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A mechanism of perfect plasticity is suggested that implies the phenomenon under study
to be of ctitical nature. We consider that it is related to percolation transition in the net of
grain boundaries and with nonlocal intraction of fragments uniquely under simple shear.
Our point of view is substantiated by general reasoning, mainly of geometrical character,
and also by employing computational modeling and well-known experimental results.

The main hypothesis is: a collective deformation mode presents in metals under pressure,
starting from a definite value of simple shear y,. The consequences are saturation at
strengthening and anomalous fast mass transfer. The mentioned mode is determined by
slipping along high-angle boundaries, being composed by rotations of microscopic
blocks of the material subjected to small cyclic elastic and plastic deformations. This de-
formation mechanism is a characteristics of simple shear under pressure, being not real-
ized at elongation scheme of deformation. When y < y,, deformation of metallic materials
by simple shear follows the same mechanisms as in the case of elongation. Here both de-
formation modes have almost equivalent effect on metals with respect to deformation
strengthening and grain refinement.

Thus, the following viewpoint is substantiated in the paper: simple shear under pressure

is a two-stage process. The first stage (y < y.) is equivalent to elongation and the second
stage (y> y) is not.

Keywords: perfect plasticity, simple shear mode, percolation, couple stress, piecewise
isometric transformation

1. Introduction

At the present time it is reliably established that under sufficiently large defor-
mation of metals under simple shear mode and low homological temperatures, the
stage of perfect plasticity comes. That is, the shear stress reaches some fixed level
of saturation and does not increase any more during simple shear loading.
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P. Bridgeman was one of the first to reveal abnormally low hardening under
large strain in his classical high pressure torsion experiments [1]. Later, multiple
investigations (see, for example, [2,3]) confirmed that torsion test diagram exhi-
bits saturation. Finally, most convincingly perfect plasticity was detected in recent
investigations of high pressure torsion [4—7]. These studies did not only show that
torque was constant under given intensive shear strain, but also detected that the
microstructure of a specimen remained the same.

Perfect plasticity under large deformations indicates that qualitatively new state
of metals is observed. Hence, similarly to superplasticity, superfluidity, and su-
perconductivity, this phenomenon is of fundamental interest. It was the flow of
solid bodies «like liquids» that impressed A. Treska the most in his historically
pioneering investigations of plastic deformations [8]. However, situation devel-
oped in such a way that «perfect plasticity» for a long time remained just a
mathematical model for the scientists, while attention was attracted to elastoplas-
tic transition.

In connection with perfect plasticity phenomenon, two questions arise: what
causes it and whether it can be observed not only during deformation according to
simple shear scheme, but also under other schemes of loading?

There are no definitive answers on the posed questions hitherto. So, basing on
the results of experiments performed, P. Bridgeman supposed that abnormally low
hardening occurs only under simple shear deformation scheme. In order to justify
this idea, he suggested an idealized nuclear model for metal deformation. The
model illustrated fundamental difference between the simple shear scheme and the
stretching one [1]. The author [9] also considered that loading scheme affects
structure and characteristics of metals under large deformations.

On the other hand, according to [4], experimental results persuasively show
that, no matter what the deformation mode is, evolution of metal structure mainly
follows universal regularities. These regularities were established in [10] and [11].
That is the reason why the authors suggest that perfect plasticity phenomenon
should be common for different loading modes though it was experimentally
proved only during high pressure torsion. The problem was to achieve large de-
formations under other loading schemes. This point of view is shared by authors
of [5-7].

In this article, we suggest a mechanism of perfect plasticity under low ho-
mological temperatures. According to this mechanism, the phenomenon under
study is of critical nature. We suppose that it is connected with percolation transi-
tion in the net of grain boundaries and with nonlocal interaction of fragments
uniquely under simple shear. Our point of view is substantiated by general rea-
soning, mainly of geometrical character, and also by employing computational
modeling and well-known experimental results.

The article develops concepts [12—15], which are based on the hypothesis of
the first author that during large deformations according to simple shear scheme
turbulent flows in metals occur.
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2. Symmetry of simple shear and its relation with perfect plasticity

Simple shear is given by:

x=x! +yX2,
xQ:XZ, (1)
S=x3

where X’ and x’ are correspondingly initial and final coordinates of material point
(i=1, 2, 3); y is shear strain; X =0 gives a plane of shear deformation and the

direction of shear coincides with the X'axis.
= We will show if the pressure remains constant
under simple shear of the material, this material is

@ r necessarily perfectly plastic.

