Рекомендована д. фармац. наук, проф. В. М. Ковальовим УДК 582.923.1-035.22:543.544.5.068.7:547.56

ВИЗНАЧЕННЯ ФЕНОЛЬНИХ СПОЛУК У TPABI CENTAURIUM ERYTHRAEA RAFN. МЕТОДОМ ВЕРХ

©С. М. Марчишин, Л. І. Стойко

Тернопільський державний медичний університет імені І. Я. Горбачевського

Резюме: визначено фенольні сполуки в траві золототисячника звичайного (Centaurium erythraea Rafn.) методом високоефективної рідинної хроматографії (BEPX) з УФ-детектуванням. Встановлено наявність і кількісний вміст 4 флавоноїдів, 2 гідроксикоричних кислот і 1 кумарину.

Ключові слова: фенольні сполуки, флавоноїди, гідроксикоричні кислоти, кумарини, Centaurium erythraea Rafn., BEPX.

Вступ. Золототисячник звичайний (Centaurium erythraea Rafn.) – дворічна (рідше однорічна) трав'яниста рослина родини Тирличеві – Gentianaceae, який поширений на сонячних галявинах, узліссях, сухих луках, пагорбах в Європі, на Кавказі, у Середній Азії. Препарати золототисячника стимулюють секрецію залоз травного каналу, виявляють анестезуючі та жарознижувальні властивості, посилюють жовчовиділення. У народній медицині золототисячник звичайний застосовують при хворобах шлунка, печінки, нирок, цукровому діабеті.

Наукова медицина використовує золототисячник звичайний як засіб, що збуджує апетит при анацидному та гіпоацидному гастритах, а також при атонії кишечника [2, 6, 8].

Актуальним є дослідження біологічно активних речовин Centaurium erythraea Rafn., які обумовлюють його фармакологічну активність.

Флавоноїди та гідроксикоричні кислоти – найпоширеніші види фенольних сполук у вищих рослинах. Вони виявляють різноманітну фітотерапевтичну дію: зміцнюють стінки капілярів, діють синергічно з аскорбіновою кислотою, мають протипроменеву, спазмолітичну, ранозагоювальну, протизапальну, протипухлинну, естрогенну, бактерицидну дії, позитивно впливають на слизову оболонку, моторику, секреторну і всмоктувальну функції травного каналу, а також мають антиоксидантні, гіпоазотемічні та сечогінні властивості [1, 5]. Тому доцільно визначити їх якісний і кількісний вміст у траві золототисячника звичайного.

Мета роботи – визначення методом ВЕРХ якісного складу та кількісного вмісту флавоноїдів та гідроксикоричних кислот у траві Centaurium erythraea Rafn., заготовленої на околицях міста Зборів Тернопільської області у період цвітіння рослини в 2013 році.

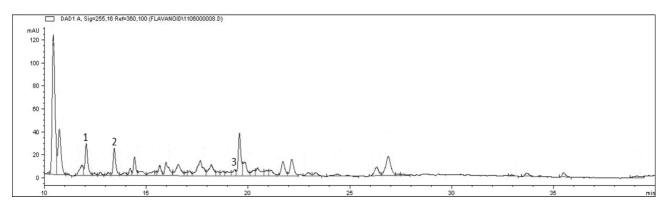
Методи дослідження. Хроматографічне розділення проводили на рідинному хроматографі Agilent 1200 3 D LC System Technologies (США) з діодноматричним детектором G1315C, на колонці Supeico Discovery C18 HPLC column 5 мкм, при температурі термостата колонок 25 °C. Введення проби здійснювалося автосамплером, обсяг проби 10 мкл, швидкість потоку — 0,7 мл/хв, робочий тиск елюенту — 10000—12000 кПа.

