PACS: 05.20.Jj, 05.70.Ce, 05.70.Fh

С.В. Терехов, И.К. Локтионов

РАСЧЕТ ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ ЧИСТЫХ ВЕЩЕСТВ ПО МЕТОДУ ГИББСА

Донецкий национальный технический университет ул. Артема, 58, г. Донецк, 83001, Украина E-mail: svlter@yandex.ru, likk@telenet.dn.ua

Получены уравнения состояния (УС) и установлена связь критических параметров систем с характеристиками модельных потенциалов взаимодействия. Построены линии насыщения и найдены значения изобарной теплоемкости в широком интервале температур и давлений, определены температурные зависимости второго вириального коэффициента. Выполнено сравнение полученных результатов с экспериментальными данными.

Ключевые слова: уравнение состояния, потенциал взаимодействия, критическая точка, изобарная теплоемкость, второй вириальный коэффициент

1. Введение

Проблема установления связи между микроскопическими параметрами частиц и макроскопическими свойствами вещества может быть решена в рамках подхода Гиббса. Один из методов вычисления конфигурационной составляющей статистической суммы в приближении парных центральных потенциалов взаимодействия, допускающих разложение в ряд Фурье, был предложен в работе [1]. Идея факторизации получила развитие в [2], где конфигурационный интеграл вычислялся методом перевала, и для свободной энергии системы N тождественных частиц, взаимодействующих посредством парного центрального потенциала v(|r|), было получено выражение

$$F = -\frac{1}{\beta} \ln Z = F_{\rm id} - \frac{N}{2} (v_0 - nw) + \frac{V}{2\beta} \int_{\Omega} \frac{{\rm d}^3 k}{(2\pi)^3} \ln\left(1 + n\beta \,\tilde{v}(k)\right),\tag{1}$$

где $\beta = 1/k_B T$ – обратная температура; k_B – постоянная Больцмана; n = N/V – плотность; v(r), $\tilde{v}(k)$ – соответственно парный центральный потенциал взаимодействия и его фурье-образ; Ω – область определения функции $\tilde{v}(k)$; $v_0 = v(0)$ – значение потенциала при r = 0; $w = \tilde{v}(0)$ – значение фурье-образа при k = 0; $F_{\rm id} = Nk_B T \ln(n\lambda^3)$, $\lambda = h/\sqrt{2\pi m_0 k_B T}$ – длина волны де Бройля (h – постоянная Планка, m_0 – масса частицы).

© С.В. Терехов, И.К. Локтионов, 2011

Расчет термодинамических функций производится по стандартным соотношениям с использованием выражения (1) для свободной энергии. Так, УС и химический потенциал модельной системы имеют вид

$$P = -\left(\frac{\partial F}{\partial V}\right)_{T} = P_{\rm id} + \frac{n^{2}w}{2} - \frac{1}{2\beta} \int_{\Omega} \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \left[\ln\left(1 + n\beta\,\tilde{v}(k)\right) - \frac{n\beta\,\tilde{v}(k)}{1 + n\beta\,\tilde{v}(k)}\right],\qquad(2)$$

$$\mu = \left(\frac{\partial F}{\partial N}\right)_{T,V} = \mu_{id} + nw - \frac{v_0}{2} + \frac{1}{2\beta} \int_{\Omega} \frac{d^3k}{(2\pi)^3} \frac{\beta \tilde{v}(k)}{1 + n\beta \tilde{v}(k)}.$$
 (3)

2. Модельные потенциалы

При расчете термодинамических характеристик используется предположение о том, что свойства жидкостей, в частности их структура, определяются в основном резко возрастающей отталкивательной частью потенциала взаимодействия [3]. Это предположение было проверено численным моделированием реальной жидкости (см., напр., [4]), которое привело к хорошему согласию с экспериментальными данными. В этой связи выберем потенциалы взаимодействия v(r) в виде монотонно убывающих положительных функций (силы отталкивания) с положительными фурье-образами:

$$v(r) = A \exp(-ar) / 4\pi r$$
, $\tilde{v}(k) = A / (k^2 + a^2)$, (5)

$$v(r) = A \exp(-ar) / 4\pi a$$
, $\tilde{v}(k) = A / (k^2 + a^2)^2$. (6)

