PACS: 82. 35.Lr

Б.Б. Колупаев¹, В.В. Клепко¹, Е.В. Лебедев¹, Б.С. Колупаев²

ВЛИЯНИЕ ДАВЛЕНИЯ В *Т–Р*-РЕЖИМЕ НА ТЕПЛОВЫЕ СВОЙСТВА ПОЛИВИНИЛХЛОРИДА, ПОЛИВИНИЛБУТИРАЛЯ И ПОЛИСТИРОЛА

¹Институт химии высокомолекулярных соединений НАН Украины Харьковское шоссе, 48, г. Киев, 02160, Украина E-mail: Boris.Kolupaev@gmail.com

²Ровенский государственный гуманитарный университет Министерства образования и науки, молодежи и спорта Украины ул. Остафова, 31, г. Ровно, 33000, Украина

Статья поступила в редакцию 2 ноября 2011 года

Приведены результаты экспериментальных исследований тепловых свойств (теплоемкости, теплопроводности) образцов поливинилхлорида (ПВХ), поливинилбутираля (ПВБ), полистирола (ПС), полученных в режиме температура–давление. Показано, что повышение давления более 100–120 МРа приводит к их нелинейному изменению. Обсуждаются процессы структурного упорядочения среды, вызванного изменением давления в диапазоне 10–300 МРа.

Ключевые слова: свободный объем, тепловые свойства, теплоемкость, теплопроводность, *Т*-*p*-режим

Введение

Знание свойств полимеров тепловых играет важную научнопрактическую роль в процессе получения, переработки и эксплуатации готовых изделий [1]. При этом наиболее актуальными выступают исследования поведения линейных гибкоцепных полимеров во внешних силовых и температурных полях, с помощью которых формируют их структуру и свойства [2]. Установлено [3], что некоторые эффекты влияния давления р на комплекс свойств материала являются общими для широкого класса веществ. Их рассмотрение в случае полимеров [4] позволило сделать заключение о необходимости классификации давлений. Предложено различать два режима давления: *Т-р* и *p*-*T* [2]. Первый режим отличается от второго тем, что исходный полимер и/или гетерогенную систему на его основе помещают в предварительно разогретую пресс-форму и только после этого прикладывают необходимое (в дальнейшем мы будем называть его технологическим) давление.

В основном [5] теплофизические свойства полимеров исследуют в зависимости от величины гидростатического давления. При этом, как правило, не существует однозначной интерпретации полученных результатов с точки зрения молекулярно-кинетической теории. Однако наибольший научно-практический интерес представляют исследования поведения полимерных систем, сформированных в определенных *T*–*p*-условиях [6]. К сожалению, таких работ не достаточно для того, чтобы сделать научно обоснованные выводы и рекомендации относительно технологии получения и эксплуатации полимерных материалов. Цель данной работы – экспериментально изучить тепловые свойства образцов ПВХ, ПВБ, ПС, сформированных в изотермических условиях при высоких технологических давлениях.

Экспериментальная часть

В качестве объектов исследования выбраны одни из наиболее распространенных в промышленности типичных представителей линейных гибкоцепных полимеров: переосажденный ПВХ-С-63-59 М (ЗАО «Каустик»), температура стеклования $T_g = 354$ К; ПВБ – аморфный карбоцепной марки ПШ (ДС-9439, ПО «Лабтех»), $T_g = 330$ К; атактический ПС марки Styron 678E (производства DOW Chemical Company), $T_g = 361$ К.

Образцы готовили методом горячего прессования при $T = T_g + 40$ К в режиме температура–давление при $10.0 \le p \le 300.0$ МРа [3]. Акустические свойства систем исследовали на частоте $\omega = 0.4$ МНz импульсным методом совместно с методом вращающейся пластины при продольной деформации и сдвиге [3]. Плотность ρ полимера находили согласно работе [3]. Коэффициент теплопроводности λ и теплоемкость C_p материала определяли с помощью модифицированных установок «ИТ- λ -400», «ИТ-C-400» при скорости нагрева 3 К·min⁻¹ [3].

