УДК 621.315.592 НИЗКОТЕМПЕРАТУРНАЯ ФОТОЛЮМИНЕСЦЕНЦИЯ ТОНКИХ ПЛЕНОК СdTe, CdTe:In C АНОМАЛЬНЫМ ФОТОВОЛЬТАИЧЕСКИМ СВОЙСТВОМ

Б.Ж. Ахмадалиев, М.А. Каримов, Б.З. Полвонов, Н.Х. Юлдашев

Ферганский политехнический институт Узбекистан

Поступила в редакцию 09.10.2010

Обнаружена корреляция между спектром низкотемпературной (T = 4,2 K) фотолюминесценции и аномальными фотовольтаическими свойствами косонапыленных поликристаллических пленок CdTe, CdTe:In. В спектрах чистых образцов наряду с краевой дублетной полосой доминирует полоса собственной люминесценции, обусловленной наличием потенциальных барьеров на границах зерен. Легирование примесью In приводит к тушению дублетной полосы, а дальнейшая термическая обработка – к резкой активации собственной полосы, полуширина которой связана максимальным значением генерируемого фотонапряжения $V_{A\Phi H} \approx 10^3$ B/см. Ключевые слова: тонкая поликристаллическая пленка, теллурид кадмия, примеси, легирование, термическая обработка, аномальные фотовольтаические свойства, спектр фотолюминесценции, потенциальные барьеры, границы зерен.

Виявлено кореляцію між спектром низькотемпературної (T = 4,2 K) фотолюмінесценції та аномальними фотовольтаїчними властивостями косонапилених полікристалічних плівок CdTe, CdTe:In. У спектрах чистих зразків поряд із крайовою дублетною смугою домінує смуга власної люмінесценції, зумовленої наявністю потенційних бар'єрів на границях зерен. Легування домішкою In приводить до гасіння дублетної смуги, а подальша термічна обробка – до різкої активації власної смуги, напівширина якої зв'язана максимальним значенням генеруємої фотонапурги $V_{\rm Aph} \approx 10^3$ B/cm.

Ключові слова: тонка полікристалічна плівка, телурид кадмію, домішки, легування, термічна обробка, аномальні фотовольтаічні властивості, спектр фотолюмінесценції, потенційні бар'єри, границі зерен.

Correlation between spectrum of the low temperature (T = 4,2 K) photoluminescence and anomalous photovoltages properties of slanting evaporating polikryistallin thin films CdTe, CdTe:In is discovered. In spectrum undoped sample on a number double-acting by band dominated the band to own luminescence, conditioned presence potential barrier on border of grains an impurity In brings about stewing double-acting bands, but the most further thermal processing – to cutting the activations of the own band, full width on half maximum which is bound by maximum value photo generated voltage $V_{\text{AFN}} \approx 10^3$ V/sm.

Keywords: polycrystalline thin films, telluride cadmium, impurity, alloyage, thermal processing, anomalous photovoltages properties, spectrum of photoluminescence, the potential barrier, the border of grains.

введение

Анализ спектров низкотемпературной фотолюминесценции является одним из наиболее надежных и информативных оптических методов исследования полупроводников и пленочных структур на их основе. К настоящему времени подробно исследован спектр низкотемпературной люминесценции кристаллов и предложены методы прогнозирования и контролированного изменения электрофизических свойств полупроводниковых структур. Так, с помощью изучения динамики изменения спектров фотолюминесценции авторы работ [1, 2] предложили метод глубокой очистки образцов CdTe и получили поликристаллический CdTe стехиометрического состава, в спектре фотолюминесценции которого полностью отсутствует примесное излучение и остается только экситонная часть. Анализом формы краевого излучения при лазерном возбуждении исследованы электронные спектры твердых растворов CdTe:In [3], CdTe:Fe [4] и сверхрешеток CdTe/ZnTe [5, 6]. Однако формирование спектра фотолюминесценции тонких ($d < 1 \,\mu$ m) полупроводниковых пленок в зависимости от структурных, точечных и протяженных дефектов до сих пор практически не проанализировалось. Безусловно, представляет интерес изучение особенности аномальных фотоэлектрических и фотовольтаических свойств тонких поликристаллических пленок с помощью краевой люминесценции с целью усовершенствования технологии получения пленочных образцов с необходи-мыми рабочими параметрами для полупроводниковой оптоэлектроники.