Для приготування рухомої фази використовували ацетонітрил марки Chromasolv gradient grade, for HPLC, > 99.9 % (Sigma-Aldrich), optoфосфатну кислоту - Chromasoly gradient grade, for HPLC, > 99,9 % (Sigma-Aldrich), бідистильовану воду отримували на Simplicity SIMSV00 Water Purification System Millipore - (Merck KGaA, Darmstadt, Germany). Для екстракції флавоноїдів та гідроксикоричних кислот застосовували метанол марки Chromasolv gradient grade, for HPLC, > 99,9 % (Sigma-Aldrich). Стандартні речовини - рутин, гіперозид, ізокверцитрин, лютеонін, кемферол, хлорогенова, кофейна, п-кумарова, ферулова, розмаринова кислоти, апігенін, скополетин, умбеліферон - виробництва Sigma Chemical Co.

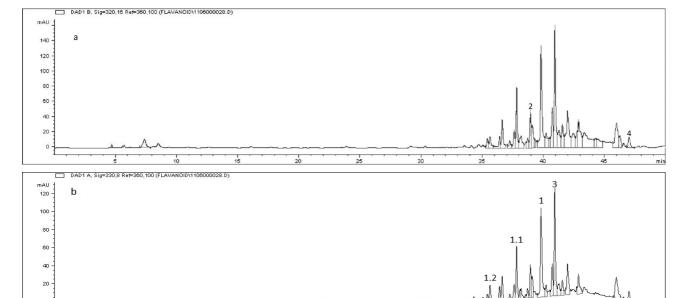
Підготовка проб для аналізу: близько 1 г рослинної сировини (точна наважка), екстрагували 50 мл 60 % розчину метанолу протягом 15 хв на водяній бані з зворотним холодильником при перемішуванні. Після цього фільтрували, кількісно переносили в мірну колбу місткістю 100 мл і доводили до мітки об'єм розчину 60 % метанолом. Отриманий розчин відфільтровували через мембранний фільтр з розміром пор 0,45 мкм.

Для поділу фенольних сполук застосовували такі умови: градієнтне елюювання сумішшю бідистильованої води підкисленої ортофосфатною кислотою до pH = 2.85 (A) і ацетонітрилу (B): 0×85 «B», 8×80 «В», $8 \times$

«В», 40 хв 40% «В», 41-42 хв 75% «В», 43-50 хв 5% при довжині детектування 330, 320 нм (гідроксикоричні кислоти) і 0 хв 12% «В», 30 хв 25% «В», 33 хв 25% «В», 38 хв 30% «В», 40 хв 40% «В», 41 хв 80% «В», 49 хв 12% при довжині детектування 255, 340 нм (флавоноїди). Загальний час аналізу — 50 хв [3, 4, 7].


Результати й обговорення. У результаті проведених досліджень були виявлені флаваноїди та гідроксикоричні кислоти. Показано, що в зазначених умовах можливе визначення їх якісного складу та кількісного вмісту.

За результатами ВЕРХ аналізу (табл. 1, рис. 1, 2) встановлено, що трава Centaurium erythraea Rafn. містить такі фенольні сполуки: аглікони флавоноїдів – лютеонін, апігенін, кверцетин; глікозиди апігеніну; глікозид флавоноїдів


Таблиця 1. Вміст фенольних сполук у траві Centaurium erythraea Rafn.

БАР	Кількісний вміст, %	
Ізокверцитрин	5,5·10 ⁻²	
Лютеонін	$3,2\cdot 10^{-2}$	
Кверцетин	1,5·10 ⁻²	
Апігенін	14,1·10 ⁻²	
Глікозиди апігеніну	$7,2\cdot 10^{-2}$	
Кофейна кислота	3,1·10 ⁻²	
Розмаринова кислота	20,3·10 ⁻²	
Умбеліферон	1,9·10 ⁻²	

- ізокверцитрин, гідроксикумарин - умбеліферон; гідроксикоричні кислоти - кофейну і розмаринову, які й забезпечують фармакологічну активність досліджуваної рослини.

Рис. 1. Хроматограма водно-спиртового витягу трави Centaurium erythraea Rafn. при $\lambda = 255$ нм: 1 – ізокверцитрин, 2 – лютеонін, 3 – кверцетин.

