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In this Review we discuss three examples of different physical systems where the energy localization occurs 
at the edges due to nonlinearity, topology, or curvature. In many of such systems, the existence of localized edge 
modes and their properties can be verified experimentally, as for the case of arrays of weakly coupled optical 
waveguides. 
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1. Introduction

Many research topics run at the Institute for Low Tem-
perature Physics and Engineering during the Directorship 
of Prof. Boris Verkin have been devoted to theoretical and 
experimental studies of spatially localized modes in differ-
ent types of low-dimensional solid-state and optical sys-
tems. In linear systems, localized modes are usually asso-
ciated with defects such as surfaces, interfaces, or 
impurities, whereas in nonlinear systems localized modes 
appear as self-trapped states or discrete solitons (some-
times called intrinsic localized modes). 

Currently, we observe a growing interest in the study of 
spatially localized modes in photonic systems. Indeed, as 
the size of active photonic devices decreases, the role of 
defects and surfaces in photonic structures becomes in-
creasingly important. In optics, surface electromagnetic 
waves are known for many years as the waves localized at 
the interface separating either two homogeneous or homo-
geneous and periodic dielectric media [1], while nonlinear 
dielectric media can support different types of nonlinear 
guided waves localized at or near the surfaces [2]. Nonlin-

ear guided waves in planar waveguiding structures have 
been studied extensively for last 20 years. 

The paper is organized as follows. In Sec. 2, we discuss 
optical modes which are localized at the edge of an array 
of optical waveguides due to nonlinearity. Such modes 
exist when their power exceeds some threshold value, and 
they can be characterized by an effective energy describing 
the interaction of light with the edge waveguide. Section 3 
is devoted to the study of edge modes in zigzag arrays of 
nanoparticles demonstrating topological properties. In such 
topological structures, the localization occurs due to non-
trivial topological properties when the zigzag angle ex-
ceeds some critical value. Finally, in Sec. 4 we consider an 
example of a phononic system, such as a capped carbon 
nanotube, and demonstrate that curved surface of the cap 
can result in a strong localization of vibrational phonons. 
Finally, Sec. 5 concludes the paper. 

2. Nonlinear edge modes

Surface modes are a special type of waves localized at 
an interface between two media. Recently, it was predicted 
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theoretically and demonstrated experimentally that nonlin-
ear self-trapping of light near the edge of a waveguide 
array with self-focusing nonlinearity can lead to the for-
mation of discrete surface solitons (see, e.g., the review 
paper [3]). It was found that the self-trapped surface modes 
acquire some novel properties different from those of the 
discrete solitons in infinite lattices: discrete surface states 
can only exist above a certain threshold power and, for the 
same value of the power, up to two different surface modes 
can exist simultaneously. This can be understood as dis-
crete optical solitons localized near the surface but experi-
encing a repulsive force from the surface [4]. 

To demonstrate the property of nonlinear localization, 
we study a semi-infinite array of identical, weakly coupled 
nonlinear optical waveguides described by the system of 
coupled-mode equations for the normalized mode ampli-
tudes nE ,  

 21
1 2 1 1| | = 0,

dEi E E E E
dz

+α + + γ  (1) 

 2
1 1( ) | | = 0,n

n n n n n
dE

i E E E E E
dz + −+ α + + + γ  (2) 

where in the second equation 2n , propagation coordinate 
z  is normalized to intersite coupling V , the field ampli-
tudes n  are defined in terms of the actual electric fields 

nE  as 1/2
0 0 0 2= (2 / )n nV n n Eλ η π , where 0λ  is the free-

space wavelength, 0η  is the free-space impedance, α  is the 
normalized linear propagation constant of each waveguide, 

2n  and 0n  are nonlinear and linear refractive indices of 
each waveguide, and = 1γ ±  defines the type of nonlineari-
ty: focusing or defocusing [4]. 