В данной работе рассматривается вопрос о взаимосвязи формы спектра низкотемпературной фотолюминесценции с аномальными фотовольтаическими (АФВ) свойствами косонапыленных пленок CdTe, CdTe:In в зависимости от структурных несовершенств. Ранее с участием двух из авторов было сообщено [7], что легирование примесью In и последующая термическая обработка существенно улучшает фотовольтаические параметры пленок CdTe-фототок короткого замыкания I увеличивается на два порядка, а максимальное значение фото-эдс $V_{\rm A\Phi H}$ – на порядок. Здесь проанализируется спектр собственной и краевой фотолюминесценции этих пленок для выяснения механизма обнаруженного эффекта.

ТЕХНОЛОГИЯ. МЕТОДИКА ЭКСПЕРИМЕНТА

Исследуемые нелегированные пленки получали методом термического испарения в вакууме с давлением остаточных паров (1 ÷ 4)·10⁻² Па из порошка CdTe марки "для полупроводников". Температура стеклянной подложки T_" варьировалась в интервале 200 ÷ 600 К. Наиболее стабильные, воспроизводимые фотоэлектрические параметры и высокие фотовольтаические свойства достигались при $T_n = 500 \div 550$ K, толщинах пленки $d = 0.5 \div 0.8$ мкм, скорости осаждения (1,2 ÷ 1,5) нм/с и под углом напыления $40^{\circ} \div 60^{\circ}$. Технология получения омических контактов и методика измерения аномально большого фотонапряжения (АФН) выбирались так же, как и в работе [8]. Электронно-микроскопические и рентгеноструктурные исследования показали, что выращенные слои обладают

поликристаллическую текстурированную структуру преимущественно с кубической модификацией. Ось текстуры совпадает с кристаллографическим направлением [111] и перпендикулярно плоскости подложки. Размеры отдельных кристаллитов составили 0,5 \div 0,7 мкм. Свежеприготовленные пленки при комнатной температуре под действием нормально падающего естественного света лампы накаливания с интенсивностью $L \approx 10^4$ лк генерировали фотонапряжение $V_{A\Phi H} \approx 600$ В и ток короткого замыкания $I \approx 10^{-10}$ А. Фотовольтаические параметры пленок практически не испытывали деградации в течение года.

Процесс легирования тонких косонапыленных слоев CdTe осуществлялся непосредственно во время их выращивания методом термического испарения в вакууме (3 ÷ 5)·10⁻² Па путем препарирования CdTe и In из отдельных тиглов. Исходная масса напыляемой примеси составляла 3 ÷ 7 вес% от массы основного полупроводникового соединения. Испарение In задерживалась на 2 ÷ 3 мин и прекращалось на 3 ÷ 5 мин раньше, чем испарения основного материала. Свежеприготовленные поликристаллические образцы CdTe:In с толщиной $d \approx 0.8 \div 1.5$ мкм и площадью 5×20 мм² (скорость конденсации $v_{\mu} \approx 1,5 \div 2,0$ нм/с, угол напыления $30^{\circ} \div 50^{\circ}$) оказались более низкоомными и относительно слабо выражались АФВ свойствами $(V_{A\Phi H} = 50 \div 100 \text{ B})$. Однако после термической обработки (ТО) при температуре 450 ÷ 550 К в течение 20 ÷ 25 мин в вакууме или $10 \div 15$ мин на чистом воздухе, или $3 \div 5$ мин на воздухе в присутствии паров соактиватора CdCl, сопротивление образцов в 2 – 3 раза увеличивалось и в то же время при комнатной температуре они генерировали максимальное фотонапряжение до значений $(2 \div 4) \cdot 10^3$ B, т.е. почти на порядок больше, чем специально нелегированные образцы CdTe, а фототок короткого замыкания увеличивался более чем на два порядка и достигал до $I_{\kappa^3} \approx 10^{-8}$ А. Электрофизические и АФВ свойства отожженных пленок CdTe:In существенно стабилизируются. В случае ТО в вакууме или на воздухе в парах CdCl, потребовались пленки с толщинами 1,2 ÷ 1,5 мкм, а более тонкие пленки (*d* < 1,0 мкм) выходили из строя при

