PACS: 62.50.+p, 72.20.-i

А.Ю. Моллаев

КОМПЛЕКСНОЕ ИССЛЕДОВАНИЕ ДОПИРОВАННЫХ ФЕРРОМАГНИТНЫХ ПОЛУПРОВОДНИКОВ ПРИ ВЫСОКОМ ДАВЛЕНИИ

Институт физики Дагестанского научного центра РАН ул. Ярагского, 94, г. Махачкала, 367003, Россия E-mail: a.mollaev@mail.ru

На базовых образцах CdGeAs₂, CdGeP₂ и высокотемпературных ферромагнитных полупроводниках Cd_{1-x}Mn_xGeAs₂, Cd_{1-x}Cr_xGeAs₂ и Cd_{1-x}Mn_xGeP₂ в аппарате высокого давления типа «тороид» измерены барические (до 9 GPa) и температурные зависимости удельного электросопротивления ρ , коэффициента Холла R_H при 77–400 К.

1. Введение

Новым перспективным направлением твердотельной электроники становится спиновая электроника (спинтроника), где наряду с зарядом спин электрона представляет собой активный элемент для хранения и передачи информации, формирования интегральных и функциональных микросхем, конструирования новых магнитооптоэлектронных приборов. Использование в устройствах спинтроники как ферромагнитных, так и полупроводниковых свойств материала, т.е. спина и заряда его электронов, выдвигает на первый план задачу поиска, синтеза и исследования новых высокотемпературных ферромагнитных полупроводников с высокоподвижными поляризованными носителями тока. В данный момент указанным требованиям отвечают алмазоподобные полупроводниковые соединения группы A^{II}B^{IV}C^V₂. Характерными свойствами для этой группы тройных полупроводников являются высокие подвижности носителей заряда, малые эффективные массы электронов и большие отношения подвижности электронов к подвижности дырок. Контролируемое введение атомов переходных элементов (Mn, Fe, Cr и др.) в кристаллическую решетку позволяет обеспечить переход этих полупроводников в ферромагнитное состояние с достаточно высокой точкой Кюри Т_С. Впервые высокотемпературный ферромагнитный полупроводник с температурой $T_C = 320$ К в виде тонкой пленки был изготовлен из CdGeP₂, легированного Mn [1]. На тонкопленочных образцах трудно провести анализ состава по глубине слоя, получить надежные электромагнитные характеристики, что вызвало сомнения в достоверности обнаруженных результатов. Поэтому представляло интерес изготовить объемные образцы CdGeP₂ с различным содержанием Mn и провести исследование их электрофизических свойств. В ИОНХ РАН были получены поликристаллы диарсенида и фосфида кадмия, легированные марганцем, основные характеристики которых представлены в таблице.

Таблица

№ п/п	Образцы	x	ρ, Ω·cm	$R_{H}, \mathrm{cm}^{3}/\mathrm{C}$
1	CdGeAs ₂	0.00	2.16	964.5
2	$Cd_{1-x}Mn_xGeAs_2$	0.003	3.0	504
3		0.053	1.68	142
4		0.06	10	2250
5		0.18	0.23	10
6		0.30	0.62	5
7		0.36	0.12	0.5
8	CdGeP ₂	0.00	27.5	73.1
9	$Cd_{1-x}Mn_xGeP_2$	0.09	3.02	20
10		0.19	0.72	3

Электрофизические параметры исследованных образцов *p*-типа при комнатной температуре и атмосферном давлении

Примечание. x – содержание марганца, ρ – удельное электросопротивление, R_H – сопротивление Холла.

2. Методика и техника эксперимента

Измерения проводили на моно- и поликристаллических образцах *p*-Cd_{1-x}Mn_xGeAs₂ и Cd_{1-x}Mn_xGeP₂ в аппаратах высокого давления типа «тороид» при гидростатических давлениях до $P \le 9$ GPa в области комнатных температур при подъеме и сбросе давления. Аппарат «тороид» помещался в соленоид с напряженностью $H \le 5$ kOe. В качестве рабочей ячейки использовали фторопластовую капсулу полезным объемом ~ 80 mm³, которая имела 8 электровводов, что позволяло одновременно измерить два кинетических эффекта и давление. Давление контролировали по манганиновому манометру, отградуированному по нескольким реперным точкам во всем диапазоне давлений. Образцы имели форму параллелепипеда с размерами $3 \times 1 \times 1$ mm, однородность образцов контролировали по значениям удельного электросопротивления и коэффициента Холла четырехзондовым методом. Более подробно методика и техника эксперимента описаны в работах [2,3]. Основные электрофизические характеристики изученных образцов представлены в таблице.