Использование корпускулярно-волнового дуализма вещества по де Бройлю позволяет интерпретировать потенциал (5) как стационарный волновой пакет с шириной локализации $r_0 = 1/a$ [5]. Потенциал (6) отображает делокализованную волну с дальнодействующим отталкиванием. Функции (5) и (6) относятся к одному классу универсальности, поскольку в полярной системе координат $\rho = v(r)$ и $\varphi = r$ описывают логарифмические спирали, которые обладают свойством самоподобия, т.е. порождают монофрактальную структуру. Это означает, что существует такое расстояние *l* (скейлинговый масштаб), при котором увеличенная в несколько раз спираль будет совпадать с исходной спиралью.

Расчеты межчастичных взаимодействий жидких металлов по уравнениям Перкуса–Йевика и Боголюбова–Борна–Грина [6] (при использовании рентгенографических данных) показывают, что потенциал взаимодействия имеет осциллирующий характер. Осцилляции отображают процессы самоорганизации, приводящие к возникновению решеточной структуры.

Поэтому для описания поведения жидких металлов можно использовать осциллирующие потенциалы вида

$$v(r) = \frac{A}{4\pi a^2} \frac{\exp\left(-ar/\sqrt{2}\right)}{r} \sin\left(\frac{ar}{\sqrt{2}}\right), \ \tilde{v}(k) = A/\left(k^4 + a^4\right); \tag{7}$$

$$v(r) = \frac{A}{12\pi a^4} \frac{\exp(-ar/2)}{r} \left(\exp\left(\frac{-ar}{2}\right) + 2\sin\left(\frac{\sqrt{3}ar}{2} - \frac{\pi}{6}\right) \right), \ \tilde{v}(k) = A / \left(k^6 + a^6\right) (8)$$

(a > 0, A > 0 – параметры потенциала v(r)). Потенциалы (7) и (8) учитывают колебания радиальной функции распределения частиц и экранировку отталкивания центрального атома оболочкой из ближайших соседей.

Применение двухпараметрических потенциалов (5)–(8) и их фурьеобразов облегчает аналитическое решение задачи, однако не приводит, как это можно было ожидать, к потере модельными системами основных свойств, характерных для реальных конденсированных сред. Поэтому относительно простые потенциалы (5)–(8) играют роль «пробного камня» для испытания предлагаемого в [2] подхода к изучению термодинамики жидкостей и представляют собой удобное нулевое приближение для «реальных» потенциалов при использовании теории возмущений.

3. Уравнения состояния и критическая точка фазового перехода

Вычислив интегралы в правой части равенства (2) с фурье-образами (5)– (8), получим УС, соответствующие порядку введения потенциалов

$$P = \frac{n}{\beta} + \frac{n^2 w}{2} - \frac{a^3}{12\pi\beta} \left[1 - q(x) \left(1 - \frac{x}{2} \right) \right], \quad w = A/a^2;$$
(9)

$$P = \frac{n}{\beta} + \frac{n^2 w}{2} - \frac{a^3}{6\pi\beta} \left[1 - \frac{1}{\sqrt{2}} Q(x) + \frac{x}{4\sqrt{2}Q(x)} \right], \quad w = A/a^4; \quad (10)$$

$$P = \frac{n}{\beta} + \frac{n^2 w}{2} - \frac{a^3}{6\pi\sqrt{2\beta}} \left[\frac{3 + q^2(x)}{4\sqrt{q(x)}} - 1 \right], \quad w = A/a^4;$$
(11)

$$P = \frac{n}{\beta} + \frac{n^2 w}{2} - \frac{a^3}{12\pi\beta} \left[\frac{1+q^2(x)}{2q(x)} - 1 \right], \quad w = A/a^6 .$$
(12)

Здесь $x = n\beta w$, $q(x) = \sqrt{1+x}$, $Q(x) = \sqrt{1+q(x)}$.