We look for stationary modes of the waveguide array in 
the form ( ) = exp( )n nE z i z Eβ , where β is the nonlinearity-
induced shift of the propagation constant. Figures 1(a), (b) 
show two examples of the nonlinear localized states cen-
tered at different sites near the surface for both focusing 
and defocusing nonlinearities. The surface state centered at 

= 1n  and shown in Fig. 1(a) (left) was predicted earlier [5]. 
The existence of multiple localized states near the surface 
and their properties have been analyzed by Molina et al. 
[4] who revealed an important interplay between nonline-
arity and discreteness in the array and studied the effect of 
the lattice truncation on the stability of the surface states. 
In both the cases, the states in Figs. 1(a) and (b) describe a 
crossover regime between the modes with the maximum 
amplitude at the surface and the modes which are weakly 
affected by the presence of the surface. 

Figure 1(c) shows power P  of the localized surface 
states versus the propagation constant β for the modes in 
the focusing waveguides shown in Fig. 1(a), and the corre-
sponding curves for the modes of the defocusing wave-
guides are mirror images. Direct numerical simulations and 
stability analyses confirm the validity of the Vakhitov–
Kolokolov stability criterion [6]; the instability region (that 
corresponds to a negative slope of the power curve) de-
creases as the center of the localized mode gets shifted 
away from the array edge. 

Fig. 1. (Color online) Nonlinear localized modes in discrete lattices. (a), (b) Examples of discrete surface solitons in an array of (a) 
focusing ( = 1γ +  and = 3β +  ) and defocusing ( = 1γ −  and at = 3β − ) waveguides centered at the distances = 0d  and = 1d , respective-
ly [4]. (c) Normalized power vs. propagation constant β for the edge modes (discrete surface solitons) shown in (a) at the distances 

= 0, 1, 2, 3d  from the edge. (d) Theoretical prediction and experimental observation of the nonlinear edge states in an array of defo-
cusing optical waveguides [8].  
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Shortly after the prediction of discrete optical solitons 
near the boundary of a self-focusing cubic nonlinear wave-
guide array, the first observation of these surface solitons 
was carried out [7]. While these surface optical solitons 
can be understood in terms of self-rapping of light at large 
enough powers, the subsequent observations of nonlinear 
localized states has been done for surface gap solitons at 
the edge of a self-defocusing LiNbO3 waveguide array [8]. 
In this experiment, the array consisted of 100 single-mode 
optical waveguides fabricated by titanium in-diffusion pro-
cess in a monocrystal x-cut lithium niobate wafer. The 
LiNbO3 exhibits a strong photovoltaic effect which leads 
to defocusing saturable nonlinearity at visible wavelengths. 
At low laser power (0.1 W), two major effects were ob-
served. First, due to coupling between neighboring wave-
guides the probe beam experiences discrete diffraction and 
spreads out in the horizontal plane upon propagation. Se-
cond, the beam shifts dramatically to the right indicating a 
strong repulsive effect of the surface. Increasing the laser 
power leads to spatial beam self-action through the defo-
cusing photovoltaic nonlinearity. This nonlinearity-induced 
suppression of the surface repulsion leads to partial self-
trapping at the surface, with a tail of intensity lobes extend-
ing into the periodic structure. A series of zero intensity 
points between these lobes indicates the self-induced for-
mation of a staggered phase, as shown in Fig. 1(d). 

In general, this scenario of the formation of nonlinear 
localized modes is rather universal. In a majority of dis-
crete physical systems, a truncation of the system does not 
lead to any surface localized modes the edge or surface 
introduced by the truncation corresponds to a repulsive 
effective potential. Nonlinearity supports self-trapping and 
may overcome the surface repulsion, thus supporting non-
linear surfaces state with the energy exceeding a threshold. 

3. Topological edge states 

Topological insulators represent a novel class of materials 
with a topologically protected phase order [9]. Such materials 
attracted a lot of attention in the recent years due to the exist-
ence of novel types of conducting surface states in otherwise 
insulating bulk materials being protected by time-reversal 
symmetry, and they demonstrate novel phenomena such as 
the quantum Hall effect. Recently, the concept of topological 
insulators became attractive in optics, and different types of 
electromagnetic topological states have been realized experi-
mentally [10]. The first electromagnetic topological edge 
states were demonstrated for microwaves, and later such nov-
el photonic states were also realized at optical frequencies in 
coupled optical waveguides and optical lattices (see the re-
view paper [10] and references therein). 