3. Результаты измерений и обсуждения

Барические зависимости удельного электросопротивления ρ и коэффициента Холла R_H для всех исследованных образцов p-Cd_{1-x}Mn_xGeAs₂ представлены на рис. 1. Во всех образцах № 1, 4, 7 при давлениях P = 5.9; 5.7; 5.5; 5.4; 5.2; 4.9; 4.8 GPa на зависимостях $\rho(P)$ и $R_H(P)$ обнаружены структурные фазовые переходы при подъеме давления. При давлениях P = 2.9; 2.8; 2.7; 2.6; 2.5; 2.4; 2.3 GPa эти переходы обнаружены и при сбросе давления. Из рис. 2 видно, что точка фазового перехода при подъеме давления

Рис. 1. Барическая зависимость удельного электросопротивления (кружки) и коэффициента Холла (квадратики) при подъеме (темные символы) и сбросе (светлые символы) давления для базового образца *p*-CdGeAs₂: *a* – образец № 1, δ – образец № 4, *в* – образец № 7

Рис. 2. Зависимость положения точки фазового перехода для образца $Cd_{1-x}Mn_xGeAs_2$ от процентного содержания легирующего элемента (Mn) при подъеме давления (левая шкала, темные символы) и при его сбросе (правая шкала, светлые символы)

сдвигается в сторону низких давлений с увеличением процентного содержания марганца. Аналогичная картина наблюдается для точек фазового перехода при сбросе давления. Отношение давлений точки фазового перехода при подъеме давления к точке фазового перехода при сбросе давления к точке фазового перехода при сбросе давления составляет $P_{\Phi\Pi}/P'_{\Phi\Pi} = 2-2.1$, т.е. разница сравнима с ошибкой эксперимента.

На рис. 1,*а* представлены барические зависимости удельного сопротивления и коэффициента Холла для базового образца CdGeAs₂. Из рисунка видно, что удельное сопротивление до давлений P = 5.3 GPa при подъеме давления медленно уменьшается и при давлении $P \ge 5.3$ GPa резко падает почти на три порядка, начинается фазовый переход, а при давлении P > 6.5 GPa выходит на насыщение. Отношение удельного электросопротивления при атмосферном давлении к удельному сопротивлению в области насыщения $\rho_0/\rho_{sat} = 763$. В области насыщения удельная электропроводность $\sigma = 353 \ \Omega^{-1} \cdot \text{сm}^{-1}$, что превышает теоретически рассчитанные значения минимальной проводимости, которая составляет $\sigma = 200 \ \Omega^{-1} \cdot \text{сm}^{-1}$ [4]. Это позволяет утверждать, что имеет место металлическая проводимость. При сбросе давления наблюдается гистерезис, и при давлении P = 2.9 GPa происходит фазовый переход. Значение удельного электросопротивления при атмосферном давлении до P = 0 идентичны, т.е. $\rho_0 = \rho'_0$.

Коэффициент Холла при подъеме давления до давлений P = 5.1 GPa также медленно уменьшается, затем при давлении P = 5.1 GPa падает скачком почти на 5 порядков и при P > 6.5 GPa выходит на насыщение. В области насыщения концентрация носителей заряда $p \approx 2.8 \cdot 10^{20}$ cm⁻³, что еще раз указывает на металлический характер проводимости в области насыщения. При сбросе давления наблюдается значительный гистерезис, и при P = 2.9 GPa происходит фазовый переход, причем $R_{H_0} = R'_{H_0}$. Из вышеизложенного следует, что на базовом образце *p*-CdGeAs₂ наблюдается обратимый структурный фазовый переход полупроводник–металл.

Рассмотрим барическую зависимость удельного электросопротивления на образце $Cd_{0.94}Mn_{0.06}GeAs_2$ (рис. 1,*б*). При подъеме давления удельное со-противление до давлений P = 4.7 GPa меняется очень слабо, затем при P =

= 4.7 GPa резко падает на 2 порядка и при P = 6.1 GPa фазовый переход заканчивается: $\rho_0/\rho_{sat} = 12$, $\sigma_{sat} = 12.3 \ \Omega^{-1} \cdot \text{cm}^{-1}$, $\rho_0 = \rho'_0$. При сбросе давления на кривой $\rho(P)$, как и при $P_{\Phi\Pi} = 2.7$ GPa, также наблюдается фазовый переход.