Результаты и их обсуждение

На рис. 1 представлены результаты исследований влияния давления прессования при T = 303 К на величину плотности р образцов ПВХ, ПВБ и ПС. Из полученных зависимостей $\rho(p, T)$ следует, что по мере повышения давления p наблюдается изменение плотности материала. Характерно, что в области p = 10-80 МРа преобладающим является эффект, связанный с линейным уменьшением объема системы. Однако в диапазоне p = 80-160 МРа происходит более интенсивное изменение величины р. При дальнейшем возрастании давления до значения 200 МРа для всех систем в стеклообразном состоянии наблюдается нелинейное увеличение плотности образцов. Рост давления в диапазоне 200–300 МРа приводит к появлению области «плато», положение которой зависит от типа полимера.

Рис. 1. Зависимость плотности ρ полимерных систем при T = 303 К и теплоемкости при T = 313 К от величины давления в T–p-режиме ρ : $I – \Pi BE$, $2 – \Pi BX$, $3 – \Pi C$; C_p : $4 – \Pi BX$, $5 – \Pi BE$, $6 – \Pi C$

Таким образом, анализ рис. 1 показывает, что для всех исследованных систем графическую зависимость $\rho = f(p)_T$ можно представить в виде трех участков: 1) область давлений до 80 МРа отвечает линейному возрастанию плотности материала; 2) в случае p = 120-200 МРа происходит наиболее интенсивный рост ρ и 3) медленное увеличение ρ при p = 200-300 МРа. Аналитически зависимость $\rho(p, T)$ описывается соотношением

$$\rho(p,T) = \rho(p_{10})_T (1+\varepsilon)^2, \qquad (1)$$

где $\rho(p_{10})_T$ – плотность при p = 10 MPa. При T = 303 K для ПВХ $\rho(p_{10})_T = 1.401$, для ПВБ – 1.072, для ПС – 1.052; ε – постоянный коэффициент. Значения ε при T = 303 K и различных давлениях для исследуемых полимерных систем приведены в таблице.

Таблица

Давление, МРа Параметр Материал 10 60 120 180 240 300 ПВХ 3.6 70.0 142.0 214.0 216.0 217.0 ε, 10⁻³ ПВБ 7.4 28.0 180.0 230.0 310.0 330.0 ПС 93.0 251.0 6.7 31.0 107.0 183.0 ПВХ 1.02 1.03 1.01 1.05 1.10 1.02 ПВБ 1.04 1.07 1.01 1.02 1.04 1.06 γ ПС 1.00 1.02 1.02 1.03 1.12 1.20 ПВХ 1.03 1.04 1.00 0.87 0.92 1.20 β ПВБ 1.10 1.12 1.15 1.17 1.19 1.14 ПС 1.00 1.10 1.32 1.01 1.00 1.01

Параметры ε, γ, β для полимерных систем при различных давлениях

На рис. 1 также представлены результаты зависимости величины теплоемкости C_p полимерных систем от технологического давления при T == 313 К. Характер изменения $C_p = f(p)_T$ для ПВХ, ПВБ и ПС при $10 \le p \le$ ≤ 300 МРа идентичен. Так, в диапазоне p = 10-240 МРа величина $C_p(p)$ незначительно уменьшается, однако при $p \ge 240$ МРа наблюдается интенсивный ее рост. Аналитически зависимость изменения $C_p = f(p)_T$ можно представить как

$$C_p = C(p_{10})_T \beta^{\gamma}, \qquad (2)$$

где $C(p_{10})_T$ – теплоемкость при p = 10 MPa. При T = 313 K для ПВХ $C(p_{10})_T = 1.56$, для ПВБ – 1.33, для ПС –1.20; β , γ – постоянные коэффициенты. Значения β и γ при T = 313 K и различных давлениях для исследуемых полимерных систем приведены в таблице.

