PACS: 81.40.Lm, 62.20.Fe

С.В. Мирошниченко

ЧИСЛЕННО-ЭКСПЕРИМЕНТАЛЬНАЯ МЕТОДИКА ИССЛЕДОВАНИЯ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ МОДЕЛЕЙ ШТАМПА

Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина

Статья поступила в редакцию 18 июня 2009 года

С использованием тензометрии поверхности моделей и метода конечных элементов (МКЭ) проведено уточнение расчетов компонентов напряженно-деформированного состояния (НДС) штампов для накопления интенсивных пластических деформаций (ИПД).

Ключевые слова: модель штампа, зона нагружения, тензометрия, метод конечных элементов, напряженно-деформированное состояние, предельное состояние

1. Введение

Штампы и пресс-формы, используемые для накопления ИПД или прессования изделий из порошков, отличаются сравнительно небольшой высотой зоны нагружения H_1 по сравнению с длиной штампа L. Относительная высота зоны нагружения $h_1 = H_1/L$ и ее положение относительно торцов штампа $h_0 = H_0/L$ (где H_0 – расстояние от зоны нагружения до торца штампа) изменяются в широких пределах ($h_0 = 0$ –0.5; $h_1 = 0.1$ –1). В подавляющем числе реальных нагружений рассматриваемого узла прогноз его предельного состояния на основе модели плоской деформации полых цилиндров [1,2] может рассматриваться только как нижняя оценка. Использование этой модели при расчете давления бандажирования также приводит к ошибкам вычисления оптимальных натягов и геометрических размеров элементов штампа [3], что способствует их быстрому выходу из строя (менее 300 нагружений при давлениях 1000–1200 MPa).

2. Методика исследования НДС модели штампа

Для сравнения вариантов нагружения по степени опасности мы применяли матрицу влияния модели штампа, в которой содержатся компоненты ее напряженно-деформированного состояния, полученные численно с помощью МКЭ, и методику элементарных нагружений [4]. Соотношение компонент НДС внутренней и наружной поверхностей модели использовано для мониторинга предельного состояния поверхности рабочего канала по данным тензометрии наружной поверхности.

Рис. 1. Устройство для нагружения моделей штампов: *1* – гайка, *2* – вставка, *3* – пуансон, *4* – уплотнения, *5* – парафиновый стакан, *6* – манганиновый манометр, *7* – исследуемый цилиндр, *8* – пробка, *9* – месдоза, *10* – тензодатчики

В качестве моделей применяли втулки из стали Ст3 ($\sigma_s = 220$ MPa) с диаметром рабочего канала d = 30 mm и длиной L = 120 mm. Размер ее наружного диаметра D определяли в зависимости от выбранного значения толстостенности (m = D/d = 1.6; 2.4).

Нагружение моделей осуществляли на лабораторном гидропрессе (F = 200 kN) с помощью специального устройства (рис. 1). В качестве передающей давление среды использовали парафин. Устройство снабжено гайкой для механического фиксирования усилия нагружения, величину которого измеряли с помощью мездозы. Основной массив значений относительных деформаций наружной поверхности $\varepsilon_{\tau 2}$ и $\varepsilon_{z 2}$ получен при давлении в рабочем канале 30 MPa. Предвари-

тельно с помощью манганинового манометра, установленного в герметичном стаканчике из фторопласта с минеральным маслом в тело парафинового цилиндра, выбирали уровень осевой силы, соответствующий давлению 30 МРа и в дальнейшем контролируемый месдозой. Сигнал от 10 пар тензодатчиков, ориентированных взаимно перпендикулярно, манганинового манометра и месдозы поступал на тензоусилители «Топаз» и осциллографы К12-22 и HO71.2.

Схема наклейки тензодатчиков и эскиз модели показаны на рис. 2. Модели подвергали нагружениям (таблица), зависящим от размера $(h_1 = H_1/L)$ и по-

Рис. 2. Схема расположения тензодатчи-ков на модели штампа

ложения ($h_0 = H_0/L$) зоны нагрузки относительно торцов штампа. Высоту нагружения устанавливали с помощью стальных пробок 8 (см. рис. 1).