Рис. 2. Хроматограма водно-спиртового витягу трави Centaurium erythraea Rafn. при а) λ = 320 нм та b) λ = 330 нм: 1 – апігенін, 1.1,1.2 – глікозиди апігеніну, 2 – кофейна кислота, 3 – розмаринова кислота, 4 – умбеліферон.

Висновки. Аналіз результатів ВЕРХ флавоноїдів і гідроксикоричних кислот золототисячника звичайного показав, що для стандартизації рослини можна рекомендувати розмаринову

кислоту та апігенін, вміст яких у досліджуваній траві золототисячника звичайного був найбільший і становив $20,3\cdot10^{-2}\,\%$ і $14,1\cdot10^{-2}\,\%$ відповідно

Література

- 1. Фітотерапія хвороб дитячого віку / М. О. Гарбарець, В. Г. Западнюк, А. В. Захарія, Н. М. Гарбарець. Тернопіль : ТДМУ "Укрмедкнига", 2008. 408 с.
- 2. Марчишин С. М. Лікарські рослини Тернопільщини / С. М. Марчишин, Н. О. Сушко. Тернопіль : Навчальна книга Богдан, 2007. 312 с.
- 3. Марчишин С. М. Определение гидроксикоричных кислот в антиаллергическом сборе методом ВЭЖХ / С. М. Марчишин, С. С. Козачок // Сетевое научное издание : Медицина и образование в Сибири. 2013. N 4.
- 4. Определение гидроксикоричных кислот в лекарственном растительном сырье и объектах растительного происхождения / Ю. В. Медведев, О. И. Переде-

- ряев, А.П. Арзамасцев [и др.] // Вопросы биологической, медицинской и фармацевтической химии. 2010. № 3. С. 25–31.
- 5. Товстуха Є. С. Фітотерапевтичні засоби проти радіції / Є. С. Товстуха. К. : Здоров'я, 1992, 276 с.
- 6. Allen D. E. Medicinal Plants in Folk Tradition : An Ethnobotany of Britain and Ireland / E. D. Allen, G. Hatfield. Portland : Timber Press, 2004. 431 p.
- 7. Determination of caffeoylquinic acids and flavonoids in Cynara scolymus L. by high perfomance liquid chromatography / M. Hauser, M. Ganzera, G. Abel [et al.] // Chromatographia. 2002. Vol. 56, N 7/8. P. 407–411. 8. Duke J. A. Handbook of medicinal herbs / J. A. Duke / / 2-nd ed. New York: CRC Press, 2002. 896 p.

ОПРЕДЕЛЕНИЕ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ В TPABE CENTAURIUM ERYTHRAEA RAFN. МЕТОДОМ ВЭЖХ

С. М. Марчишин, Л. И. Стойко

Тернопольский государственный медицинский университет имени И.Я. Горбачевского

Резюме: определены фенольные соединения в траве золототысячника обыкновенного (Centaurium erythraea Rafn.) методом высокоэффективной жидкостной хроматографии (ВЭЖХ) с УФ-детектированием. Установлено наличие и количественное содержание 4 флавоноидов, 2 гидроксикоричных кислот и 1 кумарина.

Ключевые слова: фенольные соединения, флавоноиды, гидроксикоричные кислоты, кумарины, Centaurium erythraea Rafn., ВЭЖХ.

DEFINITION PHENOLIC COMPOUNDS IN HERBS CENTAURIUM ERYTHRAEA RAFN. HPLC

S. M. Marchyshyn, L. I. Stoyko

Ternopil State Medical University by I. Ya. Horbachevsky

Summary: the phenolic compounds identified in the centaury (Centaurium erythraea Rafn.) by high performance liquid chromatography (HPLC) with UV detection. It is established presence and quantitative content of 4 flavonoids, 2 hydroxycinnamic acids and 1 coumarin.

Key words: phenolic compounds, flavonoids, hydroxycinnamic acids, coumarins, Centaurium erythraea Rafn., HPLC.