Recently, it was predicted theoretically that a novel type of 
topological edge states can be realized in the subwavelength 
regime for a zigzag array of plasmonic nanoparticles [11]. 
Nontrivial topological properties of these plasmonic edge 

states have been studied in the framework of the coupled-
dipole approximation and also by direct numerical simula-
tions of Maxwell’s equations. Later, the topological prop-
erties of zigzag arrays of dielectric particles have been stud-
ied experimentally for microwaves [12] and optics [13]. 
Very recently, unusual nonlinear properties due to topologi-
cal phases in such arrays have been revealed experimentally 
in the third-harmonic generation [14]. 

To describe the topological properties of zigzag arrays, 
we consider a general model originating from two major 
assumptions [12]: (i) polarization-dependent interaction 
between resonant modes of its structural elements, and (ii) 
a zigzag shape of the array [Fig. 2(a)]. The structure Hami-
ltonian can be presented in a rather general form [12] 

 ( , )† †
0

, , , ,
= ,j j

j jj j
j j j

H E a a a V a′ ′ ′ν νν ν ′νν
′ ′ν 〈 〉 ν ν

+∑ ∑  (3) 

where 0E  is the resonance energy, the indices j  and j′ 
label the particles, and ,j j′〈 〉 are the nearest neighbors. We 
are interested only in the states excited at the normal light 
incidence upon the zigzag plane ( )xy , i.e., the mode polari-
zation ν can be x  or y  for dipole resonances and = ,xz yzν  
for the quadrupole resonances. 

In this Hamiltonian, ( , ) 2 2= cos sinj jV t t′
νν ⊥ψ + ψ



 (with 

= xν  or xz ), ( , ) 2 2= sin cosj jV t t′
νν ⊥ψ + ψ



 (with = yν  or 

yz ) and ( , ) = ( )sin cosj jV t t′
⊥′νν − ψ ψ



 for ′ν ≠ ν , where ψ  is 

the azimuth angle of the vector = j j′−R r r . Here, t


 and t⊥  
are the coupling constants of the modes co- and cross-
polarized with respect to the link R ; for quadrupole-
quadrupole interaction / = 4t t⊥ −



 and for dipole-dipole 

interaction / = 2t t⊥ −


. 
The calculated spectrum of the Hamiltonian (3) for the 

finite chain with = 60N  particles is shown in Fig. 2(c) as 
function of the angle θ between two consecutive links in 
the zigzag. The value of θ equal to π corresponds to 
straight line when the two polarizations ν are decoupled, 
the system is not gapped and no edge states are present. 
The case 1θ  corresponds to degenerate zigzag with very 
acute angles. For | /2 |< arcsin | 2 / |tθ− π ∆  a spectral gap 
appears with a pair of eigenstates, one localized at the left 
edge and one at the right edge. All further details can be 
found in an earlier paper [12]. 

Topological edge states in our system rely strongly on 
the polarization degeneracy of the eigenmodes of individu-
al particles, and thus the problem is more general and 
much richer than the celebrated scalar Su–Schrieffer–
Heeger (SSH) model for polyacetylene [15]. Although 
optical analogues of the SSH model were extensively stud-
ied in dimer superlattices, its topological properties have 
been fully understood only recently [16]. In our system, 
contrary to the SSH model, all the particles are the same 
and a pair of zero-energy states is present for both odd and 
even number of particles N . Localization degree increases 
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with the number of particles. For odd N  and = /2θ π  the 
edge states are co-polarized, and for even N  they are 
cross-polarized. This opens a possibility to selectively ex-
cite left or right edge of the same structure by varying the 
incident wave polarization. 

Being inspired by this numerical demonstration of the 
edge excitation in the zigzag array, Slobozhanyuk et al. 
performed the proof-of-concept experiments in the micro-
wave frequency range. To mimic the electromagnetic prop-
erties of silicon nanoparticles, they employed MgO–TiO2 
ceramic spheres that are characterized by a dielectric constant 
of 15 and small dielectric loss factor in the 4–10 GHz fre-
quency range [17]. The sphere radius is equal to = 7.5R  mm 
and the spheres are touching each other. The experi-
mental results are summarized in Fig. 2(d). For chosen 
parameters the magnetic quadrupole resonance frequency 
is equal to = 7.2f  GHz. 