Описание различных термодинамических свойств с привлечением микроскопических параметров потенциала взаимодействия требует знания их числовых значений. Поиск этих значений может быть выполнен на основе любых соотношений, связывающих параметры *a* и *A* с измеряемыми величинами. Такими соотношениями служат уравнения, определяющие критическое состояние вещества:

$$\left\{ \left(\frac{\partial P}{\partial n} \right)_T = 0, \left(\frac{\partial^2 P}{\partial n^2} \right)_T = 0 \right\}.$$
 (13)

Система (13) при подстановке функций (9)–(13) сводится к линейному (для УС (9), (11), (12)) или квадратному (для УС (10)) уравнению относительно критического значения безразмерной величины $x_c = n_c \beta_c w$, которая определяет критическую объемную долю частиц. Для потенциалов (5)–(8) система

(13) решена точно. Ее решения запишем в той же последовательности, в которой представлены модельные потенциалы и соответствующие им УС:

$$a = \left(12\pi\sqrt{3}n_c\right)^{1/3}, \ A = a^2 x_c / n_c \beta_c, \ x_c = n_c \beta_c w = 2;$$
(14)

$$a = \left(32\pi\sqrt{2}Kn_c/x_c\right)^{1/3}, A = a^4x_c/n_c\beta_c, x_c \approx 1.061, K = \frac{\left(q(x_c)Q(x_c)\right)^3}{x_c} \approx 10.60; (15)$$

$$a = \left(50\pi\sqrt{2}n_c \left(9/5\right)^{9/4}\right)^{1/3}, \ A = a^4 x_c / n_c \beta_c, \ x_c = n_c \beta_c w = 4/5;$$
(16)

$$a = \left(108\pi n_c \left(5/3\right)^{5/2}\right)^{1/3}, \ A = a^6 x_c / n_c \beta_c, \ x_c = n_c \beta_c w = 2/3.$$
(17)

Ясно, что для нахождения параметров *а* и *А* двухпараметрических потенциалов нужно задать только значения плотности n_c и температуры T_c в критической точке (КТ) фазового перехода. Для проверки состоятельности теоретических выводов и их количественного согласия с экспериментальными данными был выбран аргон как наиболее изученное и технически важное вещество с критическими параметрами $\rho_c = 531 \text{ kg/m}^3$, $T_c = 150.86 \text{ K}$ [7]. Значения параметров *а* и *А* потенциалов взаимодействия (5)–(8), вычисленные по формулам (14)–(17), приведены в таблице.

Параметры потенциалов взаимодействия

Потенциал	a, m^{-1}	A	P _c , MPa
(5)	$8.0807 \cdot 10^9$	$3.3662 \cdot 10^{-29}$, J·m	4.5099
(6)	$2.2554 \cdot 10^{10}$	7.0798·10 ⁻⁸ , J/m	4.6570
(7)	$1.8887 \cdot 10^{10}$	2.6236·10 ⁻⁸ , J/m	4.6099
(8)	$2.1423 \cdot 10^{10}$	$1.6612 \cdot 10^{13} \text{ J/m}^3$	4.6263

Примечание. Значения критического давления P_c рассчитаны для модельных систем по экспериментальным величинам n_c и T_c для аргона.

Рис. 1. Осциллирующие потенциалы (7) (кривая *1*) и (8) (кривая *2*)

На рис. 1 представлены графики осциллирующих потенциалов (7) и (8), построенные с параметрами, найденными для аргона. Очевидно, что формы потенциальных кривых свидетельствуют о возможности применения потенциалов для моделирования простых жидкостей.

Используя критические величины n_c , T_c и P_c , представим УС (9)–(12) в приведенных переменных $\tau = T/T_c$, $\omega = n/n_c$, $\pi = P/P_c$:

$$\pi(\omega,\tau) = \frac{1}{Z_c} \left(\tau \omega + \frac{x_c \omega^2}{2} - \tau \sqrt{3} \left[1 - \sqrt{1 + \frac{x_c \omega}{\tau}} \left(1 - \frac{x_c \omega}{2\tau} \right) \right] \right), \ Z_c = 0.268; \ (18)$$

$$\pi(\omega,\tau) = \frac{1}{Z_c} \left(\tau \omega + \frac{x_c \omega^2}{2} - \frac{16\sqrt{2}}{3} \left(\frac{K}{x_c} \right) \tau \left[1 - \frac{1}{\sqrt{2}} Y(\omega,\tau) + \frac{x_c \omega}{4\sqrt{2}\tau Y(\omega,\tau)} \right] \right),$$