такой TO, что связано с процессами реиспарения и рекристаллизации.

Следует отметить, что метод выращивания легированных пленок CdTe:In путем предварительного осаждения тонкого слоя In на чистую стеклянную подложку, в отличие от случая легирования пленок CdTe примесью Ag аналогичным способом [8], не привел к ожидаемым результатам. Это означает, что донорная примесь In и акцепторная примесь Ag при формировании АФВ свойств во время ТО пленки CdTe ведут себя по-разному. Также заметим, что уменьшение температуры T_n подложки приводило к росту $V_{\rm A\Phi H}$ как легированных, так и не легированных, пленок при одинаковых условиях измерений, а увеличение толщины пленок - к обратному действию. Так, пленки CdTe:In с $T_n = 200$ K (охлажденные подложки) и d = 0.8 мкм при комнатной температуре максимально генерировали $V_{\rm A\Phi H} \sim 5 \cdot 10^3$ В со силой тока короткого замыкания $I_{\kappa_3} \sim 10^{-10}$ А.

Изучение электрофизических свойств отожженных пленок CdTe:In при комнатной температуре методами фотохолловских измерений и анализа люкс-амперных характеристик, термостимулированного тока показали [9], что оптимальные по значению $V_{A\Phi H}$ концентрации In и вакансий кадмия V_{Cd}^- составляют $10^{17} \div 10^{18}$ см⁻³. Концентрация и дрейфовая подвижность электронов варьируются при этом в пределах $10^{12} \div 10^{13}$ см⁻³ и 50 ÷ 250 см²/В·с, т.е. отожженная пленка CdTe:In представляет собою сильно неоднородную структуру из сильнокомпенсированного полупроводника.

Анализом спектральной зависимости фототока короткого замыкания $I_{\rm K3}(\hbar\omega)$ методом Луковского выявлены следующие глубокие локальные центры: $E_1 = E_v + (0,06 \pm 0,02)$ эВ, $E_2 = E_v + (0,18 \pm 0,02)$ эВ, $E_3 = E_v + (0,47 \pm 0,02)$ эВ, $E_4 = E_v - (0,15 \pm 0,02)$ эВ, $E_5 = E_v - (0,75 \pm 0,02)$ эВ, причем уровни E_2 и E_3 присутствуют во всех образцах, а E_1 – лишь в нелегированных СdTe:In. Известно [10], что уровни E_1 и E_3 создаются одно – и двухкратно заряженными вакансиями кадмия ($V_{\rm Cd}^-$,

 $V_{\rm Cd}^{-2}$), а уровень E_2 – междоузельным Te_i, тогда как, естественно ожидать, что за уровни E_4 и E_5 ответственны комплексные центры с участием In⁺ⁱ.

Для измерения спектров низкотемпературной фотолюминесценции пленочные образцы непосредственно погружались в откачиваемый жидкий гелий при 4,2 К. Спектры регистрировались на установке, собранной на базе спектрометра ДФС-24, работающим в режиме счета фотонов при минимальной ширине щели 0,04 мэВ. Возбуждение собственной люминесценции осуществлялось на длине волны $\lambda = 476,6$ нм светом непрерывного газоразрядного Ar⁺ – лазера, сфокусированным на поверхность слоя CdTe в пятно размером 0,4×4 мм² при мощности светового потока ~7 мВт. Эксперимент проводился в геометрии нормального освещения и почти нормального излучения*).