Let us perform a thought experiment. Imagine
a round disk of deformed specimen that is
clamped between two rigid anvils, the upper of
which is being twisted and the lower one is fixed
(Fig. 1). There is no slipping between the anvils
\ / and the specimen. In cylindrical coordinates sys-

tem (7, @, z), the velocity field with the following

Fig. 1. Deformation scheme for a
specimen material layer clamped
between two rigid anvils

components is realized: V,, = V, = 0, V, = rzo,
where ® =@ =const, and the dot over ¢ means
time derivative.

Under such conditions, simple shear deformation occurs at any moment of time
in a small neighborhood of any point of the disk. The stressed state is described
with tangent stress T and pressure p.

From dimensional considerations, it appears that p(r,y)=o(y)f(r,y), where
o(y) is the flow stress of the deformed material, f(r,y) is a dimensionless func-

tion of the shear strain y and the distance between the point and the z axis. Rela-
tion between the anvils pressing force P and p(r,y) is given by:

R
P(2) = [ p(r,y)dS = 2m0(y)[ / (r,y)rdr, 2)
S 0

where R is the disc radius.

Let us consider the system for two shear strain values y; and y,. As the system
i1s symmetric with respect to the rotation about axis z (see Fig. 1), it holds that
f(ry1) = f(r,y2). Then it follows from relation (2) that under constant anvils
pressing force P(y;) = P(y3), the yield stress of the material and pressure at any
point of the disc are also constant, that is o(y;) = 6(y2) and p(r,y1) = p(7,y2).

Thereby, we can conclude that simple shear under constant pressure should
pass without hardening of the material. It is a necessary condition. It follows from
the assumption that if simple shear is possible under constant pressure then such
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material has to be perfectly plastic. And when the material is hardening under de-
formation, it becomes necessary to increase the pressure continuously in order to
realize simple shear scheme. Simple shear mode under constant pressure is impos-
sible for a hardening material. This result was obtained for the first time in
[13,14], where the agreement of the result with experiments was also shown.

The principal property of the simple shear is that under transition (1), different mate-
rial points move in a parallel way relative to each other. It is this property that results in
invariance of the geometry of the considered system with respect to the rotation.

If we consider a thin layer of material along the motion direction in a neigh-
borhood of any point of the specimen, cross-section size of the layer does not
change under deformation. Owing to this fact, a stationary structure may be
formed in the material and such a structure results in perfect plasticity. Let us
show that if the deformation scheme does not possess this specified property then
stationary structure cannot emerge.

Now we consider a pure shear, i.e. flat lengthening deformation without change
in volume. This transformation is given by:

x! :le,
x?=k1x2, (3)
S=x3

where £ is the elongation coefficient along the X D axis.

We suppose that for some value k*, the cross-section size of the specimen
along the X° axis is equal to a and the average cross-section size of microstructure
fragments is d. We assume that starting from this moment, further deformation
does not result in microstructure changes (steady-state process).

Extending deformation, the elongation coefficient can be increased to some

value k >k*%. Then it follows from (3) that the cross-section size of the

specimen after deformation should become less than the average size of the mi-
crostructure fragments. But it is a contradiction. Therefore, stationary micro-
structure under flat lengthening deformation mode is impossible.

Certainly, because of a number of reasons (such as dynamical recrystallization, mi-
gration of grains boundaries, boundaries sliding, etc.), at some stages of deformation
process, the cross-section size of fragments may decrease more slowly than the cross-
section size of the specimen. However, our considerations imply that under lengthening
deformation scheme, the process of fragmentation has to recrudesce until the specimen
breaks or stretches to one-dimensional chain of indivisible fragments, atoms in the
limit. Consequently, lengthening deformation of the specimen and deformation of the
microstructure are similar, being reflected by the Polanyi—Taylor principle [16].

So we showed that under simple shear mode, there are all necessary prerequi-
sites for perfect plasticity and stationary microstructure emergence. How do they
emerge and sustain during the deformation? Do there just universal regularities
take place [10,11,17] or can there appear some new mechanism? In the next sec-
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tion we suggest a geometrical model for plastic deformation of metals that may
help to answer these questions.

3. Equivalent strain for simple shear and its symmetry

Considerable recent attention (see [18,19]) has been focused on equivalent
strain for simple shear. According to [18] it must be calculated from von Mises
relation, in contrast to this relation Hencky is substantiated in [19]. It is shown
below that only von Mises strain is governed by simple shear symmetry. That is
why von Mises strain must be used as the equivalent strain in this process.

The equivalent strain refers to scalar control parameter of deformation which is
specified from the outside and dictates the processes which proceed in material.