$$Z_c = 0.277;$$
(19)

$$\pi(\omega,\tau) = \frac{1}{Z_c} \left(\tau \omega + \frac{x_c \omega^2}{2} - 27 \left(\frac{9}{5}\right)^{1/4} \tau \left[\frac{1 + x_c \omega/4\tau}{\left(1 + x_c \omega/\tau\right)^{1/4}} - 1 \right] \right), \ Z_c = 0.274; \ (20)$$

$$\pi(\omega,\tau) = \frac{1}{Z_c} \left(\tau \omega + \frac{x_c \omega^2}{2} - 9 \left(\frac{5}{3}\right)^{5/2} \tau \left[\frac{2 + x_c \omega/\tau}{2\left(1 + x_c \omega/\tau\right)^{1/2}} - 1 \right] \right), \ Z_c = 0.275 \quad (21)$$

(где $Y(\omega, \tau) = \sqrt{1 + \sqrt{1 + x_c \omega/\tau}}$). В УС (18)–(21) не входят параметры v(r) согласно закону соответственных состояний [8] для двухпараметрических потенциалов.

Петлеобразная форма изотерм, построенных по УС (18)–(21), при $\tau < 1$ указывает на то, что в системах с модельными потенциалами (5)–(8) происходит фазовый переход жидкость–газ. В теории редуцированного группового разложения [9] и в методе Монте-Карло [10] также установлено появление конденсации в системе с отталкивательным потенциалом Юкавы. На изотермах в координатах π – $\pi \varphi$ в определенном интервале температур τ наблюдаются минимумы, глубина которых уменьшается с ростом τ . Минимум на изотерме исчезает при температуре Бойля $\tau_B = T_B/T_c$.

4. Линии насыщения

Задача построения линии насыщения сводится к решению нелинейной системы

$$\left\{\pi(\omega_1,\tau) = \pi(\omega_2,\tau); \ \mu(\omega_1,\tau) = \mu(\omega_2,\tau)\right\},\tag{22}$$

которая выражает условия равновесия сосуществующих фаз с плотностями ω_1 и ω_2 . Опуская запись явного вида сложных уравнений систем (22) для каждого случая и придерживаясь указанной последовательности представления результатов, приведем здесь лишь выражения для химических потенциалов, используемые для расчета ω_1 и ω_2 .

$$\mu = \frac{\tau}{\beta_c} \left(\ln\left(n_c \omega \lambda^3\right) + \frac{x_c \omega}{\tau} + \frac{3\sqrt{3}}{\tau} \left(1 - \sqrt{1 + \frac{x_c \omega}{\tau}}\right) \right), \tag{23}$$

$$\mu = \frac{\tau}{\beta_c} \left(\ln\left(n_c \omega \lambda^3\right) + \frac{x_c \omega}{\tau} - \frac{2\sqrt{2}}{\tau} K\left(1 - \frac{\sqrt{2}}{Y(\omega, \tau)}\right) \right), \tag{24}$$

Физика и техника высоких давлений 2011, том 21, № 1

$$\mu = \frac{\tau}{\beta_c} \left(\ln \left(n_c \omega \lambda^3 \right) + \frac{x_c \omega}{\tau} - \frac{5}{2\tau} \left(\frac{9}{5} \right)^{9/4} \left(1 - \frac{2}{\left(1 + x_c \omega / \tau \right)^{1/4}} \right) \right), \quad (25)$$

$$\mu = \frac{\tau}{\beta_c} \left(\ln \left(n_c \omega \lambda^3 \right) + \frac{x_c \omega}{\tau} - \frac{3}{\tau} \left(\frac{5}{3} \right)^{3/2} \left(1 - \frac{5}{3 \left(1 + x_c \omega / \tau \right)^{1/2}} \right) \right).$$
(26)

Поиск аналитического решения уравнений системы (22) в замкнутой форме наталкивается на чрезвычайные трудности математического характера. Однако в работе [11] было показано, что в окрестности КТ ω_1 и ω_2 можно представить в виде сумм нескольких членов рядов по степеням малого параметра $\theta = \tau - 1$. При этом погрешность полученных формул возрастает по мере удаления от КТ. Для сохранения ее величины в разложениях ω_1 и ω_2 необходимо учитывать члены более высокого порядка по θ , что приводит к громоздким выражениям для коэффициентов разложений. Эти недостатки удается устранить при численном решении системы.

