ФОТОВОЛЬТАИЧЕСКИЙ ЭФФЕКТ В СЕГНЕТОЭЛЕКТРИКЕ SBSJ И ПИРОЭЛЕКТРИКЕ ZnO

Б.Х. Каримов

Ферганский государственный университет Узбекистан Поступила в редакцию 10.02.2008

В настоящей работе обнаружен и исследован пространственно-осциллирующей фотовольтаический ток (ПОФТ) в направлении (100) в сегнетоэлектрике SbSJ при освещении поляризованным светом в направлении (010) и фотовольтаический эффект в пироэлектрических кристаллах ZnO.

введение

При освещении короткозамкнутого сегнетоэлектрика через него протекает стационарный ток, который в [1, 2] был назван фотовольтаическим. Было показано, что именно фотовольтаический ток приводит к аномальному фотовольтаическому эффекту (АФ эффект) в сегнетоэлектрике.

Аномальный фотовольтаический эффект, обнаруженный для сегнетоэлектриков впервые в [1, 2], является частным случаем более общего АФ эффекта, описываемого для кристаллов без центра симметрии тензором третьего ранга α_{iik} [3].

$$J = \alpha_{ijk} E_j E_k^*. \tag{1}$$

Согласно (1), при равномерном освещении линейно поляризованным светом однородного кристалла без центра симметрии (сегнето или пъезоэлектрического кристалла) в нем возникает фотовольтаический ток J_i , знак и величина которого зависят от ориентации вектора поляризации света с проекциями E_j , E_k^* . Компоненты тензора α_{ijk} отличны от нуля для 20 ацентричных групп симметрии. Если электроды кристалла разомкнуть, то фотовольтаический ток J_i генерирует фотонапряжения

$$V_i = \frac{J_i}{\sigma_T + \sigma_\phi} l,$$

где σ_T и σ_{ϕ} , соответственно, темновая и фотопроводимость, *l* расстояние между электродами. Генерируемое фотонапряжение порядка $10^3 - 10^5$ В, превышающее, таким образом, величину ширины запрещенной зоны *Eg* на два – четыре порядка.

В соответствии с (1) и симметрией точечной группы кристалла можно написать выра-

жения для фотовольтаического тока J_i . Сравнение экспериментальной угловой зависимости $J_i(\beta) c(1)$ позволяет определить фотовольтаический тензор α_{iik} или фотоволь-

таический коэффициент $K_{ijk} = \frac{1}{\alpha^*} \alpha_{ijk} (\alpha^* - \alpha)$

коэффициент поглощения света).

Как показал Белиничер [4], в зависимости от формы оптической индикатрисы и направления распространения плоско поляризованного света в кристалле могут существовать направления, для которых фотовольтаический ток (1) является пространственно осциллирующим. В этом случае

$$J_{i}(x) = \alpha_{i0e} E_{e} E_{0}^{*} \exp[i(n_{e} - n_{0})qx], \quad (2)$$

где n_e , n_0 – показатели преломления обыкновенного и необыкновенного лучей, E_e и E_0^* – проекции вектора поляризации света на опти-

ческие оси кристалла, $q = \frac{2\pi}{\lambda}$ – волновой век-

тор. В этом случае фотовольтаический ток (2) осциллирует в кристалле с периодом $l_0 = \lambda (n_e - n_0)^{-1}$. Как указывалось в [4] и как видно из (2), пространственно осциллирующий фотовольтаический ток (ПОФТ) может экспериментально наблюдаться в условиях сильного поглощения света.

 $(\alpha^*)^{-1} \le \ell_0, \quad \ell_0 = \lambda (n_e - n_0)^{-1},$ (3) где α^* – коэффициент поглощения.

ФОТОВОЛЬТАИЧЕСКИЙ ЭФФЕКТ В СЕГНЕТОЭЛЕКТРИКЕ SBSJ

В настоящей работе обнаружен и исследован пространственно-осциллирующей фотоволь-

таический ток (ПОФТ) в направлении (100) в сегнетоэлектрике SbSJ при освещении поляризованным светом в направлении (010).