Отримано 15.02.14

Рекомендована д. фармац. наук, проф. В. М. Ковальовим УДК 582.689.1.08-035.22

ВИЗНАЧЕННЯ ВМІСТУ ОРГАНІЧНИХ КИСЛОТ У ТРАВІ ВЕРБОЗІЛЛЯ ЛУЧНОГО

©А. Є. Демид, М. Б. Чубка, М. М. Михалків

Тернопільський державний медичний університет імені І. Я. Горбачевського

Резюме: хромато-мас-спектрометричним методом визначено якісний склад та вміст органічних кислот у траві вербозілля лучного. Встановлено наявність 25 органічних кислот. Серед карбонових кислот домінуючими є лимонна, яблучна та малонова кислоти; серед фенольних кислот – ферулова та ванілінова; серед жирних кислот – пальмітинова та ліноленова кислоти.

Ключові слова: трава вербозілля лучного, органічні кислоти.

Вступ. Введення у медичну практику нових лікарських рослин, що широко використовуються у народній медицині, є актуальним питанням. Досвід використання трави вербозілля лучного робить перспективним створення на її основі нового лікарського засобу. Для виконання цього завдання першочергово необхідно дослідити вміст усіх біологічно активних речовин у рослинній сировині. Попередніми дослідженнями встановлено кількісний та якісний вміст флавоноїдів [1, 2] та ефірної олії [3]. Відомо, що трава вербозілля лучного містить конденсовані дубильні речовини, вітамін С, сапоніни тритерпенового ряду та кремнієву кислоту [4, 5, 6].

Органічні кислоти у значних кількостях містяться в рослинній сировині та мають поліфункціональне значення. Зокрема, систематичне вживання продуктів з високим вмістом органічних та жирних кислот сприяє налагодженню обміну речовин в організмі, виявляють властивості антиоксидантів, регуляції кислотності. Крім того, органічні кислоти є активними комплексоутворювачами.

Метою нашої роботи було вивчення якісного та кількісного складу органічних кислот у траві вербозілля лучного.

Методи дослідження. У роботі використовували дикорослий рослинний матеріал, зібраний у Бережанському районі Тернопільської області (період цвітіння).

Для проведення аналізу використовували методику визначення органічних кислот у рослинній сировині з подальшим визначенням у вигляді метилових ефірів органічних кислот. Розділяли метилові ефіри органічних кислот під час хроматографування [7].

До висушеної рослинної сировини додавали внутрішній стандарт (50 мкг тридекану в гексані) та 1 мл метилюючого агента (14 % BCl₂ в

метанолі, Supelco 3-3033). Суміш витримували у герметичній віалі протягом 8 годин при температурі 65 °C. За цей час проходить повна екстракція органічних кислот та інших ліпофільних речовин з рослинної сировини, проходить їх гідроліз і метилювання жирних кислот. Одночасно метилюються вільні органічні та фенолкарбонові кислоти. Потім реакційну суміш зливали з осаду рослинного матеріалу та розбавляли 1 мл дистильованої води. Для екстракції метилових ефірів жирних кислот використовували хлористий метилен (0,2 мл), струшували кілька разів протягом 1 години та хроматографували. Хроматографічний аналіз проводили на хроматографі Agilent Technoligies 6890 з мас-спектрометричним детектором 5973. Хроматографічна колонка – капілярна INNOWAX з внутрішнім діаметром 0,25 мм і довжиною 30 м. Швидкість введенння проби 1,2 мл/хв. Температура нагрівання введення проби -250 °C. Температуру термостату програмували від 50 до 250 °C із швидкістю 4 °C/хв.

Для ідентифікації компонентів використовували бібліотеку мас-спектрів NIST05 і WILEY 2007 із загальною кількістю спектрів більше 470 000 у поєднанні з програмами для ідентифікації AMDIS і NIST. Для кількісного аналізу використовували метод внутрішнього стандарту.