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Спектр низкотемпературной (Т=4,2 К) фотолюминесценции (ФЛ) нелегированной пленки CdTe с AФB свойством в окрестности фундаментальной полосы поглощения представлен на рис. 1а. Для сравнения здесь же показан пунктиром спектр ФЛ чистого монокристаллического образца [4], который простирается лишь в область частот $\hbar \omega < E_a$ и состоит из экситонной ($E_{\rm вx} \approx 1,59$ эВ), донорноакцепторной ($E_{\Pi A\Pi} \approx 1,54$ эВ) – ДАП линии излучения и их LO-фононных повторений. Как видно из рисунка, спектры ФЛ поликристаллической пленки с АФВ свойством и монокристалла из CdTe качественно отличаются. Основной вклад в ФЛ пленки дает излучательная рекомбинация *е* – *h* свободных носителей (А-линия с полушириной 14,2 ± 0,1 мэВ) и краевая люминесценция с яркой относительно широкой дублетной структурой (*B*-и *C*-линии с полуширинами 18,2±0,1 мэВ и $32,2 \pm 0,1$ мэВ), а экситонный канал излучения отсутствует. В области частот ħω> 1,65 эВ наблюдается горячая фотолюминес-

^{*)} Авторы выражают искреннею признательность д.ф.-м.н., профессору А.В. Селькину за оказанную методическую помощь во время снятия спектров фотолюминесценции наших пленочных образцов на его установке.

ценция, обусловленная излучательной рекомбинацией релаксирующихся по энергии горячих электронно-дырочных пар (частота лазерного излучения ħω = 2,60 эВ). Резкая длинноволновая граница $\hbar\omega = 1,627$ эВ собственной полосы излучения подтверждает совершенную кристаллическую структуру отдельных зерен пленки. Заметим, что данная граница смещена в сторону коротких волн на 0,02 эВ по сравнению с нижней границей зоны проводимости монокристалла *CdTe* (вертикальная штрих пунктирная линия на рис. 1а) при *T* = 4,2 К (*E_g* = 1,606 эВ). Это, по-видимому, можно объяснить наличием достаточно высоких внутренних термомеханических напряжений растяжения в тонкой пленке CdTe, что приводит к увеличению ширины запрещенной зоны.

Максимумы A- и B-линий излучения отличаются на энергии продольно оптического фонона в CdTe $\hbar \omega = 0,021$ эВ. Значить, можно утверждать, что симметричная B-линия является LO-повторением собственной A-полосы излучения, которая также, как и фунда-

Рис. 1. Спектры низкотемпературной ФЛ чистой – а), легированной In пленок CdTe до – b) и после – c) термической обработки. Штриховая линия – спектр чистого монокристалла CdTe [4], а штрих пунктирной линией показана граница его запрещенной зоны при 4,2 K.

ментальная полоса, отсутствовала в спектре монокристалла при заданной интенсивности лазерного возбуждения ~0,44 Вт/см².

Из рис. 1а видно, что пологий максимум *С*-линии излучения отстает от *А*-линии более чем на $2\hbar\omega_{LO}$. Это и наличие длинноволнового хвоста *С*-линии означает, что данная спектральная линия формируется в результате *e*-*h*-рекомбинации зона-зона с излучением 2LO, 3LO и т.д. фононов.

На рис. 1b показан спектр ФЛ легированной In пленки CdTe без TO. Видно, что введение примесных атомов индия сильно деформирует спектр ФЛ: во-первых, существенно сужается полуширина А-линии (до 6 мєВ), что и коррелируется падением почти на порядок максимального значения $V_{\rm A\Phi H}$ у свежеприготовленной пленки CdTe:In по сравнению с нелегированной пленкой CdTe; во-вторых, полоса краевой люминесценции (В-и С-линии), также как и канал горячей ФЛ исчезают; в-третьих, резкая красная граница собственного излучения сдвигается в длинноволновую сторону на энергии ≈3 мэВ, что обусловлено с уменьшением E_{q} , т.е. с ослаблением внутреннего механического напряжения в легированном образце. Отсюда можно заключить, что донорные примеси замещения In_{са} создают мощный канал безызлучательной рекомбинации, тем самым, сильно уменьшают роль LO-фононов и увеличивают электропроводность пленки CdTe:In [9], чем и определяется ухудшение её АФВ свойства.