Сульфоиодид сурьмы (SbSJ) принадлежит к классу халькогенидов металлов пятой группы $A^{V}B^{VI}C^{II}$, где A-Sb; Bi; B-S, Se, Te; C-CL, Br, J. Кристаллы SbSJ и SbSJxBr_{1-x} – двуосные, обладают большим двупреломлением, ниже температуры. Кюри $T_c = 22$ °C кристаллы SbSJ принадлежат к классу mm2 и обладают ромбической симметрией. При фазовом превращении происходит исчезновение центра симметрии, следовательно, ниже точки перехода кристаллы SbSJ становятся сегнето-электриками.

Фазовый переход при 22 °С был зарегистрирован впервые Фатуццо [5] при изменении температурной зависимости диэлектрической проницаемости. Кристаллы обладают ярко выраженными полупроводниковыми свойствами, их фотоэлектрические свойства хорошо изучены [1].

Измерения проводились для монокристаллов SbSJ в сегнетоэлектрической фазе при температуре T = 133 К. Кристалл освещался плоско поляризованным светом с помощью ксеноновой лампы и монохроматора ЗМР. Измерялся стационарный фотовольтаический ток J по ранее описанному [1] методу. В соответствии с симметрией SbSJ (точечная группа mm2) при измерении J_z (z – направление спонтанной поляризации) и освещении кристалла в x и y направлениях ПОФТ не возникает. Выражение для фотовольтаического тока J_z при освещения в x и y направлениях, соответственно, имеет вид:

$$J_{z} = \alpha_{32}I + (\alpha_{33} - \alpha_{32})I\cos^{2}\beta, \qquad (4)$$

$$J_{z} = \alpha_{31}I + (\alpha_{33} - \alpha_{31})I\cos^{2}\beta, \qquad (5)$$

где *I* – интенсивность света, β – угол между плоскостью поляризации света и осью *z*.

На рис.1 кривая 1 представляет экспериментальную угловую зависимость $J_z(\beta)$ для $\lambda = 600$ нм при освещении вдоль (100). Из сравнения экспериментальных угловых зависимостей $J_z(\beta)$ с (4) и (5) были оценены численные значения α_{ijk} или фотовольтаические коэффициенты $K_{ijk} = \frac{1}{\alpha^*} \alpha_{ijk}$. С учетом плеохроизма и анизотропии отражения света в SbSJ [6] были получены следующие значения: $K_{31} \approx 4.10^{-8}$; $K_{32} \approx 3.10^{-8}$; $K_{33} \approx (2-3).10^{-8}$ А.см.(Вт)⁻¹. Таким образом, в SbSJ фотовольтаические коэффициенты K_{31} , K_{32} , K_{33} более, чем на порядок, превышают соответствующие коэффициенты в LiNbO₃:Fe.

Рис. 1. Зависимость фотовольтаического тока $J_z(1)$ при $\lambda = 600$ нм и $J_x(2)$ при = 460 нм от ориентации плоскости поляризации света в SbSJ.

Согласно (2), для SbSJ компоненты фотовольтаического тока J_x и J_y являются пространственно-осциллирующими. Однако, при освещении кристалла в области сильного поглощения в направлении осей *x* или *y* и при выполнении условия (3) вдоль поверхностей (100) и (010), соответственно, текут токи.

$$J_y = \frac{1}{2} \alpha_{24} I \cos 2\beta, \qquad (6)$$

$$J_x = \frac{1}{2} \alpha_{15} I \sin 2\beta, \qquad (7)$$

где В – угол между плоскостью поляризации света и осью z. Согласно [1, 7], для SbSJ условие сильного поглощения (3) должно выполняться уже при λ ≤ 470 нм. Для наблюдения ПОФТ в условиях сильного поглощения на грань цинакоида (010) напылялись серебряные электроды в форме полос, параллельных оси спонтанной поляризации z. С помощью этих электродов при освещении кристалла в направлении (010) поляризованным светом с $\lambda = 460$ нм измерялся ток J_{μ} (кривая 2) и в длинноволновой области $(\lambda = 600$ нм, кривая 1) измерялся ток *J*. Угловая зависимость измеряемого тока удовлетворяет (5), в том время как ток J_r в этой области вообще не может наблюдаться из-за нарушения условия (3) и пространственной осцилляции.