На рис. 3 представлены средние значения окружной $\varepsilon_{\tau 2}$ и осевой $\varepsilon_{z 2}$ деформаций (приведенных к давлению нагрузки 1 МРа) вдоль наружной поверхности модели с толстостенностью m = 1.6 и 2.4 с различными вариантами нагружения. Обращает на себя внимание высокий градиент деформаций наружной поверхности вдоль оси модели. Физика и техника высоких давлений 2009, том 19, № 3

Таблица

№ модели	H_0 , mm	h_0	H _l , mm	h_1
1	0	0	15	0.125
2			30	0.25
3			45	0.375
4			60	0.5
5			75	0.625
6	15	0.125	15	0.125
8			30	0.25
9			45	0.375
10			60	0.5
11	30	0.25	15	0.125
12			30	0.25
13			45	0.375
14			60	0.5
15	45	0.375	15	0.125
16			30	0.25
17	60	0.5	15	0.125
18			30	0.25

Варианты нагружения моделей штампа внутренним давлением

Рис. 3. Средние значения окружной $\varepsilon_{\tau 2}$ и осевой $\varepsilon_{z 2}$ деформаций (P = 1 MPa) вдоль оси *z* наружной поверхности модели: *a*, $\delta - m = 1.6$; *b*, e - m = 2.4; $\circ - h_0 = 0$, $\Box - h_0 = 0.25$; $\Delta - h_0 = 0.375$; $h_1 = 0.25$

127

На базе данных рис. 3 с помощью закона Гука построены зависимости окружных напряжений σ_{τ2} наружной поверхности моделей (рис. 4):

$$\sigma_{\tau 2} = \frac{E\left(\varepsilon_{\tau 2} + \mu \varepsilon_{z 2}\right)}{1 - \mu^2}$$

Для сравнения на этом же рисунке приведены аналогичные данные, полученные с помощью МКЭ.

Используя значения параметра $k = \sigma_{\tau 1}/\sigma_{\tau 2}$, полученного МКЭ (рис. 5), вычислены максимальные значения окружного напряжения на внутренней поверхности $\sigma_{\tau 1}$ модели (рис. 6).

Сравнение параметра k, полученного МКЭ, с аналогичным параметром, вычисленным по модели плоской деформации, $k = (m^2 + 1)/2$ выявило их существенное расхождение, которое для приведенных на рис. 3 вариантов составляет 16–23%, а для некоторых – до 40%.

Рис. 4. Значения окружных напряжений $\sigma_{\tau 2}$ (P = 1 MPa) наружной поверхности модели, полученные МКЭ (—) и тензометрией для вариантов нагружения: a - m = 1.6; $\delta - m = 2.4$; $\circ - h_0 = 0$, $\Delta - h_0 = 0.25$, $\nabla - h_0 = 0.375$; $h_1 = 0.25$

Рис. 5. Значения параметра *k* для опасного сечения модели, полученные с использованием МКЭ: a - m = 1.6; $\delta - m = 2.4$; $\diamond - h_0 = 0$, $\Box - h_0 = 0.125$, $\circ - h_0 = 0.25$, $\triangle - h_0 = 0.375$, $\times - h_0 = 0.5$

Рис. 6. Максимальные значения окружного напряжения на внутренней поверхности модели в зависимости от варианта нагружения: a - m = 1.6, $h_0 = 0$, $h_1 = 0.25$; $\delta - m = 2.4$, $h_0 = 0$, $h_1 = 0.25$; e - m = 1.6, $h_0 = 0.25$, $h_1 = 0.25$; c - m = 2.4, $h_0 = 0.25$, $h_1 = 0.25$; $\partial - m = 1.6$, $h_0 = 0.375$, $h_1 = 0.25$; e - m = 2.4, $h_0 = 0.375$, $h_1 = 0.25$; e - m = 2.4, $h_0 = 0.375$, $h_1 = 0.25$; e - m = 2.4, $h_0 = 0.375$, $h_1 = 0.25$; m = 2.4, $h_0 = 0.375$, $h_1 = 0.25$; $h_2 = 0.25$; $h_2 = 0.25$; $h_1 = 0.25$; $h_2 = 0.25$; $h_2 = 0.25$; $h_1 = 0.25$; $h_2 = 0.25$; $h_2 = 0.25$; $h_1 = 0.25$; $h_2 = 0.25$

Минимальное давление появления пластических деформаций в моделях, соответствующее значениям $h_1 \ge 0.75$, оценивали по соотношению [3,4]:

$$P_{\min} = \frac{\sigma_s(m^2 - 1)}{\sqrt{3}m^2}.$$

Рис. 7. Предельное состояние моделей штампа в зависимости от длины участка нагружения: $\circ - m = 2.4$, $P_s = 172.53 - 95.77h_1$; $\triangle - m = 1.6$, $P_s = 124.21 - 85.52h_1$; I, 2 - результаты расчета по модели Ляме соответственно при m = 2.4и 1.6

Результаты экспериментальной проверки предельного состояния моделей по началу пластической деформации поверхности рабочего канала, нагруженных внутренним давлением на участках $h_1 = 0.125-0.75$, приведены на рис. 7.

Выводы

 Предложена методика, позволяющая численно-экспериментальным способом определить напряженное состояние на поверхности рабочего канала при произвольной геометрии участка нагружения.

 Тензометрия наружной поверхности штампа дает возможность получать надежную информацию о напряженно-деформированном и предельном состояниях узла в любой момент его нагружения.