Зависимость коэффициента Холла от давления аналогична. В области фазового перехода величина R_H падает на 3 порядка. Концентрация носителей в области насыщения $p \approx 10^{18}$ cm⁻³, $R_{H_0} = R'_{H_0}$. Таким образом, по значениям удельной электропроводности и коэффициента Холла до и после фазового перехода можно заключить, что в образце *p*-Cd_{0.94}Mn_{0.06}GeAs₂ имеет место обратимый структурный переход полупроводник–полупроводник.

Теперь рассмотрим образец *p*-Cd_{0.64}Mn_{0.36}GeAs₂ (рис. 1,*s*). Удельное электросопротивление до давлений $P \approx 0.8$ GPa слабо растет, затем падает и при $P \approx 2$ GPa достигает минимума, затем при $P \approx 3$ GPa выходит на насыщение и при $P \approx 4.1$ GPa падает, начинается фазовый переход. При $P \approx 5.6$ GPa фазовый переход заканчивается. Удельное электросопротивление выходит на насыщение. В области насыщения удельная электропроводность $\sigma \approx 17.8 \ \Omega^{-1} \cdot \text{cm}^{-1}$, $\rho_0 = \rho'_0$. Зависимость коэффициента Холла от давления также носит сложный характер. До $P \approx 0.8$ GPa его величина почти не меняется, затем растет до P = 1.6 GPa и достигает максимума, затем падает при $P \approx 2.3$ GPa, затем вновь растет, при $P \approx 3$ GPa достигает максимума и при P = 5.6 GPa выходит на насыщение. В области насыщения концентрация носителей заряда $p \approx 8 \cdot 10^{19} \text{ cm}^{-3}$, т.е. достигается металлическая проводимость. Таким образом, можно считать, что в

Рис. 3. Температурные зависимости удельного сопротивления ρ (-•-) и коэффициента Холла R_H (-•-), измеренные для Cd_{0.7}Mn_{0.3}GeAs₂

p-Cd_{0.64}Mn_{0.36}GeAs₂ наблюдается переход полупроводник–металл. Наблюдаемые аномалии на кривых $\rho(P)$ и $R_H(P)$ можно, по всей вероятности, объяснить магнитными свойствами образцов или наличием примесных центров.

На рис. 3 представлены температурные зависимости ρ и R_H в диапазоне температур 77–400 К для образца № 6.

На зависимостях $\rho(T)$ и $R_H(T)$ при $T_C^{\rho} \approx 272 \pm 1$ К и $T_C^{R_H} \approx 262 \pm 1$ К соответственно обнаружены аномалии в виде изломов, которые могут быть интерпретированы как магнитный фазовый переход из ферро- в парамагнитное состояние. Полученные результаты удовлетворительно согласуются с данными работы [5]. Температурная зависимость удельного электросопротивления в парамагнитном состоянии с хорошей точностью описывается активационным законом $\rho(T) \sim \exp(E_g/k_BT)$ с энергией активации $E_a = 155$ meV. При этом рост удельного электросопротивления, наблюдаемый в низкотемпературной многоупорядоченной фазе ($T < T_C$) (рис. 3), указывает на полупроводниковый характер основного состояния образца Cd_{1-x}Mn_xGeAs₂.

На рис. 4 представлены результаты измерения удельного электросопротивления и коэффициента Холла для базового образца № 8 CdGeP₂ (*a*), для образцов № 9 Cd_{0.91}Mn_{0.09}GeP₂ (*б*) и № 10 Cd_{0.81}Mn_{0.19}GeP₂ (*в*).