Next, Slobozhanyuk et al. [12] proceeded to the analysis 
of the near-field maps measured in the close vicinity of the 
dielectric zigzag array at the magnetic quadrupole resonance. 
In order to approximate the plane wave excitation, they uti-
lized a rectangular horn antenna. It is connected to the trans-
mitting port of a vector network analyzer (Agilent E8362C). 
They also used an automatic mechanical near-field scanning 
device and an electric field probe connected to the receiving 

port of the analyzer. The probe is oriented normally with re-
spect to the interface of the structure, and we measure zE  
component of the electric field. The near field was scanned at 
the 1 mm distance from the back interface of the zigzag array 
to avoid the contact between the probe and the sample. The 
polarization dependence of the structure response is examined 
by rotating the source antenna. 

Two images in Fig. 2(d) show the electric field maps for 
different angles φ between the polarization direction of the 
incident magnetic field 0H  and the x  axis. The maps present 
a direct confirmation of the edge excitation in the structure 
at the magnetic quadrupole resonance. The relative intensity 
of the field above the edges can be switched by rotating the 
incident wave polarization. For = 0φ  or 90° polarizations, 
only the first or last sphere are excited, respectively. These 
results directly demonstrate the difference between our po-
larization sensitive system and the scalar SSH model. Based 
on the simplified analysis [11], the edge mode excitation sce-
nario is different for even number of particles, where both 
edges are excited identically with polarization-dependent in-
tensities. Similar behavior is observed experimentally for six 
dielectric particles at the magnetic quadrupole resonance. The 
experimental results of Fig. 2(d) are in full qualitative agree-
ment with the predictions of the symmetry analysis of the 
Hamiltonian (3). 

Fig. 2. (Color online) Topological edge modes in arrays of  Mie-resonant dielectric particles. (a) Artist’s view of a zigzag array of topo-
logically nontrivial zigzag array of dielectric spheres. (b) A zigzag array of silicon nanodisks fabricated experimentally [13]. (c) Energy 
spectrum of the zigzag array calculated as the function of the bond angle θ . Dashed red lines mark the region where the topological 
edge states can exist. (d) Experimental observation of topological edge states at the frequency of the magnetic dipole resonance [12] 
excited by the different orientations of the magnetic component of the external wave. 
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Thus, Slobozhanyuk et al. [12] proposed and experi-
mentally demonstrated a novel class of photonic topologi-
cal edge states realized in the zigzag arrays of sub-
wavelength dielectric resonant structures. They have 
demonstrated experimentally selective excitation of topo-
logical edge states by adjusting the polarization of the inci-
dent wave, and we have clarified the difference between 
topologically trivial and nontrivial electromagnetic modes 
in such arrays. We believe that the study of topological 
polarization-entangled eigenmodes suggests a new way for 
engineering the properties of subwavelength structures and 
all-dielectric metamaterials for novel applications in 
nanophotonics. 

Very recently, Kruk et al. [14] employed this system for 
the observation of a third-harmonic signal from a topological-
ly nontrivial zigzag array of dielectric nanoparticles and the 
demonstration of strong enhancement of the nonlinear photon 
generation at the edge states of the array. The signal en-
hancement is due to the interaction between the Mie reso-
nances of silicon nanoparticles and the topological localiza-
tion of the electric field at the edges. The system is also robust 
against various perturbations and structural defects. 

The existence of a topological phase in a zigzag array 
when the zigzag angle is selected in the spectral gap, al-
lows the edge modes appear even in the case of truncated 

arrays of identical particles. This is somewhat controver-
sial property is a result of the exotic topology of the array 
that can be characterized by a nonzero winding number 
[12], in a contrast with trivial arrays. 

4. Modes localized due to curvature 

It has been well established that surfaces can often sup-
port a special class of spatially localized surface states 
[18], which have been studied in many branches of phys-
ics, including electrons in crystals, surface phonons, sur-
face polaritons, and optical surface modes in waveguide 
arrays. However, a detailed analysis and direct observation 
of highly localized excitations at the atomic level remains 
rather difficult. A broad class of such atomic systems is 
presented by carbon nanotubes [19], which support differ-
ent types of phononic localized modes. 