Установлено [7], что по мере повышения величины внешнего давления в *T*-*p*-режиме в полимерах наблюдается интенсивное изменение величины коэффициента квазиупругой силы, а также частоты колебаний структурных элементов. При этом в первом приближении [8] можно считать, что

$$C_p = \sum_{i=1}^{3} C_i ,$$
 (3)

где $i = 1, 2, 3; C_1$ – соответствует высокочастотному интрамолекулярному колебательному и вращательному движению отдельных атомных групп полимерной цепи (H, Cl в случае ПВХ; О, –О–СН–О– – ПВБ; H, R – ПС); C_2 – составляющая низкочастотных акустических колебаний; C_3 – обусловлена вкладом дефектов структуры в энергетическое состояние системы. Для расчета величины энергии связи между атомами цепи главных валентностей ПВХ, ПВБ и ПС используем полуэмпирическое уравнение Морзе [9]:

$$U(a) = D\left\{\exp\left[-2\mu(a-a_0)\right] - 2\exp\left[\mu(a-a_0)\right]\right\},$$
(4)

где U(a) – потенциальная энергия системы; D – энергия диссоциации связи; a и a_0 – расстояния между структурными элементами соответственно в какой-либо момент времени и в состоянии равновесия; μ – постоянная, величина которой зависит от амплитуды колебаний взаимодействующих структурных элементов. В первом приближении можно считать, что $da = a - a_0$. Уменьшение под влиянием внешнего давления в *T*-*p*-режиме расстояния между атомами на величину da соответствует изменению квазиупругой силы *f* на величину $df = \frac{\partial^3 U(a)}{\partial a^3}$. В свою очередь, частота колебаний атомов полимерной цепи за счет ее деформации внешним силовым полем изменится на величину

$$-\frac{1}{\nu}\frac{\mathrm{dln}\nu}{\mathrm{d}a} = -\frac{1}{2f}\frac{\mathrm{d}f}{\mathrm{d}a} = \frac{\mu}{2}\frac{4\exp(-2\mu a_0|\tau|f) - \exp(-\mu a_0|\tau|f)}{2\exp(-2\mu a_0|\tau|f) - \exp(-\mu a_0|\tau|f)},\tag{5}$$

где $\tau = -\frac{1}{a_0} \frac{\partial a(f)}{\partial f}$ – сжимаемость цепи.

Таким образом, по мере повышения давления в *T*-*p*-режиме в системе происходят изменения величины квазиупругой силы, а соответственно и частоты колебаний структурных элементов, что проявляется в характере зависимости $C_p = f(p)_T$. Проведенный анализ показал, что в случае ПВХ при p = 60 MPa $(\partial C_1 / \partial p)_T = 0$; $(\partial C_2 / \partial p)_T = \psi(U(a), D)$ и величина $C_3 = \varphi(p)_T$ уменьшается по мере повышения давления в диапазоне $180 \ge p \ge 10$ MPa. При $p \ge 180$ MPa возрастает потенциал торможения атомных групп, что вызывает увеличение теплоемкости системы (рис. 1).

Считаем, что в дебаевском приближении число колебаний структурных элементов, приходящихся на интервал частот dv, составляет [8]:

$$Z(\mathbf{v}) = 4\pi V_0 \left(\frac{2}{v_t^3} + \frac{1}{v_l^3}\right) \mathbf{v}^2 d\mathbf{v}, \qquad (6)$$

где V_0 – объем системы. При этом их ограничивающая частота $v(p)_T$ в случае поперечных и продольных колебаний равна

$$\mathbf{v}(p)_T = \left(\frac{9N}{4\pi V(p)} \frac{v_l^3 v_t^3}{v_t^3 + v_l^3}\right)^{1/3},\tag{7}$$

где 9N – число атомов; V(p) – объем системы при давлении p; v_l , v_t – соответственно скорости распространения продольных и сдвиговых колебаний [7]. Если, следуя [8], макромолекулу ПВХ, ПВБ, ПС представить в виде линейной цепи типа ABAB..., в которой поочередно расположены два структурных элемента массами M_A и M_B (пусть $M_B < M_A$), тогда величина коэффициента квазиупругой связи между ними f по цепи главных валентностей составит

$$f = \frac{\left(\omega_D^l\right)^2 M_A M_B}{2(M_A + M_B)},\tag{8}$$

где $\omega_D^l = \left(\frac{6\pi^2 N}{V(p)}\right)^{1/3} v_l$ – ограничивающая частота Дебая [8].