На рис. 2 представлены спектральные J_z (кривая 1), J_x (кривая 2), отнесенные к единице падающий энергии, а также спектральная зависимость $L = l_0 \alpha^*$, построенная с учетом дисперсии n_0 , n_e и коэффициента поглощения α^* в (010) направлении.

Рис. 2. Спектральная зависимость $J_{z}(1)$, $J_{x}(2)$ и $L = l_{0}\alpha^{*}(3)$.

Угловая зависимость $J_x(\beta)$ в форме кривой 2, хорошо согласуется с (7) при $K_{15} = (2 - -4) \cdot 10^{-9} \text{ A} \cdot \text{см} \cdot (\text{Bt})^{-1}$ ($\lambda = 460$ нм).

В то время, как измерявшаяся ранее спектральная зависимость J_z является монотонной, спектральная зависимость J_x обнаруживает резкий максимум вблизи $L \cong 1$. Таким образом, спад J_x в длинноволновой области, где $L \ll 1$, обусловлен ПОФТ. Интересен спад J_x в коротко волновой области, где L > 1. Так как АФ эффект не связан с временем жизни неравновесных носителей, то, возможно, это – коротковолновой спад J_x обусловлен уменьшением K_{15} и, следовательно, подвижности в направлении (100).

АФ ЭФФЕКТ В ПОРИЭЛЕКТРИЧЕС-КИХ КРИСТАЛЛАХ ZnO

В настоящее время к кристаллам окиси цинка ZnO – полупроводникового соединения группы A¹¹B^{y1}, обладающего высокой пьезоэлектричексой активностью, проявляется повышенный интерес в связи возможностью их использования в новых перспективных направлениях микро-, опто-, акустоэлектроники (создания электромеханических преобразователей, интегральных линий задержки, усилителя ультразвуковых колебаний, канальных триодов, осцилляторов и т.д).

Кристаллы окиси цинка являются гексагональными и принадлежат к точечной группе 6 мм. В настоящей работе обнаружен и исследован АФ эффект в кристаллах ZnO. В соответствии с (1) и симметрией точечной группы выражение, для фотовольтаического тока J_z при освещении x и y направлениях имеет вид [3, 8]

 $J = \alpha_{31}I + (\alpha_{33} - \alpha_{31})I\cos^2\beta$, (8) где J_z – фотовольтаический ток в направлении *z* (ось *z* совпадает с осью симметрии шестого порядка), *I* – интенсивность света и β – угол между плоскостью поляризации света и оси *z*.

Рис. 3 показывает экспериментальную угловую зависимость $J_{z}(\beta)$ для двух различных спектральных участков в примесной чувствительности ($\lambda = 600$ нм и $\lambda = 460$ нм) при освещении вдоль оси [010]. Сравнение экспериментальной угловой зависимости $J_{z}(\beta)$ с (8) позволяет определить численные значения α_{ijk} или фотовольтаических коэффициентов K_{iik} . Были получены следующие значения:

$$K_{31} = 2 \cdot 10^{-10}, \quad K_{33} = 2 \cdot 10^{-9} \text{ А \cdot см} \cdot (\text{Bt})^{-1}$$

для $\lambda = 460 \text{ нм};$
 $K_{31} = 1 \cdot 10^{-10}, \quad K_{33} = 3 \cdot 10^{-10} \text{ А \cdot см} \cdot (\text{Bt})^{-1}$
для $\lambda = 600 \text{ нм}.$

Рис. 3. Ориентационная зависимость фотовольтаического тока $J_{z}(\beta)$ в ZnO при T = 133 К. Направление распространения света вдоль оси [010] указано в верхней части рисунка.

Таким образом, фотовольтаические коэффициенты, характеризующие примесные центры в ZnO, сильно зависят от природы этих центров. Асимметрия центра (и, соответственно, разность $K_{33} - K_{31}$) растет с ростом энергии активизации центра.