Рис. 2. Линии насыщения в приведенных координатах $\tau = T/T_c$ и $\omega = n/n_c$: *1*, *2*, *3*, *4* – соответственно потенциалы (5), (6), (7) и (8); *5* – экспериментальные данные для аргона [7]; *6* – по уравнению Ван-дер-Ваальса

Заметим, что параметры потенциалов не входят в уравнения системы (22), поэтому решения (плотности сосуществующих фаз для различных веществ) зависят только от вида потенциала взаимодействия, а не от его параметров, т.е. для различных веществ, описываемых потенциалами одного вида, линии насыщения будут совпадать. Результаты численных расчетов плотностей сосуществующих фаз приводятся на рис. 2 в виде линий 1–4.

Очевидно, что газовые ветви линий насыщения для потенциалов (6)–(8) почти совпадают с экспериментальной кривой в интервале 0.9–1 приведенных температур т. Для жидкостных ветвей удовлетворительное согласие моделей (6)–(8) с опытными

данными наблюдается в более узком температурном интервале 0.98–1. Исследование окрестности КТ показало, что система с межчастичным потенциалом Юкавы (5) имеет критический индекс линии насыщения, равный 1/3 [12].

5. Изобарная теплоемкость

Первое упоминание о существовании максимумов изобарной теплоемкости C_P и $(\partial V/\partial T)_P$ в надкритической области $(T > T_c)$ можно отнести, повидимому, к середине 30-х гг. прошлого столетия [13]. С тех пор накоплен богатый экспериментальный материал и получены теоретические результаты, посвященные экстремальным свойствам веществ при $T > T_c$. Появление конечных максимумов на температурных зависимостях C_P и $(\partial V/\partial T)_P$ при постоянном давлении наблюдается и в рассматриваемых моделях, отличие которых друг от друга состоит только в количественном согласии с экспериментальными данными.

Основная задача при определении C_P и $(\partial V/\partial T)_P$ сводится к решению УС (9)–(12)

$$\pi(\omega,\tau) - \pi = 0 \tag{27}$$

относительно приведенной плотности ω при заданной температуре τ и давлении π . Очевидно, что для УС (9)–(12) соотношение (27) сводится к очень сложному уравнению относительно параметра ω , так что поиск аналитического решения представляется безнадежным занятием.

Решения ω нелинейного уравнения (27) были найдены численным методом для значений π и τ , соответствующих экспериментальным P и T, взятым из таблиц работы [7] для изобарной теплоемкости. Изобарная молярная теплоемкость C_P^m и производная $(\partial V/\partial T)_P$ на изобарах легко вычисляются по формулам

$$C_P^m = C_V^m - \tau k_B N_A \frac{\left(\partial \pi / \partial \tau\right)_{\varphi}^2}{\left(\partial \pi / \partial \varphi\right)_{\tau}},$$
(28)

$$\left(\frac{\partial V}{\partial T}\right)_{P} = -\frac{\beta_{c}k_{B}N_{A}}{n_{c}}\frac{\partial\pi/\partial\tau}{\partial\pi/\partial\phi},$$
(29)

где
$$C_V^m = -T \frac{\partial^2 F}{\partial T^2} = C_V^{\text{id}} + \frac{k_B N_A}{2n} \int_{\Omega} \frac{d^3 k}{(2\pi)^3} \left(\frac{n\beta \tilde{v}(k)}{1 + n\beta \tilde{v}(k)} \right)^2$$
, $C_V^{\text{id}} = \frac{3}{2} k_B N_A$, $N_A = -\frac{1}{2} k_B N_A$

число Авогадро.

Связь между молярной и удельной теплоемкостями определяется равенством

$$C_P = C_P^m / m ,$$

поэтому индивидуальность удельной теплоемкости вещества в рамках каждой из моделей с двухпараметрическими потенциалами (5)–(8) определяется только молярной массой *m* вещества.