Как видно из рис. 1с, после оптимальной ТО пленки CdTe:In спектр ФЛ качественно не претерпевает сильного изменения. Однако сразу же заметим, что ТО приводит к уширению линии A почти в три раза (полуширина достигает значения ~17 мєВ в соответствии с ростом значения $V_{A\Phi H}$ на порядок, т.е. до $3 \cdot 10^3$ В) и к увеличению ширины запрещенной зоны на ~11 мєВ по отношению к неоттоженной пленки CdTe:In. Процесс TO стимулирует наряду с AФВ свойством легированной пленки, также и её собственной полосы ФЛ.

Таким образом, мы видим четкую корреляцию между АФВ свойством и формой обнаруженной здесь впервые полосы собственной люминесценции косонапыленных пленок СdTe. Спектр ФЛ при легировании и TO сильно трансформируется в соответствии с изменением AФB свойств пленки.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В процессе формирования излучения поликристаллических образцов следует различать вклады трех характерных областей

$$I = \beta I_0 = I_{OM\Gamma} + I_{OO3} + I_{KHO},$$

где $I_{OM\Gamma} = R \cdot \hbar \omega, \ I_{KHO} = \int_{\ell_{D1}}^{d-\ell_{D2}} R_{KHO} \cdot \hbar \omega d\ell$

$$I_{OO3} = \int_{0}^{\ell_{D1}} R_{OO3}^{(1)} \cdot \hbar \omega d\ell + \int_{0}^{\ell_{D2}} R_{OO3}^{(2)} \cdot \hbar \omega d\ell - \text{вкла-$$

ды в интенсивность излучения соответственно от области межзеренных границ (ОМГ), квазинейтральной области (КНО) и областей объемных зарядов (ООЗ) и; R_s , R_{OO3}^i , R_{KHO} – темпы излучательных рекомбинаций в этих областях [11]; d – линейный размер кристаллического зерна ℓ_{Di} – длина экранирования Дебая, β – квантовый выход, I_0 – интенсивность возбуждающего света. Естественно, в крупнозернистых образцах (d 1 мм) преобладающую роль играет КНО и задача сводится к объемной фотолюминесценции, детально изученной для широкого класса полупроводников. Однако, в исследованных здесь мелкозернистых ($d \le 1$ мкм) поликристаллических

пленках с АФВ свойством роли ОМГ и ООЗ

становится определяющими. Действительно, как видно из рис. 1а, что для чистых монокристаллов CdTe при заданных интенсивностях возбуждающего лазерного излучения (≈7 мВт/см²) не обнаруживается собственное излучение (пунктирная линия [4]). Это объясняется тем, что *е-h*-излучательная время жизни $\tau_{_{\rm H3H}}$ неравновесных свободных носителей значительно превышает их времена ухода τ₀ путем образования экситонов или испускания фононов. Однако, широкая спектральная полоса А в спектре низкотемпературной ФЛ пленки CdTe с АФВ свойством вблизи границы фундаментального поглощения ($\hbar \omega > E_{\sigma}$) соответствует обратной ситуации $\tau_{_{\rm H3D}} << \tau_{_0}$, $\overset{\circ}{\rm o}$ чем свидетельствует отсутствие в спектре экситонных и ДАП-каналов излучения.

Проанализируем причину реализации такого условия формирования ФЛ. Для этого рассмотрим структурную модель косона-пыленной поликристаллической пленки (рис. 2), согласно которой кристаллические зерна, их границы раздела и поры между ними в направлении прохождения электрического тока образуют линейную периодическую цепочку

Рис. 2. Модель поликристаллической пленки с АФВ свойством, выращенной на стеклянной подложке: ВД – верхний дендрит и НД – нижний дендрит, *КЗ* – кристаллическое зерно, КП – канал проводимости.