Let’s obtain the structure of an equation for the control parameter characterising
simple shear ¢(y) based on two obvious natural requirements it has to satisfy: (i)
invariance of simple shear with respect to the shift of coordinates origin along the
axis X' (the symmetry of simple shear), and (ii) additivity of this characteristic.
For this purpose, let consider two consecutive conditions / and 2 of a system that
correspond to the shear strain y; and y, with the control parameters g; = ¢(y;) and
q> = q(y2), respectively. Based on the requirement (i), the change of ¢ between the
conditions 1 and 2 is g1 = g(y2 — v1). According to the condition (ii), g2 = g1 + q12.
Hence, the function ¢(y) has to satisfy the condition g(y2) = g(y1) + g(y2 — v1). Des-
ignating Ay =y, — y1, we obtain g(y; + Ay) = g(y1) + g(Ay), viz. g(y) is a linear func-
tion. From compliance with the single stress-strain curve at low strain levels,

q(y) =er =%, which is equivalent to the eq. (2). Thus, the von Mises strain is

the geometrical parameter characterizing simple shear.

The derivation of linear equation for g(y)was just based on (i) the symmetry of
simple shear and (ii) the additivity of this characteristic. It is easy to show that the
same logic results in the derivation of logarithmic dependence of the same parameter
on a sample length in the case of pure shear or elongation. Indeed, the symmetry of
elongation is its scale invariance, which means parameter f characterising this process
should depend on the elongation ratio A = //ly where / and /y are current and initial
lengths of a sample. Let us consider two consecutive conditions of a system under-
going elongation, A; and A,. According to the additivity requirement (i), /> = f; + fi2.

From the scale invariance (i), fi, = f (};—2] Therefore, f(Ay)=f(A)+f (};—2]
1 1

From this equation we derive f (A +AL)— f(A;)= f[l +i—x] where AL =X, — A;.
1

When i—x<<l, from the latter equation we obtain Af(X)= f(1)+ /(1)
1

Taking into account that f(1) =0 and passing on to a limit when AA — 0, we de-

Ak

k'
(1

rive LA =f—(). Hence, f=f '(l)ln?». Thus, with the accuracy of an arbitrary

da A
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constant f '(1), the geometrical parameter characterising pure shear is the von

Mises strain.

In the resume to this Section, we underline that the von Mises strain is the only
legitimate geometrical measure of strain valid in both the cases of simple shear
and elongation. It is based on the symmetry of these processes.

4. Plastic deformation of metals as isometric transition with singularities

Real metallic specimens are large constructions with a huge number of at-
oms. Deformation of a specimen is related to change of atoms positions in space
and can be described by transformation of their coordinates:

m=G(M), 4

where M and m are the vectors of initial and end coordinates of atoms, corre-
spondingly.

Because of high dimensionality of the problem, it is practically impossible to
determine the transformation in (4) and relate it to the loading that was applied to
the specimen. That is why deformation process is usually considered at several
multi-scaled levels.

At the macro level, metals are modeled as solid continuous media, deformation
of which results in changes in lengths of material fibres and in angles between
them. This can be given by affine transformation:

dx = F(X)dX, (5)
where X and x are coordinates of a material point before and after deformation;

F(X)= dx is the deformation gradient tensor.
dX

Transformation (5) in fact represents transformation (4) at the macro level
without taking in regard micro-scale effects.
At the micro level, metals possess crystalline lattice that can bear only reversi-

ble elastic deformation with the order of magnitude not more than 10~ There-
fore, at the micro level, transformation (4) can be considered to be isometric, i.e.
without changes in lengths of segments. Such transformations include translation,
rotation, and symmetric reflection.

According to the theorem stated in [20], being near-isometric in the small neigh-
borhood of any point, continuous transformation is isometric in the whole region.
That is why transformation (4) can change lengths of segments at the large-scale
level only if it is isometric transformation with singularities (piecewise isometric
transformation) [21]. The latter represent surface of isometric discontinuity, owing
to which large values of derivatives in transformation (5) are achieved.

It can be seen that large plastic deformations in metals are realized only when
discontinuities in isometric transformations happen. Dislocations, grain boundary
dislocations, disclinations, and twins become bearers of such discontinuities. Sur-
faces that sweep the discontinuities under their motion form a set of singularities
of an isometric transformation (4).
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The fact, that transformation (4) belongs to the class of isometric transforma-
tions with singularities, gives a key to answer the questions we posed in the previ-
ous section. Let us demonstrate it.

We will employ a simple model (Fig. 2)
to see how singularities of isometric trans-
formations emerge.

If the point A4 shifts upright, OA4 segment
becomes longer and deviation from isome-
try occurs. When this deviation reaches its
critical value (point A4 reaches position 41),
ruptures at points x; (i = 1, ..., 4) emerge
and restore isometry at the small-scale
Fig. 2. «Lengthening» of the segment level, however allowing the whole seg-
OA by isometric transformation with ment to «lengthen». Further motion of
singularities point 4 upright will lead to subsequent re-

iteration of the process, that is deviation
from isometry superseded by local restoration of isometry due to emergence of
new discontinuities in the isometric transformation.