Рис. 4. Барические зависимости удельного электросопротивления (кружки) и коэффициента Холла (треугольники) при подъеме (темные символы) и сбросе (светлые символы) давления для CdGeP₂ (*a*) и CdGeP₂:Mn (δ – образец N_{2} 9, $\beta - N_{2}$ 10)

Из рис. 4,а видно, что в образце № 8 удельное электросопротивление очень медленно снижается с ростом давления и при P = 3.2 GPa значение р резко падает почти на порядок, наступает фазовый переход. При давлении $P \ge 4$ GPa кривая $\rho(P)$ выходит на насыщение, фазовый переход заканчивается. То, что $\rho(P)$ до фазового перехода растет слабо, вероятно, можно объяснить тем, что с ростом давления происходит взаимокомпенсация изменения концентрации и подвижности носителей заряда. Прямая линия при декомпрессии указывает на то, что происходит разложение CdGeP2 на Cd₃P₂ + GeP + P, как в работе [6]. В области насыщения электропроводность $\sigma = 43 \ \Omega^{-1} \cdot \text{сm}^{-1}$, что характерно для вырожденных полупроводников. Коэффициент Холла до давлений $P \approx 2$ GPa не меняется и при P > 2 GPa резко (в 7 раз) возрастает, при $P \approx 3$ GPa наступает фазовый переход, затем R_H падает приблизительно в 70 раз, и при P > 4 GPa кривая $\rho(P)$ выходит на насыщение, концентрация носителей составляет ~ 1.5·10¹⁹ cm⁻³. Такие значения электропроводности $\sigma = 43 \ \Omega^{-1} \cdot \text{cm}^{-1}$ и концентрации носителей $p = 1.5 \cdot 10^{19} \text{ cm}^{-3}$ позволяют утверждать, что в CdGeP2 имеет место фазовый переход полупроводник-полупроводник.

В образце № 9 (рис. 4,б) удельная электропроводность слабо понижается до давлений $P \approx 3.3$ GPa, при давлении $P \approx 3.3$ GPa резко (почти на 2 порядка) падает, начинается фазовый переход, и при P > 3.5 GPa кривая выходит на насыщение. Электропроводность в области насыщения $\sigma = 290 \ \Omega^{-1} \cdot \text{сm}^{-1}$. Коэффициент Холла при давлениях до P < 3.5 GPa также резко (больше чем на порядок) падает, начинается фазовый переход. При $P \approx 4$ GPa кривая $R_H(P)$ выходит на насыщение, в области насыщения $p = 6.2 \cdot 10^{19} \text{ cm}^{-3}$. Значения концентрации носителей $p = 6 \cdot 10^{19} \text{ cm}^{-3}$ и электропроводности $\sigma \approx$ $\approx 290 \ \Omega^{-1} \cdot \text{сm}^{-1}$ позволяют утверждать, что происходит фазовый переход полупроводник–металл.

В образце № 10 (рис. 4,*в*) удельная электропроводность и коэффициент Холла до давлений P = 3.5 GPa и P = 3.4 GPa возрастают с различными барическими коэффициентами, достигают максимума при P = 3.5 GPa и затем резко падают (удельное электросопротивление – почти на 6 порядков, а коэффициент Холла – на 2 порядка), наступает фазовый переход. При давлениях P > 4 GPa фазовый переход заканчивается, в области насыщения концентрация и подвижность носителей заряда составляют ~ 10^{19} cm⁻³ и ~ 500 cm²·V⁻¹·s⁻¹ соответственно, что характерно для вырожденного полупроводника. Таким образом, в образце № 10 происходит фазовый переход полупроводник.

Теперь рассмотрим обратный ход кривых $\rho(P)$ и $R_H(P)$ для образцов № 8– 10. В образце № 8 он имеет вид прямой. По аналогии с результатами, полученными в [6], можно сделать вывод о том, что при приложении давления в CdGeP₂ происходит необратимый фазовый переход с разложением вещества на составляющие.

Рис. 5. Зависимость объемной доли исходной фазы C_1 от давления для $Cd_{1-x}Mn_xGeP_2$ при подъеме и сбросе давления: • – образец № 8, • – образец № 9, • – образец № 10

Из хода кривых $\rho(P)$ и $R_H(P)$ для образца № 9 видно, что при сбросе давления имеет место фазовый переход при P = 2.3 GPa. Однако, поскольку значения $\rho(P)$ и $R_H(P)$ до приложения и после снятия давления несколько разнятся, мы делаем вывод, что имеет место необратимый фазовый переход с частичным разложением вещества.

В образце № 10 значения $\rho(P)$ и $R_H(P)$ до и после приложения давления совпадают, т.е. имеет место обратимый структурный фазовый переход. При декомпрессии при P = 2.3 GPa наблюдается четкий структурный фазовый переход.