Поскольку каждый структурный элемент макромолекулы подвержен действию сил интермолекулярного взаимодействия [3], в предположении, что колебания сдвига масс M_A и M_B обусловлены деформацией валентных углов и гибкостью цепи, соответствующие силовые константы f_1 и f_2 определим как

$$f_1 = \frac{\left(\omega_D^t\right)^2 M_A}{16},\tag{9}$$

$$f_2 = \frac{\left(\omega_D^t\right)^2 M_B}{16},\tag{10}$$

где $\omega_D^t = \left(\frac{6\pi^2 N}{V(p)}\right)^{1/3} v_t$. Согласно такому структурному подходу с учетом нали-

чия в ПВХ, ПВБ и ПС различных по массе боковых групп, провели расчет характеристического частотного спектра (ω_D^l ; ω_D^t) систем. Оказалось, что по мере повышения давления прессования происходит изменение величин ω_D^l и ω_D^t . Так, в области $60 \ge p > 10$ МРа для систем ПВХ наблюдается незначительное их возрастание, равно как и $v(p)_T$ (рис. 2). Однако по мере повышения величины pпроисходит более существенное изменение числовых значений ω_D^l и ω_D^t . В частности, при p = 10 МРа величины $\omega_D^l \cdot 10^{-13}$ s⁻¹ и $\omega_D^t \cdot 10^{-13}$ s⁻¹ равны соответственно 1.860 и 0.995; при p = 60 МРа – 1.953 и 1.023; при p = 120 МРа – 2.232 и 1.116; при p = 200 МРа – 2.279 и 1.125; при p = 300 МРа – 2.297 и 1.141. Такой характер возрастания величины ограничивающих частот релаксационного спектра указывает на то, что повышение технологического давления способствует увеличению жесткости структуры линейных гибкоцепных полимеров.

Рис. 2. Зависимость частоты колебаний структурных элементов v и величины флуктуационного свободного объема V_f атомных групп полимеров при T = 303 K от величины технологического давления: v: $1 - \Pi BX$ (–С–), $2 - \Pi BX$ (–Н–), $3 - \Pi BX$ (–Сl–), $4 - \Pi BE$ (–О–), $5 - \Pi BE$ (–О–СН–О–); V_f : $6 - \Pi BX$, $7 - \Pi C$

При этом сопоставление расчетных значений ограничивающих частот ПВХ с его экспериментальным спектром [10] показало, что значения ω_D^l близки к спектру регулярной синдиотактической цепи, а значения ω_D^t – к спектру деформации скелетной цепи [11]. Имеющиеся данные позволяют рассчитать величину флуктуационного свободного объема материала [11]:

$$V_f = \frac{(kT)^{3/2}}{(ff_1 f_2)^{1/2}}.$$
(11)

На рис. 2 представлены результаты изотермических (при T = 313 K) зависимостей величин $v(p)_T$ и флуктуационного свободного объема V_f от давления прессования образцов в диапазоне $10 \le p \le 300$ MPa. В случае $v(p)_T =$ = f(p) существует два участка: медленного, почти линейного изменения величины $v(p)_T$ с ростом давления прессования в области $10 \le p \le (120-180)$ MPa и быстрого возрастания частоты при повышении давления более 180-240 MPa. Характерно, что по мере увеличения массы атомных боковых групп ПВХ, ПВБ, ПС [8] частота их колебаний нелинейно уменьшается (рис. 2, кривые 1-5). Видимо, основной причиной возрастания величины частоты колебаний структурных элементов при $10 \le p \le 180$ MPa является уменьшение флуктуационного свободного объема за счет уплотнения системы без существенных изменений ее структуры (рис. 2, кривые 6, 7). На втором участке кривых (рис. 2), соответствующих зависимостям v(p) и $V_t(p)$ при $p \ge 180$ MPa, происходит процесс структурной сжимаемости полимера. Кроме того, за счет уменьшения количества микродефектов [8] реализуется энергетически более выгодное расположение структурных элементов [6]. Действительно, если разложить $\exp(-\mu a_0 |\tau| f)$ соотношения (5) в ряд, т.е.