From our reasoning it appears that transformation (4) can be given in the fol-
lowing way:

' § Al

y

0O x X, X3 x, A x

G=]]AG,, (6)

where i is the deformation step,

AE; are affine transformations for a small elastic deformation of the crystalline
lattice; AP; are piecewise isometric transformations that bring parameters of the
lattice back to initial values and allow the representative volume of material to
accomplish large deformation.

Transformations AP; result in periodical relaxation of elastic stress at the micro
level because a set of discontinuities of isometry emerges, we will designate this
set D;. These are transformations that describe the structural evolution based on a
number of governing principles [10,11,17].

So the issue of stationary microstructure raised
in the previous section now can be connected with
the search for a stationary piecewise isometric
transformation AP that is a self-mapping of D. Its
repeated application will not enhance the surface
of discontinuity of isometry. Rotation of a circle
on a plane is such transformation (Fig. 3).

In the following section, we will show that sim-
ple shear in metals can be realized in a similar way
to certain conditions.

Fig. 3. Stationary isometric
transformation with singularity
on the circumference
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5. Percolation model of a stationary microstructure under simple shear
scheme

Let us consider schematically a grained refinement process. According to
[10,11,17], at the initial stage of deformation, weakly misoriented cells of the size
of about dozens of nanometers emerge, forming a fine-meshed net consisted of
small-angle grain boundaries. Starting from some moment, areas with high-angle
misorientations appear in the net and their number increases as deformation con-
tinues.

It is widely known that sliding along high-angle boundaries caused by defor-
mation is possible (even at cryogenic temperatures) [22,23]. In this case such
boundaries constitute the set of isometry discontinuities D. Sliding occurs by
movement of grain-boundary dislocations.

For the purpose of further discussion, it would be convenient to represent
boundaries from the set D as a series of separatory rolls, rotation of which results
in relative shift of adjacent areas. We will consider only plane problems, so the
boundaries can be given as depicted in Fig. 4.

Rolls can rotate clockwise as well as counterclockwise. Easy to see that in the

.. ox
first case, they correspond to positive values of 8_ components of the deforma-

x2
2
. . . X
tion gradient and negative values for F components, contrary to the other case.
X
A The above introduced scheme of the

fragmentation process makes possible to
d describe it in percolation theory terms
(bonds problem) [24] as a consecutive
transformation of some lattice, resulting

CX 20X X XX )
////////////////////////////4 irll that more ind more of its parts become

X! Let us introduce relative part of the
lattice elements ©, belonging to the set D.
According to the percolation theory,
while ® << 1, such elements are individ-
ual random inclusions in the lattice. With
the growth of ®, they start to form interconnected groups (clusters). When ©®
reaches some critical value ©., qualitative change occurs, and so called percola-

b

Fig. 4. Model for the discontinuity boun-
dary in a form of chain of rolls, with rotati-
on resulting in relative shift of areas a and b

tion cluster (PC) emerges, penetrating through the whole lattice. ®. is named a
percolation threshold and depends on the type of the lattice. For example, for a
hexagonal lattice ®. = 0.65.

As percolation cluster penetrates through the entire lattice, it determines iso-
metry discontinuities emerging in the whole representative volume. From this
time on, transformation AP; in representation (7) can proceed mainly through
shear along the boundaries of PC. The latter has a fractal structure with loops of
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different scales [24]. Average crosscut size of the loops L equals the correlation
radius that is much larger than the cell size /. Therefore, at the scale of L, the loops
seem to be smooth. Value L near the percolation threshold can be written as [24]:

L=I|®@-0.", (8)

where v is the index for correlation radius. For two-dimensional problem, v = 1.33.
In Fig. 5 one step of simple shear under transformation (7) with percolation cluster

is described. The latter is schematically shown as hexagonal lattice with cells sized L.
1

According to (1), under simple shear, it is necessary to keep % positive. It means
X

that in the model from Fig. 4, the rolls rotate clockwise. Therefore, the areas boun-
ded by cells of the percolation cluster will rotate counterclockwise, as shown in Fig. 5.

a b
T T
" L
E fT
! ,i:.-'
Jll -ll"",-ll
= T . Y
Y -
L] L]
L L] F
4 L]
u g . 1
3 [ ]
’ + K g
/ ) /" '
o/ g1
~ [ - ¢
AT |
L
. * "/J.f
' £ L] I
. —t=-——1
’ k- r .
. 1] [ L
.Hllrr LY j
L ] ¥
.'.'"-" Tolammd S }
b [ L]
T I 1
L) 4
1 rd Ih‘l. - 2
c d

Fig. 5. Scheme of the simple shear under transformation (7) with the presence of a per-
colation cluster: a — the initial state; b — AE transformation result (elastic deformation); ¢
— percolation cluster is outlined by dashed line; d — AP transformation result based on
shift along the boundaries of the percolation cluster
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It can be seen from Fig. 5 that in those areas, isometry sustains to the first ap-
proximation and deformation gradient of simple shear is achieved mainly by shifts
along the percolation cluster.