Наиболее привлекательными из четырех исследуемых моделей жидкости, по нашему мнению, являются модели с потенциалами (6)–(8), поскольку дают лучшее согласие с экспериментальными данными. Модель с потенциалом Юкавы (5) передает лишь качественные черты поведения системы в надкритической области. Результаты расчета удельной теплоемкости C_P в моделях с потенциалами (6)–(8) и экспериментальные значения C_P [7] для аргона представлены на рис. 3. Точки максимумов C_P с ростом давления

смещаются вправо по температурной оси. При давлении P = 6 МРа наблюдается наибольший максимум. Если при указанных на рис. 3 давлениях P = 5, 6, 8, 10, 15 МРа вычисления $C_P(T)$ проводить с шагом, уменьшенным, по крайней мере, до 0.5 К (минимальный шаг таблицы экспериментальных значений C_P для аргона [7] составляет 5 К), то, кроме смещения точек максимумов C_P вправо, можно заметить монотонное убывание остроконечных максимумов с ростом давления. Убывание максимальных значений изобарной теплоемкости отмечено и в работах [14,15].

д

Если построить в P-T-координатах положение максимумов на кривых $C_P(T)$ и $(\partial V/\partial T)_P$, то они располагаются на разных линиях, выходящих из общего начала – КТ фазового превращения. Подобная картина полностью подтверждается выводами дисперсоидологической теории [16], к аналогичным заключениям приходит и автор работы [17]. Все линии связаны с наличием точек перегиба на изотермах, т.е. экстремумы $C_P(T)$ и $(\partial V/\partial T)_P$ определяются экстремумами производной $(\partial P/\partial V)_T$. Измерения на аппаратуре с высокой разрешающей способностью изобарной теплоемкости C_P с шагом

 $\Delta T \propto 0.01$ при значениях давления $P > P_c$, возможно, позволят обнаружить указанные максимумы в несколько десятков единиц, к которым приводят теоретические расчеты C_P .

6. Второй вириальный коэффициент

Для нахождения второго вириального коэффициента воспользуемся разложением УС (2) по малым плотностям частиц. Ограничиваясь членами, пропорциональными n^2 , получим

$$P = \frac{n}{\beta} + \frac{n^2}{2} \left[w - \frac{\beta}{4\pi^2} \int_0^{+\infty} dk k^2 \tilde{v}^2(k) \right] + \dots$$
(30)

Разделив обе части (30) на $k_b N_A T$, находим выражение для второго вириального коэффициента

$$B(T) = \frac{N_A}{2k_b T} \left[w - \frac{\beta}{4\pi^2} \int_0^{+\infty} dk k^2 \tilde{v}^2(k) \right],$$
 (31)

а из условия B(T) = 0 – температуру Бойля

$$T_B = \frac{1}{4\pi^2 k_B w} \int_0^{+\infty} dk k^2 \tilde{v}^2(k) \,.$$
(32)

Для систем с модельными потенциалами (5)–(8) второй вириальный коэффициент и температура Бойля равны

$$B(T) = \frac{N_A w}{2k_B T} \left(1 - \frac{a^3 w}{16\pi k_b T} \right), \ T_B = \frac{a^3 w}{16\pi k_B} = \frac{3\sqrt{3}}{2} T_c \approx 2.6T_c;$$
(33)

$$B(T) = \frac{N_A w}{2k_B T} \left(1 - \frac{3a^3 w}{256\pi k_B T} \right), \ T_B = \frac{a^3 w}{128\pi k_B} = \frac{K}{2\sqrt{2}} T_c \approx 3.75 T_c;$$
(34)

$$B(T) = \frac{N_A w}{2k_B T} \left(1 - \frac{a^3 w}{32\sqrt{2}\pi k_B T} \right), \ T_B = \frac{a^3 w}{32\sqrt{2}\pi k_B} = \frac{5}{4} \left(\frac{9}{5}\right)^{9/4} T_c \approx 4.69 T_c; \ (35)$$

$$B(T) = \frac{N_A w}{2k_B T} \left(1 - \frac{a^3 w}{48\pi k_B T} \right), \ T_B = \frac{a^3 w}{48\pi k_B} = \frac{3}{2} \left(\frac{5}{3}\right)^{5/2} T_c \approx 5.38T_c \,. \tag{36}$$

Температура T_B не зависит от параметров двухпараметрического потенциала (для инертных газов $T_B/T_c \approx 2.65-2.75$), а найденные соотношения для B(T) удовлетворяют условию $B(T) = \lim_{n\to 0} (PV/RT - 1)V$ [18]. На рис. 4 показано поведение второго вириального коэффициента для аргона в зависимости от температуры.