$$\exp(-\mu a_0 |\tau| f) \approx 1 - \mu a_0 |\tau| f + \frac{1}{2!} \mu^2 a_0^2 |\tau|^2 f^2, \qquad (12)$$

и ограничиться двумя членами, тогда имеем, что

$$\alpha(f) = \frac{1}{2} \left(\frac{\partial^2 U(a)}{\partial a^2} \right) = 2D\mu^2 (1 - \mu a_0 |\mathbf{\tau}| f) \left(1 - 2\mu a_0 |\mathbf{\tau}| f \right).$$
(13)

Таким образом, по мере повышения давления в T-*p*-режиме происходит изменение коэффициента квазиупругой силы $\alpha(f)$, а соответственно и частоты колебаний структурных элементов, которые принимают участие в энергопереносе [9].

На рис. 3 показана экспериментальная зависимость λ полимерных систем при T = 313 К от величины давления их прессования. Так, в случае ПВБ в области давлений до 120 МРа наблюдается некоторый рост теплопроводности, а при $300 \ge p \ge 240$ МРа величина λ уменьшается. Аналогичный вид имеет кривая зависимости $\lambda = f(p)|_T$ для ПВХ. Аморфный ПС в области

120 ≥ p ≥ 10 MPa более интенсивно реагирует на действие температурного поля путем возрастания величины λ. Однако в диапазоне 240 ≥ p ≥ 120 MPa λ уменьшается с последующим незначительным увеличением при 300 ≥ p ≥ 240 MPa.

Рис. 3. Зависимость λ и *l* систем при *T* = 313 К от величины давления в *T*-*p*-режиме: λ : *l* – ПВБ, *2* – ПС, *3* – ПВХ; *l*: *4* – ПС, *5* – ПВХ

Аналитически зависимость величины коэффициента теплопроводности ПВХ, ПВБ, ПС в изотермическом режиме от технологического давления представим, используя метод Симпсона [3], в виде многочлена (при условии, что $10 \le p \le 300$ MPa) как:

$$\lambda_{\Pi BX} = 0.148 + 2.240 \cdot 10^{-4} p - 1.711 \cdot 10^{-6} p^2,$$

$$\lambda_{\Pi C} = 0.122 + 1.218 \cdot 10^{-4} p - 2.002 \cdot 10^{-6} p^2,$$

$$\lambda_{\Pi BE} = 0.136 + 1.640 \cdot 10^{-5} p - 1.601 \cdot 10^{-6} p^2.$$
(13)

Отклонение от линейной зависимости $\lambda = f(p)|_T$ вызвано уменьшением термического сопротивления на границе областей локального порядка [6], что приводит к изменению рассеяния звуковых фононов [9] и тепловых волн [5]. Этот вывод подтверждается изменением длины свободного пробега фононов l [9] от величины технологического давления получения образцов (рис. 3). Оказалось, что по мере повышения давления $10 \le p \le 300$ MPa при T = 313 K величина l нелинейно возрастает в диапазоне $(1.7-15.5) \cdot 10^{-10}$ m.

Заключение

Установлен многостадийный характер изменения тепловых свойств систем ПВХ, ПВБ и ПС, полученных в *Т*–*p*-режиме при давлении $10 \le p \le 300$ МРа. Наиболее существенное влияние на величины ρ , λ , C_p наблюдается для образцов, полученных в диапазоне $240 \ge p \ge (120-180)$ МРа. В случае $p \ge 240$ МРа

интенсивность возрастания плотности линейных гибкоцепных полимеров уменьшается. При $240 \ge p \ge 120$ MPa величина λ ПС и ПВХ уменьшается, а в случае ПВБ и ПВХ при $300 \ge p \ge 240$ MPa коэффициент их теплопроводности стремится к постоянному значению. С помощью предложенных соотношений можно прогнозировать технологические условия получения промышленных изделий на основе ПВХ, ПС, ПВБ с регулируемым комплексом теплофизических свойств.

Работа выполнена при поддержке фонда фундаментальных исследований Министерства образования и науки, молодежи и спорта Украины (код проекта 0103U00156).