Динамика исходной фазы C_1 с изменением давления рассчитана на основе модели гетерофазная система–эффективная среда [7,8]. Из рис. 5 видно, что исходная фаза C_1 в образце № 8 восстанавливается на 10%, в образце № 9 – на 50% и в образце № 10 – полностью, т.е. процесс является обратимым. По-

лученные результаты подтверждаются данными рентгенофазового анализа, проведенного на образцах после снятия давления. На дифрактограмме образца CdGeP2 наблюдаются пики, соответствующие CdP₂ и Ge – барическое разложение полное. На дифрактограмме образца Cd_{0.91}Mn_{0.09}GeP₂ кроме пиков, относящихся к фазам CdP2 и Ge, наблюдаются пики CdGeP2 - разложение частичное. На дифрактограмме образца Cd_{0.81}Mn_{0.19}GeP₂ наблюдаются только пики, соответствующие CdGeP₂, - барическое разложение отсутствует. Таким образом, увеличение содержания марганца усиливает барическую устойчивость образца CdGeP₂.

Результаты измерений температурных зависимостей ρ и R_H для образцов CdGeP₂ и Cd_{0.91}Mn_{0.09}GeP₂ *p*-типа

Рис. 6. Температурные зависимости удельного сопротивления ρ (кривая *1* − образец № 8, кривая *3* − образец № 9) и коэффициента Холла R_H (кривая *2* − образец № 8, кривая *4* − образец № 9)

представлены на рис. 6. Как видим, для образца CdGeP₂ значение удельного сопротивления ρ резко увеличивается с понижением температуры, причем lg ρ пропорционален 1/*T*, что типично для случая достаточно сильной компенсации. В образце Cd_{0.91}Mn_{0.09}GeP₂ с более высоким значением концентрации дырок при комнатной температуре удельное сопротивление уменьшается по абсолютной величине и при этом достаточно слабо зависит от температуры. Коэффициент Холла в области низких ($T \ge 160$ K) температур начинает уменьшаться, что свидетельствует об участии в проводимости акцепторных уровней с энергией ионизации $E_a \le 0.02$ eV. Из температурных зависимостей ρ и R_H следует, что образцы CdGeP₂ и Cd_{0.91}Mn_{0.09}GeP₂ в исследованном интервале температур обнаруживают примесную проводимости модели с одним сортом носителей заряда.

4. Заключение

В заключение следует отметить, что исследованные образцы CdGeAs₂:Mn условно можно разбить на 3 группы: 1) базовый образец № 1 CdGeAs₂ и слаболегированный образец № 2 *p*-Cd_{0.897}Mn_{0.003}GeAs₂; 2) образцы № 3 Cd_{0.947}Mn_{0.053}GeAs₂ и № 4 Cd_{0.94}Mn_{0.06}GeAs₂, на которых не обнаружены аномалии на барических зависимостях коэффициента Холла; 3) образцы, на которых наблюдаются аномалии на кривой зависимости $R_H(P)$, $Cd_{0.82}Mn_{0.18}GeAs_2$ $Cd_{0.64}Mn_{0.36}GeAs_2$. Особняком образец И стоит Cd_{0.7}Mn_{0.3}GeAs₂, в котором, несмотря на достаточно высокую степень легирования, никаких аномалий на барической зависимости коэффициента Холла мы не обнаружили. На всех образцах наблюдаются структурные обратимые фазовые переходы, положение которых сдвигается в сторону низких давлений с увеличением процентного содержания легирующего элемента марганца. В какую модификацию переходит халькопирит при фазовом переходе, без рентгеноструктурных исследований под давлением мы сказать не можем.

В образцах CdGeP₂ и Cd_{1-x}Mn_xGeP₂ имеет место структурный фазовый переход, который также сдвигается в сторону высоких давлений с увеличением процентного содержания марганца. Определена энергия ионизации мелкого акцепторного уровня $E_a \sim 0.02$ eV при атмосферном давлении, которая хорошо согласуется с литературными данными.

Исследованные образцы $Cd_{1-x}Mn_xGeAs_2$ и $Cd_{1-x}Mn_xGeP_2$ могут быть использованы в качестве датчиков давления в диапазоне P = 3.2-5.9 GPa.

Работа выполнена при финансовой поддержке подпрограммы № 3 «Физика и механика сильно сжатого вещества и проблемы внутреннего строения Земли и планет» Программы Президиума РАН П-09 «Исследование вещества в экстремальных условиях».