We considered only one step of simple shear. All further steps are similar, so
steady state of the proposed transformation is sustained (in statistical sense).

It should be noted that each step is related to the effect of its own percolation
cluster. The matter is that the motion of grain boundary dislocations along the
border results in the change of the grain boundary structure that may temporary
impede the next shift (stick-slip effect [25]). So, as a result of one step of trans-
formation (6), the percolation cluster may break in several points, so that at the
next step, another percolation cluster would be needed. It means that in order to
realize the suggested mechanism, there should be some reserve of lattice elements
belonging to the set D. In other words, shear percolation that started at ® = @,
would become stationary at ® = ®,; > O..

Let us specify the main properties of the suggested mechanism of simple shear.

(a) The suggested mechanism is not of local, but of cooperative character with
correlation radius L. At the scales of sizes less than L, percolation cluster is of frac-
tal nature; for the scales higher than L, it is homogeneous (crossover effect, [24]).
According to relation (8), the correlation radius sharply increases near the percola-
tion threshold. For L > H (where H is the thickness of the shear layer, e.g. distance
between anvils in high pressure torsion), percolation cluster may break in the direc-
tion of the shear. It means that for a regular percolation, that is for perfect plasticity,
the value of L has to decrease. According to (8), it requires an increase in ©. It ap-
pears that the percolation threshold ®.(H) in the layer of thickness H exceeds the
threshold ®, in the system of infinite scale. From (8) a simple relation between per-
colation thresholds for layers of thicknesses H| and H; can be derived:

©(H,)-0, _(ijv, )

0(H,)-0, | H

(b) It can be seen in Fig. 5 that sequential application of transformation (7) for
different percolation clusters results in stirring of the material. In [14], the upper
estimate for R mean-square shift of fragments under the mechanism is assessed:

_ U
R=\Z7. (10)

By substitution of (8), the following can be written:

Rzz\/%|®—®c|‘”2. (11)

So, fast mass transfer is a consequence of the suggested mechanism of simple shear.
(c) Under transformation (7), orientation of the fragments remains persistent
(Fig. 5). That is why, in the process of stirring, strongly disoriented and weakly
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disoriented fragments contact themselves. In the second case, they «stick» and
coarsen. The coarsened fragments then break again. All the above supports the
idea that under the suggested mechanism, orientation of fragments is dynamically
persistent, as well as their average size and distribution of sizes. Values of theses
parameters correspond to the ones at the beginning of percolation.

(d) The piecewise isometric transformation that was discussed in this section is
based on rotations of volume areas, bounded by percolation cluster cells. As the
latter have fractal structure at the scales less than L, so it is multi-scale rotations
that are in some way similar to the ones that emerge under turbulent liquid flows
[12,13]. However the reason for such rotations in solids differs from the reason
for turbulence in liquids.

In the next section we will state and substantiate a hypothesis that the driving
force for rotations is couple stresses emerging in the representative volume of
material under simple shear.

6. Couple stress as the driver for rotation

Classical theory of continuous media is based on a hypothesis of symmetrical
stress tensor. In the vast majority of practically important cases, this hypothesis is
consistent with experimental data. Significant deviations from experimental re-
sults arise when stress gradient is large. In particular, it is the case of polycrystals
[26] or grain media. Because of essential inhomogeneity, there arise sharp stress
drops which result in effects that symmetry theory cannot describe. To study such
materials nonlocal mechanics is employed [27].

From our point of view, such effects take place in metals during simple shear
mode near the described above percolation transition. They are associated with the
violation of the shear stress reciprocity law at the L scale. Vacancies emerging in
the border areas may become the reason for this law violation during simple shear.
Indeed, increasing number of vacancies causes an increase in volume of material
in the boundary area. Additional work needed to shift against the pressure results
in an increase in tangential stress [28].

Schematically, let the percolation cluster cell be a square of size L (Fig. 6,a).
We consider the forces that act on the square. Let the pressure along the z axis ex-
ceed the pressure along the x axis. Pursuant to the above reasoning, such a situa-
tion will lead to an inequality 1., > 1., that is, to the violence of shear stress reci-
procity law at the L scale.