- 1. А.Р. Хохлов, Высокомолек. соед. A51, 37 (2009).
- 2. И.Р. Венгеров, ФТВД 16, № 2, 15 (2006).
- 3. Б.С. Колупаев, Релаксационные и термические свойства наполненных полимерных систем, С.Я. Френкель (ред.), Вища школа, Львов (1980).
- 4. С.Б. Айнбиндер, К.И. Алксне, Э.Л. Тютина, М.Г. Лака, Свойства полимеров при высоких давлениях, Химия, Москва (1973).
- 5. Ю.К. Годовский, Теплофизика полимеров, Химия, Москва (1982).
- 6. Б.С. Колупаев, Б.И. Муха, Б.П. Демьянюк, В.Я. Кит, Высокомолек. соед. **Б20**, № 2, 85 (1978).
- 7. Б.Б. Колупаев, ФТВД 15, № 4, 85 (2005).
- 8. Б. Вундерлих, Г. Баур, Теплоемкость линейных полимеров, Мир, Москва (1972).
- 9. Б.С. Колупаєв, Фізика конденсованих високомолекулярних систем № 2, 5 (2007).
- 10. Б.Б. Колупаев, В.В. Клепко, Е.В. Лебедев, Б.С. Колупаев, Высокомолек. соед. **А52**, 249 (2010).
- 11. Д.С. Сандитов, С.Ш. Сангадиев, Высокомолек. соед. А41, 977 (1999).

Б.Б. Колупаєв, В.В. Клепко, С.В. Лебедєв, Б.С. Колупаєв

ВПЛИВ ТИСКУ В *Т–Р*-РЕЖИМІ НА ТЕПЛОВІ ВЛАСТИВОСТІ ПОЛІВІНІЛХЛОРИДУ, ПОЛІВІНІЛБУТИРАЛЮ І ПОЛІСТИРОЛУ

Наведено результати експериментальних досліджень теплових властивостей (теплоємності, теплопровідності) зразків полівінілхлориду (ПВХ), полівінілбутиралю (ПВБ), полістиролу (ПС), отриманих в режимі температура-тиск. Показано, що підвищення тиску більш ніж 100–120 МРа призводить до нелінійних змін теплових властивостей. Обговорюються процеси структурного упорядкування середовища, яке викликане зміною тиску в діапазоні 10–300 МРа.

Ключові слова: вільний об'єм, теплові властивості, теплоємність, теплопровідність, *Т-р*-режим B.B. Kolupaev, V.V. Klepko, E.V. Lebedev, B.S. Kolupaev

PRESSURE INFLUENCE IN THE *T–P*-MODE ON THERMAL PROPERTIES OF POLYVINYLCHLORIDE, POLYVINYLBUTYRALE AND POLYSTYRENE

The results of experimental investigations of thermal properties (thermal capacity, heat conductivity) of the samples of polyvinylchloride (PVC), polyvinylbutyrale (PVB), polystyrene (PS) obtained in the temperature–pressure mode are reported. It is shown that increase of technological pressure above 100–120 MPa results in their nonlinear change. Processes of structural ordering of the medium caused by pressure change in a range of 10–300 MPa are discussed.

Keywords: free volume, thermal properties, a thermal capacity, heat conductivity, T-p-mode

Fig. 1. Pressure dependence of density ρ of polymeric systems at T = 303 K and thermal capacity at T = 313 K in *T*-*p*-mode: ρ : I - PVB, 2 - PVC, 3 - PS; C_p : 4 - PVC, 5 - PVB, 6 - PS

Fig. 2. Technological pressure dependence of frequency of oscillations of structural elements v and fluctuation free volume V_f of nuclear groups of polymers at T = 303 K: v: I - PVC (-C-), 2 - PVC (-H-), 3 - PVC (-Cl-), 4 - PVB (-O-), 5 - PVB (-O-CH-O-); V_f : 6 - PVC, 7 - PS

Fig. 3. Pressure dependence of λ and *l* systems at T = 313 K in *T*–*p*-mode: λ : *l* – PVB, 2 – PS, 3 – PVC; *l*: 4 – PS, 5 – PVC