHCTBE U BO BPEMEHHU.

HOKa3aH0, YTO 3THU CTPYKTYPbI €CTCCTBEHHBIM 06pa30M BO3HHU-

KaloT B BUJE MEPHOANYECKUX 110 BpeMEHU (PA30BBIX ANCIOKALUI

B 00J1aCTH HHM3KOM IUIOTHOCTH BO3MYUICHHOI'O aTOMAapHOTo 003e-

SUHINTEHHOBCKOTO KOHJEHcaTa. McciienoBanbl ycinoBus o0pa3o-
BaHUS, JUHAMUKU U YCTOHYMBOCTH INPOCTPAHCTBEHHO-BPEMEH-
HBIX BUXPEBBIX KOJIEIl AJISI OTTAJIKUBAIOIIMX M MPUTATHBAIOLINX
MEXaTOMHBIX B3auMojieiicTBuil. Hamm pe3ynbTaTbl OTKpHIBAIOT
MEepPCIEeKTUBY JUIA 3KCIEPUMEHTAIBLHOIO HaOMIOJEHUS HOBOTO
TUIA TOIMOJIOTUYECKUX KOTEPEHTHBIX CTPYKTYpP B YJIBTPaxoJoJ-

HBIX ra3ax.

Kitouessie cnoBa: BOK, ynbrpaxonogHble rasbl, BUXpH, BUXpe-

BbIC KOJIBIIA.
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