Here, we discuss phononic surface states and consider 
two types of single-walled carbon nanotubes, which are 
known to have the smallest diameters. The structure of the 
nanotubes is shown in Fig. 3. A zigzag ( , 0)m  single-wall 
carbon nanotubes with the indices m = 6 has > 2L  trans-
verse segments consisting of N = m + 2mL + m carbon 
atoms (each tip has m atoms, and each segment has 2m 
atoms). The structures with the smallest number of atoms 

= 36N  for = 6m  at = 2L  transform into fullerene C36. 

Fig. 3. Localized phononic modes in capped single-wall carbon nanotubes. Left: two examples of the structure of the tips of the single-
walled capped carbon nanotubes with the chirality indices (6, 0) and (6, 6). Right: Distribution of the energy density ( )p x  of localized 
modes along the nanotube for the capped nanotubes (6, 0) and (6, 6), respectively; x  is the distance from the nanotube tip, and n  is the 
mode number. For the nanotube with the chirality (6, 0), the localized modes have frequencies of ω = 1522.0, 527.9, 1389.6, 601.9, 
297.5, 1145.7, 510.3, 1498.1, 262.9, 499.3, 148.0, and 1487.2 cm (n  = 1, 2, . . . , 12). For the nanotube with the chirality (6, 6), the fre-
quencies are ω = 556.7, 538.7, 1260.5, 1591.2, 1586.7, and 548.0 cm (n  = 1, . . . , 6) [21]. 
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The armchair nanotube ( , )m m  with the index m = 6 has 
4L  transverse segments with N = 2m + 2mL + 2m car-

bon atoms (with 2m atoms in the tip and the segment). The 
structure with the smallest number of atoms = 72N  for 

= 6m  and L = 4 is transformed into fullerene C72. 
In our numerical studies we employ the interaction po-

tentials usually employed for modeling the dynamics of 
large macromolecules [20–22]. To describe oscillations of 
the nanotube, the system Hamiltonian can be presented in 
the form [21] 

 
=1

1= ( , ) ,
2

N

n n n
n

H M P +  
∑ u u   (4) 

where M  is the mass of the carbon atom, =nu  
= [ ( ), ( ), ( )]n n nx t y t z t  is the radius-vector of the nth carbon 
atom at the time t . The last term describes the energy of inter-
action of nth atom with the neighboring atoms,  

 
3 3 3

=1 =1 =1

1= .
2n j j j

j j j
P V U W+ +∑ ∑ ∑  (5) 

The first three terms in Eq. (5) describe the deformation 
energy due to a direct interaction between pairs of atoms 
(valent bonds), the next three terms describe the defor-
mation energy of the valent angles, and finally, the last 
three terms describe the deformation energy associated 
with a change in the effective angle between the planes 
created by the valent bonds. The details of the models can 
be found the earlier paper [22]. 

The largest number of surface localized modes is found 
in the nanotube (6,0). If we number those modes in ac-
cordance with their degree of localization (see Fig. 3, 
right), we can divide all the modes into three groups. The 
first group consists of the modes localized at the very edge 
of the nanotube (the modes n = 1, 2, 3, 4), which can be 
related to the oscillations of the hexagon structure of atoms 
at the tip. 

In-plane oscillations of the hexagon generate the most 
localized modes (n = 1, 2). Out-of-plane oscillations in-
volve the neighboring atoms, and the corresponding modes 
are less localized (modes 3 and 4). The second group of 
modes (the modes n = 5, 6, 7, 8) is associated with the os-
cillations of the second transverse segment of atoms, and 
such oscillations are less localized. Finally, the third group 
of modes corresponds to the localized oscillations shifted 
away from the edge of the nanotube (the modes n = 9, 10, 
11, 12). These modes practically do not involve oscilla-
tions of the tip atoms. 

Strongly localized modes observed in the nanotube 
(6,6) are not related directly to the modes of a hexagon at 
the tip, so the number of such modes is two times smaller. 
As seen in Fig. 3, the oscillations are localized at the two 
edge segments of atoms and do not penetrate deeper into 
the structure. Therefore, other types of nanotubes and car-

bon structures are expected to support strongly localized 
surface states. 