Рис. 4. Зависимость B(T) для аргона: 1, 2, 3, 4 – соответственно потенциалы (5), (6), (7) и (8); 5 – потенциал Леннарда-Джонса; 6 – по УС Ван-дер-Ваальса

УС (9)–(12) качественно верно передают зависимость B от температуры. Отметим, что расчетные кривые B(T)при низких температурах отрицательны, с увеличением температуры проходят через нуль, достигают максимумов, а затем уменьшаются, приближаясь к нулю. Отметим, что третий и все последующие вириальные коэффициенты, получаемые на основе УС (9)–(12), зависят от температуры, в отличие от коэффициентов теории Ван-дер-Ваальса и модели твердых сфер [19].

Величина B(T) может служить источником информации для расчета параметров парного потенциала взаимодействия.

7. Заключение

Полученные результаты, согласующиеся в отдельных случаях с данными эксперимента, обнаруживают и заметные количественные расхождения, которые могут быть обусловлены следующими причинами:

 – учетом только двухчастичных потенциалов и пренебрежением многочастичными взаимодействиями;

 – центральным характером взаимодействий, т.е. пренебрежением ориентационными эффектами;

- модельностью потенциала взаимодействия;

– двухпараметричностью потенциалов взаимодействия (здесь для вычисления параметров A и a использованы только n_c и T_c);

приближенностью выражения для свободной энергии, полученного в
 [2].

Если уточнение квадратичного приближения для свободной энергии имеет некоторые перспективы, то проблема, связанная с учетом в рамках предлагаемого подхода даже трехчастичных взаимодействий, пока далека от своего разрешения.

Использование модельных потенциалов, отражающих реальные взаимодействия частиц, приведет к уменьшению наблюдаемых расхождений между расчетными и экспериментальными данными. Перспективными для получения более точных результатов являются многопараметрические потенциалы, в частности линейные комбинации, образованные из простых потенциалов (эффективность такого приема продемонстрирована, например, в работе [20]).

Привлечение потенциалов с несколькими параметрами может потребовать более полной информации о термодинамическом состоянии вещества, а не только данных об окрестности КТ фазового перехода. Кроме того, поскольку параметры потенциала, калиброванные по одному из свойств вещества, могут приводить к неудовлетворительному описанию других свойств, не исключена процедура усреднения параметров, найденных по нескольким измеряемым величинам.

Наконец, возможно рассмотрение потенциалов с твердой сердцевиной с учетом их обрезания в нуле, а также построение теории возмущений, в которой простые потенциалы используются в качестве нулевого приближения для «реальных» потенциалов [21].

При сравнении теории с экспериментом для реальных систем следует иметь в виду, что с экспериментом сравниваются не только результаты теории, но и принятый потенциал взаимодействия. Поэтому доказательство правильности выбора теории или потенциала затруднительно в силу того, что недостаток одного может компенсироваться изменением другого.

Авторы выражают свою искреннюю благодарность проф. А.Ю. Захарову и гл.н.с. ДонФТИ д-ру физ.-мат. наук А.Э. Филиппову за полезные советы и обсуждение результатов.