From Fig. 6,a, it comes that the force moment affecting the square cell, which
is caused by tangential stress, is the following: M, = Lz(rzx — Ty;) (assume that the
thickness of the cell in the direction perpendicular to the xz plane is unit). Its small
rotation, caused by the moment, results in respondent elastic reaction of the sur-
rounding material. This reaction can be described by an inhomogeneous field of
normal stresses Acy, and Ac,, that creates a compensating moment M affecting
the cell. The case is presented in Fig. 6,a. A simple physical model in Fig. 6,b il-
lustrates the effect.
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A
z
sz
R V.
> O |«—
A :‘E M, 4
G)Cx sz
M, <
> /K.r_T_T N
Ao,
—
a b

Fig. 6. Model describes torque emergence under simple shear scheme: a — the scheme of
forces and torques applied to the PC cell; b — model with four rubbers between perspex
plates demonstrates how elastic torques emerge when the lower plate moves and gener-
ates frictional stress differential on the horizontal and vertical sides of rubbers

While the moments are equal, the cell is equilibrium. Under a certain threshold
value 1., conditions favoring stick-slip effect emerge (mentioned above). This
results in an imbalance between M; and Mg, causing a stepwise rotation of the cell

under the force moment difference My — M;. Then comes relaxation M and equi-
librium restores.

The aforesaid is explained by a mechanical model represented in Fig. 7.

A disc clamped between two parallel plates is fixed to the wall by means of a
elastic cylinder. Small shift of the plates in opposite directions generates a mo-
ment of frictional force applied to the disc. It causes a elastic response of the
twisted disc. It is known that due to sticking and slipping in the contact area be-
tween the disc and the plate, shifting the plates causes the so-called frictional self-
oscillation of the disc with periodical relaxation of the elastic moment of the disc
in the model [25].

Let us show that the above described
mechanism of stress relaxation is typical for

@ simple shear scheme only. Thereto, we con-

. sider loading of a mechanical construction

from the idealized model in Fig. 3.

The construction consists of a flat plate
of height H and width B, containing a cy-
lindrical inclusion of diameter D. Under
deformation of the construction, slipping
between the inclusion and the plate is pos-

Fig. 7. Mechanical model that ex- sible, but no gaps are allowed. At the bor-

plains the mechanism of deformation der between the elements holds the follow-
under simple shear ing:
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T<Ty+Wp, (12)

where t and p are correspondingly tangential stress and pressure along the border;
19 and p are the cohesion sliding resistance and friction coefficient between the
plate and the inclusion. Along the borders, where equality in (9) holds, slipping
between the inclusion and the plate occurs.

Condition (12) accounts for the above relation between the shear stress along
the high-angle border and the pressure affecting it.

The plate and the inclusion are made of the same material that is an isotropic
elastic body with elastic modulus £ and Poisson’s ratio v.

We numerically analyzed planar deformation of the system under simple shear
(loading 1) and under lengthening along the side B (loading 2). The following pa-
rameters were used: D = 1, H=10, B =100, v=0.3, 19= 510 'E, p=10". Lin-
ear sizes satisfy conditions H/B << | and D/H << 1 that exclude edge effects.
Values that were chosen for v and t¢/E are typical for metals, u was estimated
based on the relationship between the shear stress and pressure for metals [2,28].

In order to establish specifics of each mode of deformation, during the loading,
the same maximum shear y was achieved. Under the simple shear scheme, the re-
quired shift A of the upper plate relative to the lower one was determined by:

A=vH . (13)

Under the second loading scheme, the necessary lengthening of the plate AB
was given by the relation between maximum lengthening and maximum shear
[29]. As a result the following expression was derived:

AB=yB(1-v). (14)

Simulations were made for the shear range 0 <y < 0.005 employing ANSYS
package. The finite element PLANE183 is used. This element is defined by 8-
nodes having two degrees of freedom at each node: translations in the nodal x and
y directions.

In order to simulate the problem correctly , a contact analysis is used. For this
purpose, contact elements CONTA172 are placed along the matrix surface and
target elements TARGE169 are used along the surface of inclusion. For surface-
to-surface contact elements, the Lagrange multiplier method on contact normal
and the penalty method on tangential contact stiffness are used. This method en-
forces zero penetration and allows a small amount of slip for the sticking contact.
The amount of slip in sticking contact depends on the tangential stiffness.

Fig. 8 illustrates typical vector plot of displacements for deformation under two
schemes.

Numerical modeling showed that loading of the system under two schemes have
similarities as well as differences in the behavior of inclusion. Similarity is that
slipping occurs starting with deformation value y* ~ 10_3, along certain areas of
the border. When deformation increases the number of such areas, the magnitude
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Fig. 8. Typical vector plots of displacement for deformations under simple shear (@) and
flat lengthening schemes (b)

of the slip also increase. The difference between the loading schemes is that under
the lengthening scheme, slipping is rare and is of accidental nature, while under
simple shear, it is coordinated and lowers the shear deformation of the inclusion
(Fig. 9).