Физика и техника высоких давлений 2009, том 19, № 1

- 1. Г.А. Медведкин, Т. Ишибаши, Т. Ниши, К. Сато, ФТП **35**, 305 (2001).
- 2. А.Ю. Моллаев, Л.А. Сайпулаева, Р.К. Арсланов, С.Ф. Маренкин, Неорган. материалы **37**, 403 (2001).
- 3. А.Ю. Моллаев, Р.К. Арсланов, М.И. Даунов, Л.А. Сайпулаева, ФТВД **13**, № 1, 29 (2003).
- 4. *Н. Мотт, Э. Дэвис*, Электронные процессы в некристаллических веществах, Т.1, Мир, Москва (1982).
- 5. Р.В. Демин, Л.И. Королева, С.Ф. Маренкин, В.М. Новоторцев, В.Т. Калинников, Т.Г. Аминов, Письма ЖТФ **30**, в. 21, 81 (2004).
- 6. A.Yu. Mollaev, I.K. Kamilov, M.I. Daunov, R.K. Arslanov, A.B. Magomedov, L.A. Saypulaeva, S.F. Gabibov, High Pressure Research 26, 445 (2006).
- 7. *М.И. Даунов, М.С. Буттаев, А.Б. Магомедов*, Сверхпроводимость: физика, химия, техника **5**, 73 (1992).
- 8. *М.И. Даунов, А.Б. Магомедов, А.Ю. Моллаев, С.М. Салихов, Л.А. Сайпулаева,* Сверхтвердые материалы № 3, 3 (1992).

А.Ю. Моллаєв

КОМПЛЕКСНЕ ДОСЛІДЖЕННЯ ДОПІЙОВАНИХ ФЕРОМАГНІТНИХ НАПІВПРОВІДНИКІВ ПРИ ВИСОКОМУ ТИСКУ

На базових зразках CdGeAs₂, CdGeP₂ і високотемпературних феромагнітних напівпровідниках Cd_{1-x}Mn_xGeAs₂, Cd_{1-x}Cr_xGeAs₂ і Cd_{1-x}Mn_xGeP₂ в апараті високого тиску типу «тороїд» зміряно баричні (до 9 GPa) і температурні залежності питомого електроопору ρ , коефіцієнта Хола R_H при 77–400 К.

A.Yu. Mollaev

COMPLEX STUDY OF DOPED FERROMAGNETIC SEMICONDUCTORS UNDER HIGH PRESSURE

Baric (up to 9 GPa) and temperature dependences of resistivity ρ , Hall coefficient R_H in the 77–400 K temperature range have been measured on base samples CdGeAs₂, CdGeP₂ and high-temperature ferromagnetic semiconductors Cd_{1-x}Mn_xGeAs₂, Cd_{1-x}Cr_xGeAs₂ and Cd_{1-x}Mn_xGeP₂ in a high-pressure device of «thoroid» type.

Fig. 1. Baric dependence of resistivity (circles) and Hall coefficient (squares) at rise (dark symbols) and fall (light symbols) of pressure for the base sample *p*-CdGeAs₂: *a* – sample \mathbb{N}_{2} 1, δ – sample \mathbb{N}_{2} 4, *e* – sample \mathbb{N}_{2} 7)

Fig. 2. The dependence of phase transition point location on concentration of doping element (Mn) for $Cd_{1-x}Mn_xGeAs_2$ sample at pressure rise (left scale, dark symbols) and fall (right scale, light symbols)

Fig. 3. Temperature dependences of resistivity ρ (-•-) and Hall coefficient R_H (-•-) measured for Cd_{0.7}Mn_{0.3}GeAs₂

Fig. 4. Baric dependences of resistivity (circles) and Hall coefficient (triangles) at pressure rise (dark symbols) and fall (light symbols) for CdGeP₂ (*a*) and for CdGeP₂:Mn (δ – sample No 9, ϵ – No 10)

Fig. 5. Dependence of a volume share of initial phase C_1 on pressure for $Cd_{1-x}Mn_xGeP_2$ at rise and fall of pressure: \bullet – sample N_2 8, \blacktriangle – sample N_2 9, \blacksquare – sample N_2 10

Fig. 6. Temperature dependences of resistivity ρ (curve 1 – sample \mathbb{N}_{2} 8, curve 3 – sample \mathbb{N}_{2} 9) and Hall coefficient R_{H} (curve 2 – sample \mathbb{N}_{2} 8, curve 4 – sample \mathbb{N}_{2} 9)