- 1. A.Yu. Zakharov, Phys. Lett. A147, 442 (1990).
- 2. А.Ю. Захаров, И.К. Локтионов, ТМФ 119, № 1, 167 (1999).
- 3. Б. Олдер, У. Хувер, в кн.: Физика простых жидкостей. Статистическая теория, Г. Темперли, Дж. Роулинсон, Дж. Рашбук (ред.), Мир, Москва (1971), с. 81.
- 4. Дж. Бернал, С. Кинг, там же, с. 16.
- 5. В.А. Кособукин, Физика твердого тела. Введение в теорию неупорядоченных систем. Локализованные состояния. Учебное пособие, Изд-во СПбГТУ, Санкт-Петербург (2000).
- 6. *Н.А. Ватолин, Б.Р. Гельчинский, В.А. Полухин, В.Ф. Ухов, О.А. Есин,* ДАН СССР **222**, 1323 (1975).
- 7. *Н.Б. Варгафтик*, Справочник по теплофизическим свойствам газов и жидкостей, Физматгиз, Москва (1972).
- 8. Л.П. Филиппов, Подобие свойств веществ, Изд-во МГУ, Москва (1978).
- 9. *В.Н. Алямовский, И.И. Иванчик*, Труды ФИАН **144**, 193 (1984).
- 10. M. Dijkstra, R. van Roij, J. Phys.: Condens. Matter 10, 1219 (1998).
- 11. И.К. Локтионов, в сб. научных трудов ИПМ им. Францевича НАНУ, Киев (1997), с. 25.
- 12. I.K. Loktionov, http://arxiv.org/abs/1003.2727 (2010).
- 13. A. Eucken, Phys. Zeit. 35, 708 (1934).
- 14. А.М. Сирота, в кн.: Уравнения состояния газов и жидкостей, Наука, Москва (1975), с. 173.
- 15. А.М. Сирота, Теплоэнергетика № 8, 73 (1972).
- 16. А.В. Воронов, ЖФХ 35, 1985 (1961).
- 17. А.М. Розен, ДАН СССР 99, 133 (1954).
- 18. Э. Мейсон, Т. Сперлинг, Вириальное уравнение состояния, Мир, Москва (1972).

Физика и техника высоких давлений 2011, том 21, № 1

- 19. Дж. Роулинсон, в кн.: Физика простых жидкостей. Статистическая теория, Г. Темперли, Дж. Роулинсон, Дж. Рашбук (ред.), Мир, Москва (1971), с. 63.
- 20. А.Б. Каплун, А.Б. Мешалкин, ЖФХ 80, 2097 (2006).
- 21. И.К. Локтионов, ТВТ 38, 516 (2000).

С.В. Терехов, І.К. Локтіонов

РОЗРАХУНОК ТЕРМОДИНАМІЧНИХ ВЛАСТИВОСТЕЙ ЧИСТИХ РЕЧОВИН ЗА МЕТОДОМ ГІББСА

Отримано рівняння стану та встановлено зв'язок критичних параметрів систем з характеристиками модельних потенціалів взаємодії. Побудовано лінії насичення і знайдено значення ізобарної теплоємності в широкому інтервалі температур і тисків, визначено температурні залежності другого віріального коефіцієнта. Виконано порівняння отриманих результатів з експериментальними даними.

Ключові слова: рівняння стану, потенціал взаємодії, критична точка, ізобарна теплоємність, другий віріальний коефіцієнт

S.V. Terekhov, I.K. Loktionov

CALCULATION OF THERMODYNAMIC PROPERTIES OF PURE SUBSTANCES BY THE GIBBS METHOD

The equations of state have been derived and a correlation between critical parameters of systems and parameters of model interaction potentials has been determined. Saturation lines have been constructed, values of the isobar heat capacity have been determined for a wide temperature and pressure range, and the temperature dependences of the second virial coefficient have been determined. The obtained results are compared with experiment data.

Keywords: equation of state, the interaction potential, critical point, heat capacity, second virial coefficient

Fig. 1. Oscillating potentials (7) (curve *I*) and (8) (curve *2*)

Fig. 2. Lines of saturation in the reduced coordinates $\tau = T/T_c$ and $\omega = n/n_c$: 1, 2, 3, 4 –

potentials (5), (6), (7) and (8), respectively; 5 - experimental data for argon [7]; 6 - by Van der Waals equation of state

Fig. 3. Dependences $C_P(T)$ for argon for different pressures P, MPa: a - 5, $\delta - 6$, e - 7,

z - 10, $\partial - 15$; I - data of work [7], 2 - potential (6), 3 - potential (7), 4 - potential (8)

Fig. 4. Dependence B(T) for argon: 1, 2, 3, 4 – potentials (5), (6), (7) and (8), respectively; 5 – Lennard–Jones potential; 6 – by Van der Waals equation of state