Этот вывод подтверждается также спектральным распределением J_z в ZnO (рис. 4а). Оно показывает, что максимум при λ =460 нм имеет примесную природу.

Кривые 1 и 1' рис. 4а иллюстрируют влияние оптической перезарядки примесных центров на фотовольтаический эффект в ZnO. Кривая 1' была получена после предварительного освещения кристалла в собственной спектральной области, а кривая 1 без предварительного освещения.

Рис. 4. Спектральное распределение фотовольтаического тока $J_z - a$) и фотопроводимость $\sigma_{\phi} - \delta$).

Рис. 4а показывает, что предварительное освещение кристалла в области собственной фоточувствительности приводит к увеличению концентрации носителей в ловушках, что в свою очередь увеличивает фотовольтаический ток за счет асимметричного возбуждения носителей из ловушек в зону. В темноте кривая 1' медленно переходит в равновесное спектральное распределение, т.е. в кривую 1. Это естественно связать с термическим опустошением ловушек.

Рис. 4б показывает спектральное распределение фотопроводимости σ_{ϕ} в собственной области (кривая 3) и влияние предварительного освещения в собственной области на спектральное распределения примесной фотопроводимости (кривая 2 и 2¹).

Кривые 2 и 2' иллюстрируют явление оптической перезарядки примесных центров в ZnO, о котором говорилось выше.

выводы

Исследования АФ-эффекта, несомненно, представляют значительный интерес как для теории физики и ее приложений, так и для понимания особенностей кинетики сред без центра симметрии.

БЛАГОДАРНОСТИ

Автор благодарит В.М. Фридкина за обсуждение данной статьи.

ЛИТЕРАТУРА

- 1. Фридкин В.М. Фотосегнетоэлектрики. М.: "Наука", 1979. – С. 186-216.
- Glass A.M. Voh der Linbe D. Nerren T.J. Highvoltage Bulk Photovoltaik ettect and the Photovoltaik ettect and the Photorefractive process in LiNbo// Appl. Phys. Lett. – 1974. – № 4, Vol. 25. – P. 233-236.
- Белиничер В.И., Маалиновский В.К., Стурман Б.И. Фотовольтаический эффект в кристаллах с полярной осью// ЖЭТФ. – 1977. – Т.73. – С. 692-699.
- Belinicner V.I. Spese-Oscillating Photocurrent in Crystals withot Symmetry Center//Physics. – 1978. – Vol. 66, № A.3. – P. 213-214.
- Fatusso E., Harbeke G., Mers. W., Nitsche R., Roltschi, Ruppel E. Ferroelectricity in SbSJ// Phsi. Rev. – 1962. – Vol.1276. – P. 2036-2037.
- 6. Герзанич Е.И., Бризгалов И.А., Ракчеев А.Д., Ляховицкая В.А. Оптические постоянные

монокристаллы//Кристаллография. – 1968. – Т.13. – С. 898-900.

Стурман Б.И., Фридкин В.М. Фотогальванические эффекты в средах без центра инверсии. – М.: "Наука", 1992. – 208 с.

ФОТОВОЛЬТАЇЧНИЙ ЕФЕКТ У СЕГНЕТОЕЛЕКТРИКУ SBSJ ТА ПІРОЕЛЕКТРИКУ ZnO Б.Х. Карімов

У даній роботі виявлений і досліджений просторово-осцилюючий фотовольтаїчний струм (ПОФТ) у напрямку (100) в сегнетоелектрику SbSJ при освітленні поляризованим світлом у напрямку (010) та фотовольтаїчний ефект у піроелектричних кристалах ZnO. Фридкин В. М. Объемный фотовольтаический эффект в кристаллах без центра симметрии// Кристаллография. – 2001. – Т. 46, № 4. – С. 722-726.

THE PHOTOVOLTAIC EFFECT IN SEGNETOELECTRIC OF SbSJ AND PIROELECTRIC ZnO B.Kh. Karimov

In this work the space-oscillating photovoltaic current in a direction (100) in the segnetoelectric of SbSJ at illumination by the polarized light in a direction (010) and the photovoltaic effect in the piroelectric crystals of ZnO had been discovered and investigated.