3. При относительной длине участка нагружения штампа в диапазоне $h_1 = 0.125-0.65$ необходимо корректировать выражение для максимального главного напряжения.

4. Величина корректирующего коэффициента в зависимости от параметров h_1 , h_0 и *m* изменяется в диапазоне 1.1–1.6 раза.

5. Смещение участка нагружения от свободного торца штампа на величину $h_0 \ge 0.125$ существенно (на 15–25%) снижает напряжения на поверхности рабочего канала.

- 1. С.В. Мирошниченко, В.Г. Сынков, А.А. Лебедев, Проблемы прочности № 5, 32 (2002).
- 2. С.В. Мирошниченко, В.Г. Сынков, ФТВД 11, № 2, 132 (2001).
- 3. С.В. Мирошниченко, В.Г. Сынков, ФТВД 10, № 2, 92 (2000).
- 4. С.В. Мирошниченко, В.Г. Сынков, Металлообработка № 2 (2007).
- 5. С.В. Мирошниченко, В.Г. Сынков, ФТВД 17, № 2, 105 (2007).
- 6. В.Г. Сынков, О.Е. Глауберман, Е.И Вербицкий, Проблемы прочности № 4, 95 (1986).
- 7. В.Г. Сынков, О.Е. Глауберман, Е.И Вербицкий, ФТВД вып. 22, 85 (1986).

С.В. Мірошниченко

ЧИСЕЛЬНО-ЕКСПЕРИМЕНТАЛЬНА МЕТОДИКА ДОСЛІДЖЕННЯ НАПРУЖЕНО-ДЕФОРМОВАНОГО СТАНУ МОДЕЛЕЙ ШТАМПУ

З використанням тензометрії поверхні моделей і методу кінцевих елементів проведено уточнення розрахунків компонентів напружено-деформованого стану штампів для накопичення інтенсивних пластичних деформацій.

Ключові слова: модель штампу, зона навантаження, тензометрія, метод кінцевих елементів, напружено-деформований стан, граничний стан

S.V. Miroshnichenko

NUMERICAL-EXPERIMENTAL TECHNIQUE FOR INVESTIGATION OF STRESS-STRAIN STATE MODEL DIES

The calculations of components of the stress-strain state of dies for the accumulation of severe plastic deformations (SPD) were clarified by using strain measurement on the surface of models and by the finite-element method (FEM).

Keywords: die model, load zone, strain measurement, finite element method, stressstrain state, limiting state

Fig. 1. A device for loading die models: 1 - nut, 2 - inset, 3 - punch, 4 - seals, 5 - paraf-fin cup, 6 - manganine manometer, 7 - tested cylinder, 8 - plug, 9 - pressure capsule, 10 - strain gauges

Fig. 2. Layout for strain gauge location on die model

Fig. 3. Average values of tangential $\varepsilon_{\tau 2}$ and axial $\varepsilon_{z 2}$ strain (P = 1 MPa) along the *z*-axis of the outer surface of the model: $a, \delta - m = 1.6$; e, c - m = 2.4; $\circ - h_0 = 0, \Box - h_0 = 0.25$; $\Delta - h_0 = 0.375$; $h_1 = 0.25$

Fig. 4. Values of tangential stresses $\sigma_{\tau 2}$ (P = 1 MPa) of the outer surface of the model obtained by FEM (—) and strain measurement for various loading types: a - m = 1.6; $\delta - m = 2.4$; $\circ - h_0 = 0$, $\Delta - h_0 = 0.25$, $\nabla - h_0 = 0.375$; $h_1 = 0.25$

Fig. 5. Values of parameter k for the dangerous cross-section of the model obtained by using FEM: a - m = 1.6; $\delta - m = 2.4$; $\diamond - h_0 = 0$, $\Box - h_0 = 0.125$, $\circ - h_0 = 0.25$, $\Delta - h_0 = 0.375$, $\times - h_0 = 0.5$

Fig. 6. Maximum values of tangential strain on the inner surface of the model depending on the loading type: a - m = 1.6, $h_0 = 0$, $h_1 = 0.25$; $\delta - m = 2.4$, $h_0 = 0$, $h_1 = 0.25$; e - m = 1.6, $h_0 = 0.25$, $h_1 = 0.25$; e - m = 2.4, $h_0 = 0.25$, $h_1 = 0.25$; $\partial - m = 1.6$, $h_0 = 0.375$, $h_1 = 0.25$; e - m = 2.4, $h_0 = 0.375$, $h_1 = 0.25$; - - FEM result, --- strain measurement result, --- calculations by Lame model

Fig. 7. Limiting state of die models depending on length of loading section: $\circ - m = 2.4$, $P_s = 172.53 - 95.77h_1$; $\triangle - m = 1.6$, $P_s = 124.21 - 85.52h_1$; 1, 2 – results of calculations by Lame model for m = 2.4 and 1.6, respectively