последовательно включенных полупроводник-диэлектрик-полупроводник (ПDП) контактных структур с асимметричными приповерхностными потенциальными барьерами (рис. 3). При освещении каждая элеметарная ячейка ПDП за счет собственного или примесного поглощения света и пространственного разделения фотоносителей в асимметричных ООЗ генерирует небольшую поверхностную фото-ЭДС (рис. 4) $V_{i\phi} = \Psi_0 - \Psi$, где $\Psi_0 = (\Phi_{01} - \Phi_{02})/e, \Psi = (\Phi_1 - \Phi_2)/e^{-1}$ - контактные разности потенциалов между соседними зернами в темноте и под действием света, е – заряд электрона, ϕ_{01} , ϕ_{02} – высоты поверхностных потенциальных барьеров с левой и правой стороны диэлектрического слоя (ДС). Тогда естественно, что линейная цепочка ПDП генерирует высоковольтную фото-ЭДС $V_{A\Phi H} = N V_{i\phi} (N - число ячеек ПDП). Оче$ видно, что если поверхностные потенциальные барьеры на границах зерен симметричные или пленка достаточно толстая и обладает высокой фотопроводимостью, то АФВ эффект будет отсутствовать.

Возникает естественный вопрос, как взаимосвязаны процессы формирования ФЛ и АФВ свойств косонапыленных пленок? Известно [11], элементарная поверхностная фото-ЭДС возникает только за счет фотогенерации электронно-дырочных пар и их пространственного разделения внутренним полем в ООЗ. С другой стороны именно такой процесс приводит к накоплению электронов в КНО и дырок вблизи границы зерен в указанном на рис. 3 случае искривления энергетических уровней в ООЗ и препятствует

Рис. 3. Энергетическая зонная диаграмма линейной цепочки кристаллических зерен с асимметричными потенциальными барьерами на границе кристаллитов и межзеренными порами (для случая нелегированной АФВ – пленки) в состоянии термодинамического равновесия.

процессу образования экситонов (см. рис. 4). В высокоомных образцах максвелловское время релаксации $\tau = \epsilon \epsilon_0 / \sigma$ достаточно большое и времена жизни фотоносителей в соответствующих зонах определяются межзонной излучательной рекомбинацией. А это и является, по-видимому, главной причиной возгорания собственной люминесценции и подавления экситонного излучения. Следовательно, поверхностные ФЛ и фото-ЭДС в определенных условиях всегда сопутствуют друг с другом. Так, в мелкозернистых поликристаллах ($d \le l_D$) при слабой поверхностной рекомбинации вклад ООЗ в ФЛ может стать доминирующим. Как раз такая ситуация и имеет место в исследуемых пленках CdTe (см. рис. 1, участок А). В крупнозернистых $(d >> \ell_0)$ пленках вклад поверхностной ФЛ уступает перед вкладом КНО, однако, аномально большая фото-ЭДС все таки может генерироваться. Наоборот, хотя в случае симметричных поверхностных барьеров мелкозернистой пленки АФН не возникает, тем не менее роль поверхностной ФЛ может стать

Рис. 4. Энергетическая зонная диаграмма линейной цепочки кристаллических зерен с асимметричными потенциальными барьерами при освещении светом, приводящим к генерация АФН и ФЛ.

существенной. Таким образом, отсюда можно заключить, что появление собственной полосы излучения в спектре ФЛ тонкой косонапыленной мелкозернистой поликристаллической пленки СdTe обусловлено генераций поверхностной фото-ЭДС вблизи границы зерен. Естественно, что ширины спектров излучения от областей ассиметричных потенциальных барьеров с обеих сторон ДС несколько отличаются. Это проявляется в необычном уширении результирующей фундаментальной полосы излучения, а резкая длинноволновая граница которой обусловлена совершенной кристаллической структурой отдельных зерен.