Результати й обговорення. У результаті дослідження у зразку сировини вербозілля лучного (Lysimachia nummularia L.) ідентифіковано 25 органічних кислот, серед яких 5 карбонових кислот, 4 фенолових кислот та 16 жирних кислот (рис. 1). Визначено кількісний вміст кожної кислоти (табл. 1). Серед карбонових кислот встановлено найбільший вміст лимонної кислоти (28605,5 мг/кг), менше яблучної (2217,7 мг/кг) та малонової (921,8 мг/кг) кислот. Високий вміст саме лимонної кислоти робить перспективним

Abundance

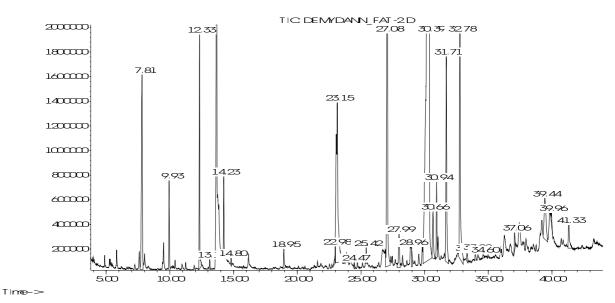


Рис. 1. Хроматограма метилових ефірів органічних кислот трави вербозілля лучного.

Таблиця 1. Вміст органічних кислот у траві вербозілля лучного

No	Час утримування, хв	Кислота	Вміст, мг/кг	Вміст, %	
піку	J F J ,		. ,		
Карбонові кислоти					
2	9,93	Щавлева	362,6	0,87	
3	12,32	Малонова	921,8	2,21	
5	14,22	Бурштинова	308,6	0,74	
9	23,14	Яблучна	2217,7	5,32	
15	30,38	Лимонна	28605,5	68,64	
Фенольні кислоти					
4	13,12	Фумарова	48,2	0,12	
6	14,79	Бензойна	39,0	0,09	
20	33,33	Ванілінова	58,5	0,14	
26	41,33	Ферулова	220,3	0,53	
		Жирні кислоти			
7	18,94	Лауринова	110,9	0,27	
8	22,98	Міристинова	61,7	0,15	
10	24,47	Пентадеканова	29.3	0,07	
11	25,41	Азелаїнова	75,3	0,18	
12	27,08	Пальмітинова	3444,5	8,27	
13	27,98	Пальмітоолеїнова	277,1	0,66	
14	28,95	Гептадеканова	102,4	0,25	
16	30,66	Стеаринова	303,7	0,73	
17	30,93	Олеїнова	394,6	0,95	
18	31,7	Лінолева	1215,5	2,92	
19	32,77	Ліноленова	2052,6	4,93	
21	33,99	Арахінова	44,1	0,11	
22	34,59	2-оксипальмітинова	31,0	0,07	
23	37,06	Бегенова	100,9	0,24	
24	39,44	3-оксиоктадеканова	582,4	1.40	
25	39,95	Тетракозанова	66,5	0,16	

створення лікарського засобу. Адже лимонна кислота є головним проміжним продуктом метаболічного циклу трикарбонових кислот, відіграє важливу роль у системі біохімічних реакцій клітинного дихання. Вона застосовується у медицині у складі лікарських засобів, що покращують енергетичний обмін (у циклі Кребса), у косметології застосовується як регулятор кислотності, буфер, хелатуючий агент, для шипучих композицій.

Серед фенолових кислот домінантними є ферулова (220,3 мг/кг) та ванілінова (58,5 мг/кг) кислоти. Ферулова кислота міститься у багатьох біодобавках, що мають антиоксидантні властивості. Дію цієї кислоти продемонстровано у відомій сироватці СЕ Ferulic від Skinceuticals. Запатентоване поєднання вітаміну С (15 %), вітамину Е (1 %) та ферулової кислоти (0,5 %) забезпечує природний захист шкіри, має антиоксидантну та протизапальну дію, стимулює синтез колагену. Антиоксидантну дію ферулової

кислоти пов'язують із зв'язуванням вільних радикалів гідроксильних груп, сповільненням процесу пероксидації ліпідів. Протизапальна дія полягає у впливі на фосфоліпіди мембран клітин, захисті еритроцитів та підвищенні здатності лімфоцитів руйнувати чужорідні клітини.