Inclusion is rotated and deformed in such a way that elastic energy of the entire
system decreases.

This result is easy to understand qualitatively. Shear deformation of inclusion is
2

is the volume of the

related with elastic energy given by W ~ VEyz, where V' =

inclusion (thickness is assumed to be unit). Correspondingly, an increase in elastic
energy is equal to AW ~ LzEyAy. Rotation occurs when the accompanying decrease
in elastic energy exceeds the work of the friction force A4 along the border of the
inclusion, which can be assessed as A4 ~ LzroAy. So the condition of the rotation is
y* ~ 1¢/E, which complies by the order of value with y* assessed empirically.

a b c

Fig. 9. The scheme describes directional nature of slipping along the border between in-
clusion and the plate under simple shear: inclusion prior to deformation (a), after simple
shear without slipping (b), after slipping along the border (c¢). Deformations are signifi-
cantly exaggerated for the sake of clearness
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7. Discussion

In previous sections we tried to justify a hypothesis that perfect plasticity at
low homological temperatures is a critical phenomenon, which is incident to met-
als only under simple shear. Starting from a certain stage of deformation, in the
grain boundaries, lattice percolation clusters emerges — they provide the simple
shear through the representative volume. Percolation is a collective effect, so it is
the cooperative mechanism that is responsible for perfect plasticity. As it was
shown in sections 5 and 6, it is a multi-scale rotation of the material blocks in per-
colation clusters cells.

Another, local, variant of perfect plasticity mechanism is suggested and ana-
lyzed in [5-7], where this phenomenon is connected with grain boundary migra-
tion. In this approach, deformation mode does not influence the evolution of metal
microstructure and perfect plasticity should emerge under any loading scheme. As
a direct argument in favor of their hypothesis, the authors of [5—7] give the results
of following experiment carried out by means of High Pressure Torsion (HPT)
method.

In a thin nickel disc, by high pressure torsion a stationary structure was created
that induced perfect plasticity. Afterwards, on the parallel to the axle crosscut of
the specimen, a squared grid was dashed by a high-energy ionic beam. Then the
disc was twisted once more so that the shear deformation in the crosscut was ~ 1.
According to authors, nearly homogeneous grid deformation testified against the
grain boundaries slipping and fragmentation at the stationary stage of deformation
stopped due to migration of grain boundaries.

From our point of view, the described experiment does not allow even to make
a conclusive implication whether the mechanisms of perfect plasticity at low ho-
mological temperatures are local. There are at least two factors that could in this
case result in that the grid did not spread out under deformation as it should be
according to property (b) in section 5.

The first one is that high-energy ionic beam could change the local structure of
the boundaries on the grid lines, so that slipping on them became impossible.
Hard influence of such beams on the material is documented in numerous works
(e.g. in [30]).

The second factor is that in the thin butt end of the disc with the crosscut, con-
taining the grid, deformation mode changed. Absence of pressure on the crosscut
surface resulted in flow of the material in radial direction. This fact, in turn, re-
duced the thickness of the disc in the crosscut area and, consequently, the pressure
of anvils on it. Eventually, the thin layer of the disc containing the grid turned into
a kind of sticker on the disc. Its deformation replicated the disc deformation, but
the mechanism of deformation did not correspond to the one for the stationary
stage of simple shear.

It should be noted that there is a number of convincing experimental evidences
about abnormally fast mass transfer in metals under simple shear [12—15] as it should
be according to suggested cooperative mechanism (property (b) in section 5).
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An additional point to emphasize is that activation energy for grain boundary
migration is considerably above the activation energy for grain boundary sliding
(e.g. in [22,23]). Grain boundary migration at low homological temperatures may
be a consequence of grain boundary sliding due to boundary steps.

Arguments in favor of suggested perfect plasticity mechanism are adduced by
some well known experimental results.

At the stationary HPT stage, the average fragments size, the size distribution of
the fragments and a part of high-angle grain boundaries do not change as defor-
mation increases. Values of theses parameters correspond to the ones at the termi-
nating of fragmentation [4,31]. This clearly demonstrates the property (c) of sug-
gested perfect plasticity mechanism.

HPT experiments with Fe specimens under von Mises strain e = 300 demon-
strated that material fragments on the perpendicular to the radius crosscut were
slightly extended and tilted at an angle to an anvil axis smaller than evident from
geometry one (70—80 degrees instead of 89.89).The real tilt of the fragments was
appropriate to deformation e = 1.6-3.3 [5]. Property (c) in section 5 offers a satis-
factory explanation of the observed fact.