ЗАКЛЮЧЕНИЕ

В заключение лишний раз отметим, что в спектрах низкотемпературной фотолюминесценции поликристаллических пленок CdTe, CdTe:In с АФВ свойством в отличие от монокристаллов не проявляется экситонный и ДАП-каналы излучения. Причиной этого является процесс генерации фотоЭДС в приграничных областях кристаллических зерен, приводящий к стимулированию собственной люминесценции и её LO-повторений в чистых образцах. Легирование донорной примесью In подавляет роль LO-фононов в процессах релаксации горячих фотоносителей по энергии, а дальнейшая ТО косонапыленной пленки стимулирует асимметрию потенциальных барьеров на границах зерен, которые адекватно отражается в спектрах ФЛ. Безусловно, такой оптический метод изучения фотовольтаических свойств пленочных структур существенно дополняет известных электрофизических методов и требует дальнейших исследований его новых возможностей с целью разработки эффективных пленочных фотопреобразователей.

ЛИТЕРАТУРА

- Квит А.В., Клевков Ю.В., Медведов С.А., Багаев В.С., Пересторонин А., Плотников А.Ф. Динамика изменения спектров фотолюминесценции образцов СdТе стехиометрического состава в зависимости от чистоты исходных компонентов//ФТП. – 2000. – Т. 34, Вып. 1. – С. 19-22.
- Багаев В.С., Клевков Ю.В., Колосов С.А., Кривобок В.С., Шепель А.А. Оптические и электрофизические свойства дефектов в высокочистом CdTe//ФТТ. – 2010. – Т. 52, Вып. 1. – С. 37-42.
- Велещук В., Байдуллаева А., Власенко А., Гнатюк В., Даулетмуратов Б., Левицкий С., Ляшенко О., Аокі Т. Массоперенос индия в структуре при наносекундном лазерном облучении//ФТТ.– 2010.–Т. 52, Вып. 3.–С. 439-445.
- Пермогоров С.А., Суркова Т.П., Тенишев А.Н. Экситонная люминесценция твердых растворов Cd_{1-x}Fe_xTe//ФТТ. – 1998. – Т. 40, Вып. 5. – С. 897-899.
- Багаев В.С., Онищенко Е.Е. Особенности температурной зависимости фотолюминесценции сверхрешеток квантовых точек CdTe/ ZnTe//ФТТ.-2005.-Т. 47, Вып. 1.-С. 168-171.

- Агекян В.Ф., Пономарева И.А., Серов А.Ю., Философов Н.Г., Karczewski G. Люминесценцция CdMgTe с ультратонкими нанослоями CdMnTe//ФTT. – 2008. – Т. 50, Вып. 2. – С. 336-339.
- Каримов М.А., Юлдашев Н.Х. Косонапыленные пленки CdTe:In с аномальными фотовольтаическими свойствами//Изв.РАН. сер. физич. – 2007. – Т. 71, Вып. 8. – С. 1186-1188.
- Атакулов Б., Абдуллаев Э., Эргашев Ж., Каримов М., Юлдашев Н. Технология получения фотоэлектретов "без внешнего поля" на основе АФН пленок CdTe: Ад и исследовавиие их фото- и тензометрических свойств// Материалы III Всесоюзного научно-технического семинара-совещания "Перспективы развития и практическое примененные методов тензометрии при исследовании прочности конструкций" Ч. I. – Фергана. – 1983. – С. 212-246.
- Каримов М.А., Юлдашев Н.Х. Влияние примеси индия на фотовольтаические свойства косонапыленных пленок CdTe//Физическая инженерия поверхности. – 2006. – Т. 2, № 5. – С. 42-47.
- Мирсагатов Ш.А., Шамирзаев С.Х., Махмудов М.А. Межзеренные поверхностные состояния поликристаллических пленок СdТе и их влияние на формирование эффективного квантового выхода//Узбекский физический журнал. – 1996. – №. 2. – С. 36-40.
- 11. Зуев А.Л., Саченко В.Б., Тольпыго К.Е. Неравновесные процессы на поверхности полупроводников. – М.: Энергия, 1979. – 256 с.