Серед жирних кислот домінантними є пальмітинова (3444,5 мг/кг) та лінолева (1215,5 мг/кг) кислоти.

Висновки. 1. Проведено дослідження органічних кислот у траві вербозілля лучного.

- 2. Визначено якісний склад та вміст органічних кислот хромато-мас-спектрометричним методом у траві вербозілля лучного.
- 3. Встановлено наявність 25 органічних кислот, домінантними серед яких є лимонна, пальмітинова та яблучна кислоти.
- 4. Отримані результати поповнюють відомості про фітохімічний склад досліджуваної рослини, створюють основу для подальшого детального вивчення та застосування у медичній практиці.

Література

- 1. Демид А. Є. Вивчення флавоноїдів трави вербозілля лучного / А. Є. Демид // Фармацевтичний часопис. 2013. № 2(26) С. 17–22.
- 2. Демид А. Є. Вивчення якісного та кількісного складу флавоноїдів у траві вербозілля лучного / А. Є. Демид, Л. В. Вронська // III Всеукраїнська науково-практична конференція студентів та молодих вчених : тез. доп. Луганськ, 2013. С. 160.
- 3. Демид А. Є. Компонентний склад ефірної олії вербозілля лучного (Lysimachia nummularia L) / А. Є. Демид // Медична хімія. 2014. № 1. С. 50–56.
- 4. Святош І. В. Фармакогностичне дослідження рослин роду Lysimachia / І. В. Святош, Т. О. Краснікова // Актуальні питання створення нових лікарських засобів:

наук.-практ конф. судентів та молодих вчених, 21-22 квітня 2011 р. : матер. конф. – Харків : НФау. – С. 118–119.

- 5. Лавренова Г. В. Энциклопедия лекарственных растений / Г. В. Лавренова, И. К. Лавренов. Донецк : Издательство «Донеччина», 1997. Т. 1. 656 с.
- 6. Георгиевский В. П. Биологически активне вещества лекарственных растений / В. П. Георгиевский, Н. Ф. Комиссаренко, С. Е. Дмитрук. Новосибирск: Наука, 1990. 328 с.
- 7. Carrapiso A. I. Development in lipid analysis: some new extraction techniques and in situ transesterification / A. I. Carrapiso, C. Garcia // Lipids. 2000. Vol. 35, №11. P. 1167–1177.

ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ОРГАНИЧЕСКИХ КИСЛОТ В ТРАВЕ ВЕРБЕЙНИКА МОНЕТЧАТОГО

А. Е. Демид, М. Б. Чубка, М. М. Михалкив

Тернопольский государственный медицинский университет имени И. Я. Горбачевского

Резюме: хромато-масс-спектрометрическим методом определен качественный состав и содержание органических кислот в траве вербейника монетчатого. Установлено наличие 25 органических кислот. Среди карбоновых кислот доминируют лимонная, яблочная и малоновая кислоты; среди фенольных кислот – феруловая и ванилиновая; среди жирных кислот – пальмитиновая и линолевая.

Ключевые слова: трава вербейника монетчатого, органические кислоты.

INVESTIGATION OF ORGANIC ACIDS IN MONEYWORT HERB

A. Ye. Demyd, M. B. Chubka, M. M. Mykhalkiv

Ternopil State Medical University by I. Ya. Horbachevsky

Summary: the qualitative composition and organic acid content in the Moneywort herb were identified by the method of gas chromatography-mass spectrometry. The presence of 25 organic acids was determinated. The citric acid, malic acid and malonic acid are dominated among the carboxylic acids; forulic acid and vanillinic acid – among the phenolic acids; palmitic acid and linolenic acid – among the fatty acids.

Key words: Moneywort herb, organic acids.

Отримано 22.12.13