It was apparent in recent reports on severe plastic deformation (SPD) under
simple shear scheme, that scaling effect exists. It lies in the fact that the average
grain size of submicrocrystalline structure undergoes a rise as the size of specimen
increases (at the same or other conditions). Scaling effect has come to light in the
examination of Equal Channel Angular Pressing (ECAP) [32]. It is also found in
Twist Extrusion (TE) experiments [33]. Within the context of suggested theory,
the property (a) in section 5 is associated with SPD scaling effect. From relation
(9), it is obvious that to enhance the part of high-angle grain boundaries at steady-
state phase of simple shear, the size of specimen should be decreased. It is not a
proof that perfect plasticity has percolation nature, so SPD scaling effect requires
further examination. But if the only distinctive structure scale is the average grain
size of order 100 nm then it is difficult to explain that the thickness of the shear
layer of four orders of magnitude higher has an impact on it.

Finally, we note that the proposed mechanism of perfect plasticity is imple-
mented by a relatively small elastic-plastic deformation of the volume of material
bounded by the cells of a percolation cluster. Moreover, these strains are cyclical
in nature. At this stage fragments get free of dislocations (they get beyond the
boundaries), microvoids formed at the early stages of deformation are healed. As
a result the ductility of the metal enhances [15,34].

8. Conclusion

This article attempts to explain the nature of perfect metal plasticity at low ho-
mological temperatures. There are reasons to assume that it is realized only under
simple shear and performed by cooperative mechanism due to percolation shift
along grain boundaries. Prior to some percolation threshold, metal deformation
under simple shear is realized by the same mechanism as under strengthening. In
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this case, both of these deformation modes make an equivalent impact on metal
hardening rule and grain refinement.
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A FO. Beticenvsimep, H.M. Jlaspinenko

IAEAJTBHA MIMACTUYHICTb METATIB NMPU NMPOCTOMY 3CVYBI:
FEOMETPUYHUI MIOX1A

3amponoHOBaHO MEXaHi3M ifealbHOI IUIACTHYHOCTI MPU MPOCTOMY 3CYBi NMPH HHU3BKUX
TOMOJIOTIYHHX TeMIepaTypax, 3TiJHO 3 SKHM L¢ SBHUIIE MAa€ KPUTHYHY MPUPOLY, 00y-
MOBJICHY TEPKOJISIIIHHIM MEPEX0J0M Y CITII IPaHHIb 3€pPEH 1 HEIOKATHHOIO B3aEMO/IIEI0
(parMeHTIB TUIBKH MPH MPOCTOMY 3CyBi. TOUKy 30py aBTOpiB OOIPYHTOBAHO 3aralbHUMU
MIpKYBaHHSMH 3 YpaxyBaHHSIM pe3yJbTaTiB YUCEIBHOTO MOJCIIOBAHHS M BIJOMHX €K-
CIIEPUMEHTAIBHUX JaHUX.

Karwu4oBi cioBa: ineanbHa MIacTHYHICTD, POCTUI 3CYB, EPKOJISAIIS, 130METPHYHI TIe-
PETBOPEHHS 3 PO3PUBAMU

A E. beiicenvzumep, HM. Jlagpunenxo

WOEANBHAA MIACTUYHOCTb METAJIOB NPU NPOCTOM COBUIE:
FEOMETPUYECKMI MOAXO[,

IIpemyioxkeH MEXaHU3M HICaTHFHOM IIACTUYHOCTH IPH MPOCTOM CABUTE MPU HUZKUX TO-
MOJIOTHUECKHUX TEMIIepaTypax, COTJACHO KOTOPOMY 3TO SBJICHHE MMEET KPUTHYECKYIO
MIPUPOJTY, CBSI3aHHYIO C MEPKOJSAIIMOHHBIM MIEPEXO0/IOM B CETH TPAHMUII 3€PEH M HEJIOKAIb-
HBIM B3aUMOJIeHiCTBHEM (parMEeHTOB MMEHHO IIPH MPOCTOM CABHUTe. ToUka 3peHHs aBTO-
POB 00OCHOBaHAa JOBOJBHO OOIIUMH pacCyXJIeHUSIMH (B OCHOBHOM TI'€OMETPUYECCKOIO
XapakTepa) ¢ MPHUBJIECYCHHUEM C 3TOH LENBI0 PE3yJIbTAaTOB YHCICHHOTO MOJAEITUPOBAHUS U
M3BECTHBIX OKCIIEPHMEHTAIBHBIX JaHHBIX.

KiroueBsle cjioBa: nujeanbHas IUNIACTUYHOCTD, IPOCTON CABUI, NMEPKOJISILIMS, U30METPU-
YecKue nMpeodpa3oBaHusi ¢ 0COOCHHOCTSIMH
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