In addition, we studied strongly anharmonic surface 
modes localized at the tips. Unlike the linear modes dis-
cussed above, which are exact solutions of the linearized 
equations of motion, the anharmonic modes radiate pho-
nons decaying in a finite time. A nonlinear mode with the 
largest lifetime that we found is the torsion mode of the 
nanotube (6,0) with frequency of 527.9 cm–1. For the input 
kinetic energy of 3.04 eV (mode amplitude A = 70 Å) and 
temperature = 0T , the decay time of this mode (calculated 
when the mode loses half of its energy) was found to ex-
ceed 100 ps, while it is smaller for a finite temperature, 
e.g., it is 20 ps for T = 30 K and 9 ps for T = 300 K. Gener-
ally, the tips of capped nanotubes may support all types of 
long-lived anharmonic modes, which generalize the linear 
modes but demonstrate a finite lifetime of a few picose-
cond (at room temperatures). 

Thus, in this example we observe that small-amplitude 
oscillations of single-walled capped carbon nanotubes can 
support phonon oscillatory surface states localized at the 
tips of the capped nanotubes, in analogy to the surface 
states discussed above and known to exist in solids and 
optics due to defect but here being supported by curved 
surface of the tip. In the linear regime, such phonon modes 
appear as exact vibrational eigenmodes of the structures, 
but they also survive in the anharmonic regime and 
demonstrate long lifetime due to emission of phonons. 

5. Concluding remarks 

In this paper, we have discussed several examples of 
very dissimilar physical systems where localized edge 
modes appear due to different physical mechanisms, such 
as nonlinearity, topology, or curvature. 

First, we have demonstrated that nonlinearity can sup-
port different types of localized modes near the edge of a 
semi-infinite discrete array of nonlinear particles. We have 
discussed the mechanism of nonlinearity-induced stabiliza-
tion and existence of such modes above a certain power 
threshold. Importantly, a similar analysis can be applied to 
other types of nonlinear discrete surface modes, such as 
flat-topped modes and twisted modes, as well as staggered 
modes in defocusing waveguides. 

Second, we have discussed how topology can support a 
novel type of topological edge states even in the linear 
regime. To achieve this, the straight chain should be trans-
formed into a zigzag array that demonstrates nontrivial 
topological properties. A general theoretical concept has 
been verified by the proof-of-principle microwave experi-
ments with dielectric Mie-resonant spherical particles, with 
the ability to control the subwavelength topologically pro-
tected electromagnetic edge modes by changing the polari-
zation of the incident wave. 
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Finally, we have discussed an example of localized 
phonon oscillations in single-walled carbon nanotubes, 
where curvature can support the energy localization which 
occurs at capped tips of the nanotubes. Such modes are 
somewhat similar to the edge states of semi-infinite arrays 
of optical waveguides, and they appear due to the curva-
ture-induced effective trapping potential. 
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Локалізовані крайові моди в дискретних фотонних 
та фононних системах 

(Огляд) 

Ю. Ківшар 

В огляді обговорюються приклади трьох різних фізичних 
систем, локалізація енергії в яких відбувається поблизу країв 
внаслідок нелінійності, топології або кривизни. У багатьох 
таких системах існування локалізованих крайових мод та їх 
властивості можуть бути перевірені експериментально, як, 
наприклад, в разі масивів слабкозв'язаних оптичних 
хвилеводів. 

Ключові слова: граничні режими, нелінійність, топологія, 
дискретні системи. 

Локализованные краевые моды в дискретных 
фотонных и фононных системах 

(Обзор) 

Ю. Кившарь 

В обзоре обсуждаются примеры трех различных физиче-
ских систем, локализация энергии в которых происходит 
вблизи краев вследствие нелинейности, топологии или кри-
визны. Во многих таких системах существование локализо-
ванных краевых мод и их свойства могут быть проверены 
экспериментально, как, например, в случае массивов слабо-
связанных оптических хвильоводів. 

Ключевые слова: граничные моды, нелинейность, топология, 
дискретные системы.
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